上海大学高等代数历年考研真题

合集下载

高等代数考研真题第一章多项式

高等代数考研真题第一章多项式

且f(x)在有理数域上不可约。

第一章多项式1 (清华2 000— 20分)试求7次多项式f(X ),使f(M 1能被(X -1)4整除,而f(X )-1能被(X 1)4整除。

2、 (南航 2001 — 20 分)(1) 设 x —2px+2 I x +3x +px+q ,求 p,q 之值。

(2) 设f(x) , g(x), h(x) € R[x],而满足以下等式2(x +1)h(x)+(x -1) f(x)+ (x -2) g(x)=02(x +1)h(x)+(x+1) f(x)+ (x+2) g(x)=02 2证明:x +1 I f(x) , x +1 I g(x)3、 (北邮2002 —12分)证明:x d - 1 I x "- 1的充分必要条件是d I n (这里里记号 d I n 表示正整数d 整除正整数n )。

4、 、(北邮 2003 —15分)设在数域 P 上的多项式 g 1(x), g 2(x) , g 3(x) , f(x),已知 g 1(x) I f(x),g 2(x) I f(x) , g 3(x) I f(x),试问下列命题是否成立,并说明理由:(〔)如果 g 1(x) ,g 2(x) , g 3(x)两两互素,则一定有 g 1(x) , g 2(x) , g 3(x) I f(X )(2)如果g1(x) , g 2(x) , g 3(x)互素,则一定有 g 1(x)g 2(x)g 3(x)I f(X )5、 (北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。

证明P 是素数当且仅当任取正整数a ,b 若p I ab 则p I a 或p I b 。

6、 (大连理工2003 —12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幕主充分必要条件是,对任意的多项式g(x) , h(x),由f(x) I g(x) h(x)可以推出f(x) I g(x),或者对某一正整数 m , f(x) I h m(x)。

上海交大高等代数+数学分析历届考研真题.

上海交大高等代数+数学分析历届考研真题.

上海交通大学1999年硕士研究生入学考试试题试卷名称:高等代数1.(10分)设P 为数域。

()()[]x P x g x f ∈,令()()()()()x g x x x f x X F 1122++++=;()()()()x g x x xf x G 1++=。

证明:若()x f 与()x g 互素,则()x F 与()x G 也必互素。

2.(10分)设J 为元素全为1的阶方阵。

(1) 求J 的特征多项式与最小多项式;(2) 设()x f 为复数域上多项式。

证明()J f 必相似于对角阵。

3.(10分)(1) 设n 阶实对称矩阵()ij x A =,其中1+=j i ij a a x 且0...21=+++n a a a ,求A 的n 个特征值。

(2) 设A 为复数域上n 阶方阵。

若A 的特征根全为零,证明:1=+E A 。

此处E 为n 阶单位阵。

4(10分)设()x f 是数域F 上的二次多项式,在F 内有互异的根21,x x ,设A 是F 上线性空间L 的一个线性变换且I x A 1≠,I x A 2≠(I 为单位变换)且满足()0=A f ,证明21,x x 为A 的特征值;且L 可以分解为A 的属于21,x x 的特征子空间的直和。

5(10分)用正交线性变换将下列二次型化为标准形,并给出所施行的正交变换:32312123222184422x x x x x x x x x ++---6(10分)对的不同取值,讨论下面方程组的可解性并求解:7(10分)假设A 为n m ⨯实矩阵,B 为1⨯n 实矩阵,TA 表示A 的转置矩阵。

