北京大学高等代数和解析几何真题1983——1984年汇总
高等代数(北大版第三版)习题答案I

高等代数(北大版第三版)习题答案I篇一:高等代数(北大版)第3章习题参考第三章线性方程组1.用消元法解以下线性方程组:?x1?x?1?1)?x1x1x13x25x34x413x22x32x42x2x3x4x54x2x3x4x52x2x3x4x5 x12x23x42x51x5??1?x1x23x3x43x523 2)2x?3x?4x?5x?2x?72345?139x9x6x16x2x252345?11x3?x7?0?3x1?4x2?5?x1?2x2?3x3?4x4?44x3?x2?0?x2?x3?x4??3?2x1?3x2?343)?4)?4x?11x?13x?16x?0x?3x??x?123424?1?17x?3x?x3?7x?2x?x?3x0234234??1?x1?2x2?3x3?x4?1?2x1?x2?x3?x4?1?3x1?2x2?x3?x4?13x1?2x2?2x3?3x4?25)? 6)?2x1?3x2?x3?x4?12x2x2xx15x1x2x32x4123412xxx3x4234?15x1?5x2?2x3?2解1)对方程组得增广矩阵作行初等变换,有111111000033?2?420000?1521112?3?20?1?4?2?11?1?1200101?1?11010001??110??30??3??01?011?200?0000030?5?7?10000?15?3?4?4?400?200423581200001?1?11010001?2?2? ?221?2?0? ?0?0由于rank(A)?rank(B)?4?5,因此方程组有无穷多解,其同解方程组为x1x412x1x52,?2x03x?x?0?24解得x1x2x3x4x51kk0k22k其中k为任意常数。
2)对方程组德增广矩阵作行初等变换,有112910 ??002?1?3?920?3463151632?3221??120?0725022?3?7?27120?346341110?2?5?2?1631?1 5161334512529?8?011??333033?2529??72?10??334?512529? 8001?1?3330000??01?由于rank(A)?4?rank(A)?3,因此原方程无解。
高等代数与解析几何1~4章习题答案(DOC)

高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =x x x x x x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式)4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000000001000001____________. 2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B =⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nn nn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n n n n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a是n 阶范德蒙德行列式 …… (4分) 因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。
2018年北京大学高等代数与解析几何试题及解答

6. (1) 显然V = 0及V = Mn (K )为两个平凡的公共子空间,但不是n维的. 设 Vi = span {E1i , E2i , · · · , Eni } , i = 1, 2, . . . , n. 则Vi 是n维公共子空间. 另外, V = {(α, α, 0, . . . , 0) | α ∈ K n }也是n维公共子空间. (2) 若V ⊂ V , 但是V = 0, 则存在B ∈ V 设bij = 0, 则
u v w
可得 yw − vz = 0
(x − 1)w − (z − 1)u = 0 , (x + 1)v − (y + 1)u = 0 因为(u, v, w) = 0, 因此上述线性方程组有非零解, 从而 0 1−z −z 0 y x−1 w = 0.
−y − 1 x + 1
B= sin θ3
cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 − cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 sin θ2 sin θ1 cos θ2 cos θ1 cos θ2
= cos θ2 sin θ3
9. (15分) 记A是与下面三条直线都相交的直线的并集: 达式f (x, y, z ) = 0,其中f 是一个三元多项式.
y = 0 z = 0
,
x = 1 z = 1
,
x = −1 y = −1
. 给出A的一个一般表
10. (15分) 证明几何空间中任意一个旋转变换f , 只要转轴通过原点, 就一定可以写成f = gz ◦ gy ◦ gx 的形式, 其 中gx , gy , gz 分别表示绕x, y, z 轴的旋转变换.
北京大学1996年高等代数与解析几何试题及解答

五. 令
g(x)
=
xn
−
1
=
n∏−1
( x
−
e
2πki n
)
,
k=0
则 g(A) = 0, 于是 A 的最小多项式 mA(x) 将整除 g(x), 从而 mA(x) 为 C 上互素一次因式的乘积, 从而一
定可以相似对角化.
