初一下学期数学期中考试试题及答案
人教版数学七年级下学期《期中测试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( )A. ﹣2B. 2C. ±2D. ±1 2.已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. B. 13- C. 1 D. 5 3.下列各等式的变形中,一定正确的是( )A. 若2a =0,则a =2 B. 若a =b ,则2(a ﹣1)=2(b ﹣1) C. 若﹣2a =﹣3,则a =23 D. 若a =b ,则ac =b c4.若m>n ,则不论a 取何实数,下列不等式都成立的是( )A. m+a>nB. ma>naC. a-m<a-nD. 22ma na > 5.若单项式13a m b 3与-2a 2b n 的和仍是单项式,则方程m 3x -n =1的解为( ) A. ﹣2 B. 2 C. ﹣6 D. 66.不等式组1020x x +≥⎧⎨-⎩的解集在数轴上表示为( ) A.B. C. D. 7.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则等于( ) A. 2018 B. 2019 C. 2020 D. 20218.已知关于不等式组2x x a ⎧⎨>⎩有解,则的取值不可能是( ) A 0 B. 1 C. 2 D. -29.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( )A. 0.8×(1+40%)x =15B. 0.8×(1+40%)x ﹣x =15C. 0.8×40%x =15D. 0.8×40%x ﹣x =1510.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A. 8374y x y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=-⎩C. 8374y x y x -=-⎧⎨-=-⎩D. 8374y x y x -=⎧⎨-=⎩二.填空题11.满足 2.1x <-的最大整数是______. 12.小军在解关于的方程513m x +=时,误将x +看成x -,得到方程的解为3x =-,则的值为______. 13.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,礼盒的单价是__________元.14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多元,小红说:“你们两个人都猜错了。
广东深圳福田区深圳高级中学(集团)2024年下学期七年级数学期中试题+答案

深圳高级中学(集团)2023-2024学年第二学期期中测试初一数学注意事项:1、答题前,考生务必将在答题卡写上姓名、班级,准考证号用2B铅笔涂写在答题卡上。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。
3、考试结束,监考人员将答题卡收回。
一、选择题(本大题共10个小题,每小题3分,共30分.)1. 下列运算正确的是( )A.x³·x³=x⁶B.x³-x²=xC.x⁶÷x³=x²D.(x²)³=x⁴2. 下列说法正确的是( )A. 形状相同的两个图形一定全等B. 两个三角形是全等图形C. 两个全等图形面积一定相等D. 两个正方形一定是全等图形3. 芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已达到14nm实现量产.已知1nm=10°m, 则14nm用科学记数法表示是( )A.14×10~°mB.1.4×10~⁸mC.1.4×10-°mD.1.4×10-10m4.若,n=(-2),.则m,n,p 之间的大小关系是()A.n<p<mB.n<m<pC.p<n<mD.m<p<n5. 下列各图中,正确画出AC边上的高的是( )A. B. C. D.6. 深高紫憩水吧购买了以下四款奶茶杯,小茗同学使用饮水机用恒定不变的水速往奶茶杯子里注水,该杯子里的水位高度h(dm) 与注水时间t(min) 的关系如图,则该奶茶杯的形状可能是( )B.C.D.7. 中华武术,博大精深.小明把如图1所示的武术动作抽象成数学问题。
如图2,已知AB//CD,∠C=90°,∠B=78°,∠E=98°, 则∠F 的 度 数 是 ( )图 1 图 2A.106°B.110°C.118°D.120°8. 如图所示,两个正方形的边长分别为a 和b, 如果a+b=8,ab=6, 那么阴影部分的 面积是( )A.14B.23C.30D.249.深高小学部饲养了两只萌萌的羊驼,建筑队在学校一边靠墙处,计划用15米长的铁栅栏 围成三个相连的长方形羊驼草料仓库,仓库总面积为y 平方米,为方便取物,在各个仓库之 间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,若设 AB=x 米,则Y 关于x 的函数关系式为( )A.y=x(15-4x)B.y=x(16-2x)c.y=x(17-2x)D.y=x(18-4x)10. 