证明: (1) AB=0的充要条件是0=AB A T; (2) 矩阵A A T与矩阵A 有相同的秩。

8(10分)设p A A A ,...,,21均为n 阶矩阵且0...21=p A A A 。

证明这p 个矩阵的秩之和小于等于()n p 1-,并举例说明等式可以达到。

上海大学高等代数历年考研真题

上海大学高等代数历年考研真题

2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅(二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和. (三)B A ,分别为mn ⨯和m n ⨯矩阵,nI 表示n n ⨯单位矩阵.证明:m n⨯阶矩阵0n A I XB ⎛⎫= ⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆.(四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)VAV A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r Aa Aa Aa ⋅⋅⋅是2()A V 的一组基. (六)设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f g g==试证:(1)f 与g 有相同的值域⇔,fg g gf f==.(2)f 与g 有相同的核⇔,fg f gf g==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A ab b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X=的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x xx=++--为标准形 (四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()AA aAA=,求证'm AA aE =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n n A A -≠=求证:存在a V ∈,使2211,,,,n n n a A a A aA aA a A a A a a---++++为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a Aa a ≠<⇔A的所有特征值都小于0.(七)设Aa B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'1a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a aax a aA B a a x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭.(二)设A 是n 阶可逆方阵,0A AB A ⎛⎫= ⎪⎝⎭. (1)计算k B (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2B CC E=+,求C .(三)设(1)(1)(1)(1)p p p n ppp n pp A p n p p p n pppp--------=--------,A是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i aa a + ,若121121r i i ri k a k a k a ++++= ,则121,r k k k + 或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B AB tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V aa V Aa a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A Ea A Ea A Ea +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a a A a a x a aaax=(A为n 阶矩阵),2AA B A A ⎛⎫=⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若AB E A =- (1)求证:1A=±,(2)若200120232B -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求A .(四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121nn a a a a -=++121n n a a a a β-=+++ ,求AX β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为k a -(k 为正整数) (六)设A为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GAG E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =. (1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X=的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A . (2)求正交变换XPY=,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥(十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,Aa a B a Vβββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ijA a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑,其中ij A 为ij a 的代数余子式.(2)如果ija 都是整数(1,2)i n = ,则a 整除A .(二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =.(1)求行列式'E A A λ-. (2)求'0A AX=的解(X是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E AB=-.(1)求证:21A B+=.(2)若100110231B -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B=.(2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a Aa a a λ≥.(六) 设123,,λλλ为3阶方阵A的特征值,且()()()111,011,01分别为其对应的特征向量,求n A .(七)V是n 维欧氏空间,σ是n 维空间V 上的线性变换,如果1231,,n a a a a -是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证:(1)()()2r A r B == (2)题型与钱吉林书习题类示。

高等代数历年考研真题

高等代数历年考研真题

高等代数历年考研真题高等代数是数学学科中的一门重要课程,对于数学专业的学生来说,它是必修课之一。

考研是追求学术进阶的一个重要途径,因此高等代数也成为许多考研学生备战的重点科目之一。

本文将通过回顾历年考研真题,分析高等代数考点和解题技巧,帮助考生更好地应对高等代数考研。

一、线性代数线性代数是高等代数的重要组成部分,它主要研究向量空间、线性变换、矩阵等内容。

在考研真题中,线性代数所占比例较大,因此掌握好线性代数的基本概念和基本性质非常关键。

1.1 向量空间向量空间是线性代数的核心概念之一。

考研真题中常涉及到子空间、基、维数等概念。

在解题过程中,要注意对向量空间性质的分析,运用相关定理和定理的推论进行证明。

1.2 线性变换线性变换是研究向量空间的重要方法之一。

考研真题中常涉及到线性变换的矩阵表示、特征值和特征向量等。

对于线性变换的性质和特征值的计算,考生需要熟练掌握相应的运算方法和计算技巧。

1.3 矩阵矩阵是线性代数中的重要工具之一。

考研真题中常要求计算矩阵的特征值、特征向量以及矩阵的秩等。

在解答这类问题时,要善于利用矩阵的性质和运算规则,结合相应的定理进行证明和计算。

二、群论群论是代数学的一个重要分支,用于研究对称性和对称性破缺等问题。

在高等代数考研中,群论占有一定的比例,因此对群论的掌握和理解是非常重要的。

2.1 群的基本概念在群论中,要掌握群的定义、子群、陪集等基本概念。

考研真题中常结合这些概念来进行命题证明和运算。

2.2 循环群循环群是群论中重要的一类特殊群。

考研真题中常要求判断某个群是否为循环群以及计算循环群的阶等。

在解答这类问题时,要熟练应用循环群的定义和基本性质。

2.3 正规子群与商群正规子群和商群是群论中的重要概念。

考研真题中要求理解正规子群和商群的定义,熟练运用这些概念进行证明和计算。

三、域论域论是代数学的一个重要分支,主要研究环和域的性质与结构。

在高等代数考研中,域论占有一定比例,因此对域的基本概念和性质的理解是十分重要的。

高等代数考研真题 第一章 多项式

高等代数考研真题  第一章 多项式

第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。

2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。

(2)设f(x),g(x),h(x)∈R[x],而满足以下等式 (x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0 (x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0 证明:x 2+1∣f(x),x 2+1∣g(x) 3、(北邮2002—12分)证明:x d -1∣x n -1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。