六. W 的标准正交基是 1, 1, x, x2, x3 是 R[x]4 的一组基, 从而 ∀f (x) = a0 + a1x + a2x2 + a3x3 ∈ W ⊥,
北京大学 1996 年全国硕士研究生招生考试高代解几试题及解答
微信公众号:数学十五少 2019.05.25
一. (15 分) 在仿射坐标系中, 求过点 M0(0, 0, −2), 与平面 π1 : 3x − y + 2z − 1 = 0 平行, 且与直线
x−1 y−3 z
ℓ1 :
=
=
4
−2 −1
相交的直线 ℓ 的方程.
(1) P 是 V 上的线性变换, 并且 P2 = P;
(2) P 的核 KerP = W, P 的象 (值域)ImP = U ;
(3) V 中存在一个基, 使得 P 在这个基下的矩阵是 ( Ir
O
) O
, O
其中 Ir 表示 r 级单位矩阵, 请指出 r 等于什么.
五. (12 分) n 阶矩阵 A 称为周期矩阵, 如果存在正整数 m, 使 Am = I, 其中 I 是单位矩阵. 证明: 复数域 C 上 的周期矩阵一定可以对角化.
(1, 0, −1)T, (0, 2, −1)T. 令
xy
北京大学2001年高等代数与解析几何试题及解答

→
1 0
−3 −5
5 7
−2 −3
,
−1 −7 9 −4
0 −10 14 −6
0000
可以看出
−4
η1 =
7 5
,
1
η2
=
−3 0
0
5
是 AX = 0 的解空间中的线性无关向量, 注意到解空间的维数是 2, 从而 η1, η2 是解空间的一组基. 进
4. (1) 特征多项式 f (λ) = |λE − A| = λ3 + λ2 − 3λ + 2.
a. 由于 f (±1) ̸= 0, f (±2) ̸= 0, 从而 f (λ) 没有有理根,故 A 没有有理特征值, 从而不能在有理数域 上对角化.
b. (f (λ), f ′(λ) = 1, 从而 f (λ) = 0 没有重根, 即 f (λ) 在 C[λ] 中可分解为三个互素一次因式的乘积, 于是 A 在复数域上可对角化.
(X0Tα1, . . . , X0Tαs) = (0, . . . , 0),
从而 (X0, αi) = 0, i = 1, 2, . . . , s, 于是 αi ∈ W ⊥, i = 1, 2, . . . , s. 故 U ⊂ W ⊥, 再注意到
dim W = n − rank(A), dim U = rank(A), dim W + dim W ⊥ = n,
2. (15 分) 在空间直角坐标系中, 与 是一对相交直线.
x−a y z
ℓ1 :
== 1 −2 3
x y−1 z
ℓ2 :
= 2
1
= −2
(1) 求 a.