如图,光的反射活动课中,小铭同学将支架平面镜放置在水平桌面MN上,镜面AB的调节角(∠ABM)的调节范围为20°~70°,激光笔发出的光束DG射到平面镜上,若激光笔与水平天花板(直线EF)的夹角∠EPG=30°,则反射光束GH与天花板所形成的角(∠PHG)不可能取到的度数为( )A.120°B.80°C.60°D.20°二. 填空题(共5小题,每小题3分,共15分.)11. 已知m²=2,m⁴=5,则m²*+y=12. 若x²+mx+16 是完全平方式,则m 的值是13. 深圳市出租车的收费标准是起步价10元(行程小于或等于2千米),超过2千米每增加1千米(不足1千米按1千米计算)加收2.7元,小鸣从深圳市体育中心打车去深圳图书馆,百度地图显示行程约为5.6千米,则出租车费约为元.14. 如图,已知AD为△ABC 的中线,AB=10cm,AC=7cm,△ACD 的周长为20cm,则AABD的周长为c m.15.如图所示,已知AB//CD,AB平分∠MAN,CN 点,且MP平分∠AMC,设∠MAN=α,∠MPN=β,平分∠MCD,点P是NC延长线上一则α与β的数量关系是三、解答题(本大题共7个小题,共55分.第16题9分,第17题6分,第18题7分,第19题6分,第20题8分,第21题10分,第22题9分.)16. 计算:(2)(-a^}²+(a²))-a';(3)2024²-2023×2025.17.先化简,再求值:[(x-2y)²+(x-2y)(x+2y)-2x(2x-y)]+2x,其中x=-1,y=-202418.深圳高级中学准备开展五育融合的特色课程,计划在一块长为(3a+2b)米,宽为(2a+b)米的长方形空地上修建一块长为(a+2b)米,宽为(3a-b) 米的长方形菜园子,四周铺设地砖(阴影部分),3a+2b(1)求铺设地砖的面积;(用含a 、b的式子表示,结果化为最简)(2)若a=2,b=3, 铺设地砖的成本为80元平方米,则完成铺设地砖需要多少元?19.如图所示,∠1=∠2,CF⊥AB,DE⊥AB, 垂足分别为点F、E,求证:FGI/BC. 证明:∵CF⊥AB 、DE⊥AB (已知)∴∠BED=90°、∠BFC=90°∴∠BED=∠BFC∴( //( ()∴∠1=∠BCF(- )又∵∠1=∠2(已知)∴∠2=∠BCF( )∴FG//BC(- )20.自行车是很多同学家校往返的重要交通工具,如图,某款自行车每节链条的长度为2cm, 交叉重叠部分的圆的直径为0.7cm.(1)观察图形填写下表:链条节数(节 2 3 4链条长度(cm)(2)如果x 节链条的总长度是y, 求y 与x 之间的关系式;(3)晓明同学的同款自行车链条生锈断了,需要在淘宝网上采购并自行安装,该型号自行车的链条(安装前)由90节这样的链条组成,那么晓明需要购买该型号链条的总长度是多少cm? 实际安装长度是多少cm?21. 在我国南宋数学家杨辉(约13世纪)所著回的《详解九章算术》(1261年)一书中,用如图的三角形解释二项和的乘方规律,法国数学家帕斯卡于1654年才发现此三角形,比中国晚了几百年,杨辉在注释中提到,在他之前北宋数学家贾宪(1050年左右)也用过这种方法,因此我们称这个三角形为“杨辉三角”或“贾宪三角”.此图揭示了(a+b)”(n 为非负整数)(1)补充完整(a+b)* 的展开式,(a+b)⁴=(2)(a+b)’ 的展开式中共有项,所有项的系数和为;(3)利用上面的规律计算:2⁵-5×2⁴+10×2³-10×2²+5×2-1.(4)今天是星期五,过了6⁶天后是星期几?(直接写答案)22.“千园之城”深圳目前是国内公园最多的城市,全市公园数量达到1290个。
人教版数学七年级下学期《期中考试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四2.4的平方根是( )A. 2B. ±2C. 2D. 2± 3.实数﹣2,0.31••,3π,0.1010010001,38中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A 68︒ B. 60︒ C. 102︒ D. 112︒5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣B. (2,1)﹣﹣C. ()3,1﹣D. (1,)2﹣ 6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4 7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A. 90°B. 108°C. 100°D. 80° 8.下列说法错误的是( ) A. 4=2±± B. 64算术平方根是4 C. 330a a +-= D. 110x x -+-≥,则x =19.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3二、填空题11.2-的绝对值是________.12.、是实数230x y +-=,则xy =________.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________.16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.三、解答题17.