4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x ),g 3(x ),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。

证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。

6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m (x)。

7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。

上海大学线性代数样题

上海大学线性代数样题

5 * 1 7. 已知A = 0 0
5 0 4 0 7 8 , A−1 = 0 5 0 0 7 5
一、选择题: 选择题: (每小题 2 分,5 题共 10 分)
1.A 是数域 F 上 m x n 矩阵,b 为 m 维列向量, 以下错误的是( ) A.如果 A 是列满秩的,则线性方程组 Ax=b 有唯一解 B.如果 A 是列满秩且 m=n,则线性方程组 Ax=b 有唯一解。 C.齐次线性方程组 Ax=0 若有两个不同的解,它一定有无穷多个解 D.当 m < n 时,则齐次线性方程组 Ax=0 有非零解 E.若 Ax=b 所有解向量至多有 n 个解向量线性无关,则 r(A)=1 2.设 A 是 m╳n 矩阵,且 AB=AC,则( ) A.当 A≠O 时,B=C B.当 m=n 时,B=C C.当 r(A)=n 时,B=C D.当 r(A)=m 时,B=C 3.设 A,B,C 是方阵,若 ABC =I ,则必有() A. BCA=I; B. CBA = I ;C. BAC =I ;D. ACB =I . 4. 设 A 是方阵,若 A = 0 ,则错误的是()

2 页
( 共
4 页 )
得分
评卷人
三、计算题: 计算题: (本大题 6 小题,共 57 分)
第 2 页
1 3 13.(9分) 设D = −2 5
1 1 1 1
7 −1 8 0 ,设A11 , A12 , A13 , A14为其第一行代数余子式。 4 3 2 5
1 1 1 1 1 1 1 −1 ( 共 4 页 ) , 且AXA −1 = −2 XA −1 + I , 求A和X 14.( 10分)设( A + 2 I ) = 1 1 1

高等代数考研试题精选

高等代数考研试题精选

《高等代数》试题库一、选择题1.在[]F x 里能整除任意多项式的多项式是( )。

A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。

A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。

A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。

A . 充分 B . 充分必要 C .必要 D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。

A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。

A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。

A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。

高等代数825考研真题

高等代数825考研真题

高等代数825考研真题高等代数是数学中的一门重要课程,对于提高数学建模能力和解决实际问题具有重要作用。

本文将针对高等代数825考研真题展开讨论。

第一部分:选择题(1)设V是数域K上的线性空间,S是V的子空间,则下列命题中正确的是()A. V⊂SB. V⊂VC. V=VD. V≠V(2)设A,B都是n阶方阵,则下列命题中正确的是()A. VV(VV+VV)≤VV V+VV VB. VVV V+VVV V=VV(VV+VV)C. VV(VV+VV)≥VV V+VV VD. VVV V+VVV V≥VV(VV+VV)第二部分:解答题1. 证明引理:设V={V1, V2,..., VV} ,V是V的一个非零子空间,则V(V1+V2+V+VV)≥2。