北京大学2007年高等代数考研真题

北京大学2007年高等代数与解析几何试题1、回答下列问题:(1)问是否存在n 阶方阵A ,B ,满足AB −BA =E (单位矩阵)?又是否存在n 维线性空间上的线性变换A ,B ,满足AB −BA =E (恒等变换)?若是,举出例子;若否,给出证明.(2)设n 阶矩阵A 的各行元素之和为常数c ,则3A 的各行元素之和是否为常数?若是,是多少?说明理由.(3)设m ×n 矩阵A 的秩为r ,任取A 的r 个线性无关的行向量,再取A 的r 个线性无关的列向量,组成的r 阶子式是否一定不为0?若是,给出证明;若否,举出反例.(4)设A ,B 都是m ×n 矩阵,线性方程组AX =0与BX =0同解,则A 与B 的列向量组是否等价?行向量组是否等价?若是,给出证明;若否,举出反例.(5)把实数域R 看成有理数域Q 上的线性空间,r q p b 23=,这里的∈r q p ,,Q 是互不相同的素数.判断向量组n n n n b b b 12,...,,,1−是否线性相关?说明理由.2、设n 阶矩阵A ,B 可交换,证明:rank (A +B )≤rank (A )+rank (B )−rank (AB ).3、设f 为双线性函数,且对任意的γβα,,都有),(),(),(),(γααβαγβαf f f f =求证:f 为对称的或反对称的.4、设V 是欧几里德空间,U 是V 的子空间,U ∈β.求证:β是V ∈α在U 上的正交投影的充分必要条件为:U ∈∀γ,都有||||γαβα−≤−.5、设n 阶复矩阵A 满足:对于任意正整数k,都有0)(=k A tr .求A 的特征值.6、设n 维线性空间V 上的线性变换A 的最小多项式与特征多项式相同.求证:V ∈∃α,使得αααα12,...,,,−n A A A 为V 的一个基.7、设P 是球内一定点,A ,B ,C 是球面上三动点.∠APB =∠BPC =∠CPA =2/π.以PA,PB,PC 为棱作平行六面体,记与P 相对的顶点为Q ,求Q 点的轨迹.8、设直线L 的方程为⎩⎨⎧=+++=+++,0,022221111D z C y B x A D z C y B x A 问系数满足什么条件时,直线L(1)过原点;(2)平行于x 轴,但不与x 轴重合;(3)与y 轴相交;(4)与z 轴重合.9、证明双曲抛物面z by a x 22222=−的相互垂直的直母线的交点在双曲线上.10、求椭球面191625222=++z y x 被点(2,1,-1)平分的弦.。
北京大学2014年高等代数与解析几何试题及解答
都乘以 −1 得到. 又 2014 = 2 × 19 × 53, 因此将 2014 表示为两个正整数的乘积只有 8 种不同的表示方法.
由抽屉原理知,
在
g(k)
的
8
个可能取值中至少有一个出现的次数大于等于
2013 8
ቤተ መጻሕፍቲ ባይዱ
>
251,
设这个数为
l,
则
有 (x − a1)(x − a2) . . . (x − a252) | g(x) − l, 其中 a1, a2, . . . , a252 为 {1, 2, . . . , 2013} 中互不相同的数. 因为
(1) 若线性变换 A 是正的,则 A 可逆;
(2) 若线性变换 B 是正的, A − B 是正的,则 B−1 − A−1 是正的;
(3) 对于正的线性变换 A, 总存在正的线性变换 B , 使得 A = B2.
7.
求单叶双曲面
x2 a2
+
y2 b2
−
z2 c2
=
1
的相互垂直的直母线的交点的轨迹.
4. (1) 线性变换的最小多项式整除它的零化多项式, 故 xn−1 不是 A 的零化多项式, 从而 An−1 ̸= O =⇒ ∃α ∈ V, 使得 An−1α ̸= 0. 此时将有 α, Aα, . . ., An−1α 线性无关, 结合 V 的维数为 n, 故得到 V 的一 组基.
(2) 设 AB = BA, Bα = k0α + k1Aα + · · · + kn−1An−1α. 令 f (x) = k0 + k1x + · · · + kn−1xn−1, 则
1999-2000,2,5-8,10北京大学高等代数考研真题
1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。
其中B 是常数2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标;对于线心型曲线,写出对称直线的方程。
3. 设数域K 上的n 级矩阵A 的),(j i 元为ji b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。
4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC (2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。
数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。
用U 表示K 上所有n 级循环矩阵组成的集合。
证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。
5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。
在实数域上n 维线性空间n R 中,对于nR ∈βα,,令βαβαH f '=),(。
试问:f 是不是n R 上的一个内积,写出理由。
(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。
令αα'=A B ,求B的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n r a n k r a n k =+++-⇔=)()(23A A I A I I A2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。
北京大学考研真题试题-高等代数与解析几何2007[试卷+答案]
例如,设V = P[x] 是数域 P 上多项式全体所构成的线性空间,定义 Af (x) = f ′(x) , Bf (x) = xf (x) , ∀f (x) ∈V ,
北京大学 2007 年《高等代数与解析几何》试题解答
北京大学 2007 年高等代数与解析几何试题 解答
1、回答下列问题:
(1)问是否存在 n 阶方阵 A, B ,满足 AB − BA = E (单位矩阵)?又,是否存在 n 维
线性空间V 上的线性变换 A ,B ,满足 AB − BA = E (恒等变换)? 若是,举出例子;若否,
的基础解系)构成 n × r 矩阵 C ,则 rank(C) = r ,且 AC = O , BC = O .