计算:(13316648-(2)333521|1228- 18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= 19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数 1 2 0B型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材多少张?23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.答案与解析一、选择题1. 在平面直角坐标系中,点A(2,-3)在第( )象限.A. 一B. 二C. 三D. 四[答案]D[解析]试题分析:根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A(2,-3)位于第四象限,故答案选D . 考点:平面直角坐标系中各象限点的特征.2.4的平方根是( )A. 2B. ±2C.D. [答案]B[解析][分析]根据平方根的定义即可求得答案.[详解]解:∵(±2)2=4,∴4的平方根是±2. 故选:B .[点睛]本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.,0.31••,3π,0.1010010001中,无理数有( )个 A. 1B. 2C. 3D. 4 [答案]B[解析][分析]利用无理数的定义判断即可.[详解]解:在实数2-(无理数),0.31••(有理数),3π(无理数),0.1010010001(有理数),382=(有理数)中,无理数有2个,故选:B . [点睛]此题考查了无理数,弄清无理数的定义是解本题的关键.4.如图,已知160∠=︒,260∠=︒,368∠=︒,则4∠等于( )A. 68︒B. 60︒C. 102︒D. 112︒[答案]D[解析][分析] 根据∠1=∠2,得a ∥b ,进而得到∠5=3∠,结合平角的定义,即可求解.[详解]∵160∠=︒,260∠=︒,∴∠1=∠2,∴a ∥b ,∴∠5=368∠=︒,∴∠4=180°-∠5=112︒.故选D .[点睛]本题主要考查平行线的判定和性质定理以及平角的定义,掌握“同位角相等两直线平行”,“两直线平行,同位角相等”,是解题的关键.5.如图,在48⨯的方格中,建立直角坐标系()1,2E ﹣﹣,2(2,)F ﹣,则点坐标为( )A. ()1,1﹣ B. (2,1)﹣﹣ C. ()3,1﹣ D. (1,)2﹣ [答案]C[解析][分析] 直接利用已知点得出原点位置进而建立平面直角坐标系,即可得出答案.[详解]解:建立直角坐标系如图所示:则G 点坐标为:(-3,1).故选:C .[点睛]此题主要考查了点的坐标,正确得出原点位置是解题关键.6.在平面直角坐标系中,点的坐标()0,1,点的坐标()3,3,将线段AB 平移,使得到达点()4,2C ,点到达点,则点的坐标是( )A. ()7,3B. ()6,4C. ()7,4D. ()8,4[答案]C[解析][分析]根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.[详解]解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.[点睛]此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.如图,AB∥CD ,BC∥DE ,∠A=30°,∠BCD=110°,则∠AED 度数为( )A. 90°B. 108°C. 100°D. 80°[答案]C[解析][分析] 在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可.[详解]过E 作出BA 平行线EF,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD,BC ∥DE,∠ABC=180°-∠BCD =180°-110°=70°,∠AED=∠AEF+∠DEF=30°+70°=100° [点睛]本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 8.下列说法错误的是( ) A. 4=2±±B. 64的算术平方根是4C. 330a a -=D. 110x x --≥,则x =1 [答案]B[解析][分析]根据平方根、算术平方根、立方根的概念对选项逐一判定即可.[详解]A .4=2±±,正确;B .64的算术平方根是8,错误;C 330a a -,正确;D 110x x --≥,则x =1,正确; 故选:B .[点睛]本题考查了平方根、算数平方根,立方根的概念,理解概念内容是解题的关键. 9.一只跳蚤在第一象限及、轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A. (7,45)B. (6,44)C. (5,45)D. (4,44)[答案]D[解析][分析] 根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标.[详解]解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44).故选:D .