其中,V(V) 表示向量V的秩。

解:假设V1+V2+V+VV= V0 ,其中V0≠V为一线性组合等于零向量,需要证明线性相关,即证明存在VV≠V使得VV是线性相关向量。

首先,假设V1+V2+V+VV= V0 成立,则可以得到其中至少有一项VV=0。

其次,如果保持原假设成立,那么对于其他项V j ∈V中的向量V j,可以写成V j= −(V1+V2+V+VV)+2V i ,可知V j 是线性相关向量。

综上所述,线性空间V中至少存在两个线性相关的向量。

2. 设V,V,V是V阶方阵。

证明:如果V,V是可逆的,则VV和VV也是可逆的,并且特征值λ(VV) = 特征值λ(VV)。

解:首先,V,V是可逆的,则存在V的逆矩阵V^-1 和V的逆矩阵V^-1 。

其次,考虑矩阵VV,假设存在非零向量V使得 (VV)V= 0 ,则有V(VV)=0。

由于V是可逆的,所以V^-1 存在,因此可以得到VV=0。

由于V是可逆的,所以只有V为零向量才能使等式成立,即零向量是唯一解。

综上所述,矩阵VV是可逆的。

类似地,可以证明矩阵VV也是可逆的。

在特征值方面,由于可逆矩阵与其逆矩阵存在相同的特征值,所以特征值λ(VV) = 特征值λ(VV)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅ (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和.(三) B A ,分别为m n ⨯和m n ⨯矩阵, n I 表示n n ⨯单位矩阵.证明: m n ⨯阶矩阵n A I X B ⎛⎫=⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A ,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)V A V A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r A a A a A a ⋅⋅⋅是2()A V 的一组基. (六) 设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f gg ==试证:(1)f 与g 有相同的值域⇔,fg g g f f ==. (2)f 与g 有相同的核⇔,fg f g f g ==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X =的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x x x =++--为标准形(四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()A A a A A =,求证'm A A a E =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n nAA-≠=求证:存在a V ∈,使2211,,,,n n n a A a A a A a Aa Aa Aa a ---++++ 为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a A a a ≠<⇔A 的所有特征值都小于0. (七)设A a B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'10a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A 为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a a ax a aA B aa x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭. (二)设A 是n 阶可逆方阵,0A A B A ⎛⎫=⎪⎝⎭. (1)计算kB (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2BC C E =+,求C .(三)设(1)(1)(1)(1)p p p n p pp n p p A p n p p p n pppp--------=--------,A 是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i a a a + ,若1211210r i i rika k a k a ++++= ,则121,r k k k +或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B A B tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V a a V A a a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A E a A E a A E a +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a aA a a x a aaax=(A 为n 阶矩阵),2AA B AA ⎛⎫= ⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若A B E A =- (1)求证:1A =±,(2)若200120232B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求A . (四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121n n a a a a -=++ 121n n a a a a β-=+++ ,求A X β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为ka -(k 为正整数)(六)设A 为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GA G E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =.(1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X =的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A .(2)求正交变换X P Y =,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥ (十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,A a a B a V βββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ij A a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑ ,其中i j A 为ij a 的代数余子式.(2)如果ij a 都是整数(1,2)i n = ,则a 整除A . (二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =. (1)求行列式'E A A λ-.(2)求'0A A X =的解(X 是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E A B =-.(1)求证:21A B+=.(2)若100110231B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B =. (2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a A a a a λ≥. (六) 设123,,λλλ为3阶方阵A 的特征值,且()()()111,011,01分别为其对应的特征向量,求nA .(七) V 是n 维欧氏空间, σ是n 维空间V 上的线性变换,如果1231,,n a a a a - 是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证: (1)()()2r A r B == (2)题型与钱吉林书习题类示。

(九)设F 为数域,A 为数域上n 阶方阵,且{}10V x F A x =∈=,{}2()0V x F A E x =∈-= 求证:2AA =⇔12F V V =⊕。

(十)设24aβγ=,aaA a a γβγβγβ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭为n 阶方阵,B 为n 阶正交方阵,求证:222(1)24n nB A an BA=+(十一)设221231(1)(1)()()()()(2)n n n n n nn x x f x xf x x f x x f x n --⎡⎤--++++≥⎣⎦求证:(1)()(1,21)i x f x i n -=- 。

(十二)设A 为n 阶实可逆矩阵,则A 为正定矩阵充分必要条件为存在n 阶上三角实可逆矩阵L ,使A L L ⊥=。

(十三)设A 为秩为r 的n 阶矩阵,证明:2A A =的充要条件是存在秩为r 的r n ⨯阶矩阵B 和秩为r 的n r ⨯矩阵C ,使A C B =且B C E =。

(十四)设V 为数域F 上n 维线性空间,设A 是n 维线性空间V 上的线性变换,()A V 为A 的值域,1(0)A -为A 的核。

(1) 求证:维1(()(0))2n A V A -+≥ ,(2) 求证:维1(()(0))2n A V A -+=充分必要条件为:1()(0)A V A -=,并举出这样的线性变换A 。

2005上海大学 高等代数(一) 已知1()2n nf x xx +=+-,求()f x 在有理数域上的不可约多项式并说明理由。

(二) 已知100110,0111A A A B A ⎛⎫⎛⎫⎪== ⎪⎪⎝⎭⎪⎝⎭,C 是6阶方阵,2B C C E =+。

求C 和C *。

(三) β是方程组A X b =的一个解,12,,n r a a a - 是其导出组的一个基础解系。

求证:(1) 12,,n r a a a - ,β线性无关,(2) 12,,,n r a a a ββββ-+++ 也线性无关。

相关文档
最新文档