考虑齐次线性方程组 CT X = 0 ,其解空间 S 的维数 dim(S ) = n − r = rank( A) .
因为 C T AT = O ,所以 A 的行向量都是 C T X = 0 的解,因此 A 的行空间WA 是 S 的一 个子空间,即WA ⊆ S .注意到 dim(WA ) = rank( A) = dim(S ) ,故WA = S .
容易验证: AB − BA = E . (2)设 n 阶矩阵 A 的各行元素之和为常数 c ,则 A3 的各行元素之和是否为常数?若是,
是多少?说明理由.
【解】是.设 η = (1,1, ,1)T 是 n 维列向量,则由 A 的各行元素之和为常数 c ,知 Aη = cη ,从而 A3η = c3η .所以 A3 的各行元素之和为常数 c3 .
北京大学数学科学学院《高等代数I》期末试题及答案【完整版】
北京大学数学科学学院期末试题考试科目 高等代数I 考试时间 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001.1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010 . 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0I rQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010*********, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京大学数学考研题目
1983年 基础数学、应用数学、计算数学、概率统计专业
2
2
2
202220
0Ax By C z D yz Ezx Fxy A B C +++++=++=一、(分)证明:在直角坐标系中,顶点在原点的二次锥面有三条互相垂直的直母线的充要条件是.
1223112220...1,...2, (1)
n n n n n x x x x x x x
x x n ++++++=⎧⎪
+++=⎪⎨⎪⎪+++=+⎩二、(分)用导出组的基础解系表出线性方程组的一般解。
121220,,...,()()...()1n n a a a x a x a x a ----三、(分)设是相异整数。
证明:多项式在有理数域上不可约。
20000120231001011A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
四、(分)用V 表示数域P 上全部4阶矩阵所成的线性空间,A 是V 中的一个矩阵,已知-10,,及10分别是的属于特征值, , ,-1的特征向量。
(1)求A;
(2)求V 中与A 可交换的矩阵全体所成的子空间的维数及一组基。
20,A B 五、(分)设是两个n 级正定矩阵。
证明:AB 是正定矩阵的充要条件是A 与B 可交换。
1984年 数学各专业
132110:
:231003
6
3
x y l z x y z π--==-
++-=一、(分)求直线与平面的交点。
10,,,,a b c a b b c c a ⨯⨯⨯二、(分)设向量不共面。
试证:向量不共面。
15K K K K K K 三、(分)设和为平面上同心的单位(半径=1)开圆域和闭圆域。
(1)取定适当的坐标系,写出和的解析表示式;(2)试在和的点之间建立一个一一对应关系。
{}{}{}{}23231
231
251,,.2,,V R V T V V T T T T T T T
T T T εεεεεεεεεεεεεεεεεεεεε--→==+=++111212312311113四、(分)设是实数域上的三维向量空间,,,是的一组基。
()设在线性变换:下,试求在,,中的变换公式;()求的逆变换在,,中的公式;
(3)求在中的公式。
2
220.20
24(2)2
177,.42
20A B A B A B A B =-⎛⎫
⎪=--= ⎪ ⎪-⎝
⎭
五、(分)(1)证明:实矩阵是正定的充要条件为:可找到一个可逆的实对称矩阵,使给定求实对称矩阵,使20(1)((2),n m n m A n m B m n E AB E BA E n E m A B AB BA ⨯⨯-=-六、(分)设为矩阵,为矩阵。
求证:为阶单位矩阵,为阶单位矩阵).
证明:如果为同阶方阵,则与总有相同的特征值(不考虑重数).。