[点睛]此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.10.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A. 0B. 1C. 2D. 3[答案]B[解析][分析]根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.[详解]解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.[点睛]本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题11.的绝对值是________.[答案[解析][分析]根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.[详解]解:根据负数的绝对值是它的相反数,得=.[点睛]此题主要考查绝对值的意义,熟练掌握,即可解题.=,则xy=________.12.、是实数0[答案]-6[解析][分析]根据算术平方根的非负性即可求出与的值.y-=,[详解]解:由题意可知:20x+=,30y=x2∴=-,3xy6-故答案为:6[点睛]本题考查非负数的性质,解题的关键是熟练运用算术平方根的定义.13.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.[答案]11[解析][分析] 根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.[详解]解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得: 则1115524351511222ABC S .故答案为:11[点睛]此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.14.若23n ﹣与1n ﹣是整数的平方根,则x =________.[答案]1[解析][分析]分类讨论:当231n n ,解得2n =,所以22(1)(21)1x n ;当2310n n ,解得43n =,所以241(1)(1)39x n . [详解]解:因为23n ﹣与1n ﹣是整数的平方根,当231n n 时,解得2n =,所以22(1)(21)1x n ; 当2310n n ,解得43n =,所以241(1)(1)39x n . x 是整数, 1x ∴=,故答案为1.[点睛]本题考查了平方根的应用,若一个数的平方等于,那么这个数叫的平方根,记作(0)a a ±.15.在平面坐标系中,1(1,)A ﹣,(3,3)B ,M 是轴上一点,要使MB MA +的值最小,则M 的坐标为________. [答案](32, [解析][分析]连接AB 交轴于M ,点M 即为所求; [详解]解:如图示,连接AB 交轴于M ,则MB MA +的值最小.设直线AB 的解析式为y kx b =+,根据坐标1(1,)A ﹣,(3,3)B , 则有331k b k b +=⎧⎨+=-⎩, 解得23k b =⎧⎨=-⎩, 直线AB 的解析式为23yx ,令0y =,得到32x, 32(M ,故本题答案为:(32,.[点睛]本题考查了坐标与图形的性质,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题. 16.如图,在平面内,两条直线1l ,2l 相交于点,对于平面内任意一点M ,若,分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.[答案]4[解析][分析]到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.[详解]解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.[点睛]本题主要考查了到直线的距离等于定长的点的集合.三、解答题17.计算:(13316648-(2)333521|1228- [答案](1)12;(2)2.[解析][分析](1)直接利用算术平方根以及立方根的性质化简得出答案;(2)直接利用绝对值的性质以及立方根的性质进而得出答案.[详解]解:3316648-44248=+12=;(2)333521|12|28 33221222=.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.18.求下列各式中的值(1)()216149x += (2)3()81125x ﹣= [答案](1)12311,44x x ==-;(2)32x =-. [解析][分析](1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答.[详解]解:(1)216(1)49x 249(1)16x 714x , 12311,44x x ==-. (2)38(1)125x 3125(1)8x 512x 32x =-. [点睛]本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.19.已知是不等式组 513(1)131722a a a a ->+⎧⎪⎨-<-⎪⎩ 的整数解,、满足方程组 27234ax y x y -=-⎧⎨+=⎩,求22x xy y -+的值 [答案]7[解析][分析]本题应先解不等式组确定a 整数值,再将a 值代入关于x 、y 的二元一次方程组中求解,最后求得22x xy y -+的值.[详解]解:解不等式513(1)a a ->+得:a >2 解不等式131722a a 得:a <4 所以不等式组的解集是:2<a <4所以a 的整数值为3.把a=3代入方程组27234ax y x y ,得327234x y x y解得12x y =-⎧⎨=⎩, 所以222212112472x xy y .[点睛]本题考查了一元一次不等式组、不等式组的特殊解、代数求值的综合运用,熟悉基本运算方法、运算法则是解题的关键.20.已知在平面直角坐标系中有三点()21A -,、1(3)B ,、(23)C ,,请回答如下问题: (1)在坐标系内描出点、、A B C 的位置:(2)求出以、、A B C 三点为顶点的三角形的面积;(3)在轴上是否存在点,使以A B P 、、三点为顶点的三角形的面积为10,若存在,请直接写出点的坐标;若不存在,请说明理由.[答案](1)见解析;(2)5;(3)存在;点的坐标为(0,5)或(0,3)-.[解析][分析](1)根据点的坐标,直接描点;(2)根据点的坐标可知,AB∥x轴,且AB=3-(-2)=5,点C到线段AB的距离3-1=2,根据三角形面积公式求解;(3)因为AB=5,要求△ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个,分别求解即可.详解]解:(1)描点如图:(2)依题意,得AB∥x轴,且AB3(2)5=--=,∴S△ABC1525 2=⨯⨯=;(3)存在;∵AB=5,S△ABP=10,∴P点到AB的距离为4,又点P在y轴上,∴P点的坐标为(0,5)或(0,-3).[点睛]本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积是解题的关键.21.(1)如图1所示,O是直线AB上一点,OD平分∠AOC,OE平分∠BOC,求证:OD⊥OE;(2)如图2所示,AB∥CD,点E为AC上一点,∠1=∠B,∠2=∠D.求证:BE⊥DE.[答案](1)见解析(2)见解析[解析][分析](1)证明∠COD+∠COE=90°即可.(2)证明∠1+∠2=90°即可.[详解]证明:(1)∵OD平分∠AOC,OE平分∠BOC,∴∠COD=12∠AOC,∠COE=12∠COB,∴∠DOE=∠COD+∠COE=12(∠AOC+∠COB)=90°,∴OD⊥OE.(2)∵AB∥CD,∴∠A+∠C=180°,∵∠1=∠B,∠2=∠D,∠A+2∠1=180°,∠C+2∠2=180°,∴∠1+∠2=90°,∴∠DEB=90°,∴DE⊥BE.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m n设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= _____,n= ____;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?[答案](1)m=0,n=3;(2)y=120﹣12x,z=60﹣23x;(3)Q=180﹣16x;当x=90时,Q最小,此时按三种裁法分别裁90张、75张、0张.[解析][详解](1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板, 按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B 型板材块长为160cm >150cm ,所以无法裁出4块B 型板;∴m=0,n=3;(2)由题意得:共需用A 型板材240块、B 型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x ,z=60﹣23x ; (3)由题意,得Q=x+y+z=x+120﹣12x+60﹣23x . 整理,得Q=180﹣16x . 由题意,得11200226003x x ⎧-⎪⎪⎨⎪-⎪⎩, 解得x≤90.[注:0≤x≤90且x 是6的整数倍]由一次函数的性质可知,当x=90时,Q 最小.由(2)知,y=120﹣12x=120﹣12×90=75, z=60﹣23x=60﹣23×90=0; 故此时按三种裁法分别裁90张、75张、0张.考点:一次函数的应用.23.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点顺时针旋转一定角度交CD 于 (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=[答案](1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.[解析][分析](1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;[详解]解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ ,1EBP EBQ ,2132BPD EBP .②如图4中,连接EH .180C CEB CBE,A AEH AHE,180A AEH AHE CEH CHE C,360A AEC C AHC.360(3)如图5中,设AC交BG于.AHB A B F,∠=∠,AHB CHG在五边形HCDEG中,540CHG C D E G,A B F C D E G540[点睛]本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.24..如图1,在平面直角坐标系中,A 、B 在坐标轴上,其中A(0,a) ,B(b, 0)满足| a - 3 |+4b-= 0.(1)求A 、B 两点的坐标;(2)将AB 平移到CD ,A 点对应点C(-2,m) ,CD 交y 轴于E ,若≥ABC 的面积等于13,求点E 的坐标;(3)如图2,若将AB 平移到CD ,点C、D 也在坐标轴上,F 为线段AB 上一动点,(不包括点A ,点B) ,连接OF 、FP 平分 BFO , BCP = 2 PCD,试探究 COF, OFP , CPF 的数量关系.[答案](1)A (0,3),B (4,0);(2)E 的坐标为(0,72-);(3)∠COF+∠OFP=3∠CPF . [解析][分析](1)根据非负数的性质分别求出a 、b,得到答案; (2)构造矩形,根据三角形的面积是13,利用割补法求出m,再根据平移的性质,求出直线DC 的解析式,则可求出点E 的坐标;(3)作HP ∥AB 交AD 于H,OG ∥AB 交FP 于G,设∠OFP=x,∠PCD=y,根据平行线的性质、三角形的外角的性质计算即可.[详解]解:(1)由题意得,a-3=0,b-4=0, 解得,a=3,b=4, 则A (0,3),B (4,0); (2)如图1所示,∵∆ABC 的面积等于13,根据A,B,C 三点的坐标, 可得:111324232422413222m m ,(m<0) 解得,m=-2,则点C 的坐标为(-2,-2),根据平移规律,则有点D 的坐标为(2,-5),设直线CD 的解析式为:y=cx+d ,2225cd c d ,解得3472c d , ∴CD 的解析式为:3742yx , ∴CD 与y 轴的交点E 的坐标为(0,72- ); (3)如图2所示,作HP ∥AB 交AD 于H ,OG ∥AB 交FP 于G ,设∠OFP=x,∠PCD=y,则∠BFP=x,∠PCB=2y,∵HP∥AB,OG∥AB,∴∠HPC=∠PCD=y,∠OPF=∠OFP=x,∴∠CPF=x+y,又∵∠COF=∠PCB +∠CPF +∠OFP =2y+(x+y)+ x =2x+3y,∴∠COF+∠OFP=3x+3y=3∠CPF.[点睛]本题考查的是非负数的性质、坐标与图形的关系、待定系数法求函数解析式以及平行线的性质,掌握待定系数法求函数解析式的一般步骤、平移规律是解题的关键.。
2022-2023学年湖北省武汉市江汉区七年级第二学期期中数学试卷及参考答案

2022-2023学年武汉市江汉区七年级下学期期中数学试题考试时间: 120分钟 试卷总分: 150分第I 卷(满分100分)一、选择题(共10小题,每小题3分,共30分)1、9的算术平方根是( )A 、3B 、±3CD 、2、下列四个数中,无理数是A B 、1.414 C 、227 D 、2π 3、在平面直角坐标系中,下列各点在x 轴上的是A 、(1、2)B 、(3、0)C 、(0,-1)D 、(-5、6)4、 如图,O 是直线AB 上一点,OC LOD ,∠BOC=20°、则∠AOD 的大小是A 、20°B 、 30°C 、70°D 、80°第4题 第5题 第6题5、如图,四边形ABCD 的对角线交于点O ,下列条件能判定AB//CD 的是A 、∠1=∠3B 、∠2=∠4C 、∠DAB+ ∠ABC 180°D 、∠3=∠56、如图,在正方形网格中,点A (1、-1),点B (3,2),刚点C 的坐标是A 、(4,—1)B 、(4,—2)C 、(5,—2)D 、(6,—2)7、如图,直线AB 、CD 分别与EF 、GH 相交,图中∠1=100°,∠2=85',∠3= 95°,则∠4的大小是( )A 、80°B 、85°C 、95D 、100°8、下列式子正确的是( )A 123=B =5=-D 2=- 9、关于命题:若a b >,则a >b .下列说法正确的是( ) A 、它是真命题 B 、它是假命题,反例a=3,b=-4C 、它是假命题,反例a=4,b=3D 、它是假命题,反例a= -4,b=310、已知A (3,-1),B (3,-,则正方形ABCD 的面积是( )A 、3B 、7C 、9D 、二、填空题(共6小题,每小题3分,共18分)11、 64的立方根是__________.12、在平面直角坐标系中,已知点A 在第二象限且A 到x 轴的距离为3,到y 轴的距离为4。
初一下学期期中考试数学试卷含答案(共3套,人教版)

七年级第二学期期中考试试卷数 学一、选择题(本大题共8小题,共24分)1. 下列各图中,∠1与∠2是对顶角的是( ) A. B. C. D.2. 4的平方根是( ) A. 2 B. C.2 D.±23. 在下列所给出坐标的点中,在第二象限的是( )A. (2,3)B. (-2,3)C. (-2,-3)D. (2,3)4. 在实数5,227,38-,0,,2π,36,0.1010010001中,无理数有( )A. 2个B. 3个C. 4个D. 5个5.如图,直线AB ,CD 被直线EF 所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠56. 若a ,b 为实数,且229943a a b a -+-=++,则a b +的值为( )A .-1B .1C .1或7D .77. 已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A. 有且仅有一条B. 有两条C. 不存在D. 有一条或不存在8. 下列语句中是命题的有()①如果两个角都等于70°,那么这两个角是对顶角; ②三角形内角和等于180°;③画线段AB=3 cm.A、0个B、1个C、2个D、3个二、填空题(本大题共8小题,共24分)9.若3m-12与12-3m都有平方根,则m的平方根为10.如图,直线AB,CD,EF交于点O,OG平分,且,,则∠DOG= 。
11.把9的平方根和立方根按从小到大的顺序排列为______.12.从新华书店向北走100 m,到达购物广场,从购物广场向西走250 m到达体育馆,若体育馆所在位置的坐标是(-250,0),则选取的坐标原点是_ __13.在如图所示的长方体中,与AB垂直且相交的棱有__ _条.14.如果,其中为有理数,则a+b=______.15.若两个连续整数x,y满足,则x+y的值是_____16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为______用n表示.三、解答题(本大题共9小题,共72分)17.计算:(每小题4分,共8分)求下列各式中x的值:(每小题4分,共8分)(1)2x2=4;;(2)64x3+27=019.如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.(6分)20.完成下面的证明(8分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF, ∠C=∠D .求证:∠A=∠F .证明:∵∠AGB=∠EHF∠AGB =______对顶角相等∴∠EHF=∠DGF∴DB∥EC ( )∴∠ =∠DBA ( )又∵∠C=∠D ∴∠DBA=∠DDF ∥ ( )∴∠A=∠F( )21.已知a+2的立方根是3,3a+b-1算术平方根是4,c 是 整数部分.(9分) (1)求a,b,c 的值;(2)求3a - b+c 的平方根。
河南省洛阳市伊川县2022-2023学年七年级下学期期中数学试题(含答案)

2022-2023学年第二学期期中质量调研检测七年级数学试卷注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)1.方程3x -2x =7的解是()A .x =4B .x =-4C .x =7D .x =-72.二元一次方程5a -11b =21的解的情况为( )A .有且只有一解B .有无数解C .无解D .有且只有两解3.解方程时,去分母正确的是( )A .B .C .D .4.2021年5月,由中国航天科技集团研制的天问一号探测器的着陆巡视器成功着陆于火星乌托邦平原南部预选着陆区。
中国航天器首次奔赴火星,就“毫发无损”地顺利出现在遥远的红色星球上,完成了人类航天史上的一次壮举。
火星与地球的最近距离约为5500万千米,该数据用科学计数法可表示为( )A .千米B .千米C .千米D .千米5.如图,,∠ACB =90°,∠MAC =35°,则∠CBN 的度数是()A .35°B .45°C .55°D .65°6.已知线段AB =4,在直线AB 上作线段BC ,使得BC =2,若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或37.如图是由四个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()232353x x-=-()323523x x -=⨯-()3235235x x -=⨯-⨯()52332315x x -=⨯-⨯()32352315x x -=⨯-⨯85.510⨯75.510⨯90.5510⨯80.5510⨯AM BN ∥A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同8.已知x ,y 的方程组与有相同的解,则a 和b 的值为( )A .a =2,b =-3B .a =4,b =-6C .a =-2,b =3D .a =-4,b =69.用数轴表示不等式组的解集是( )A .B .C .D .10.洛书被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。
浙江J12共同体联盟2024年下学期七年级数学期中试题+答案
J12共同体联盟校学业质量检测2024(初一下)数学试题卷亲爱的同学:欢迎参加考试!答题时,请注意以下几点:1.全卷共4页,有三大题,24小题,满分120分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功! 卷I一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.如图,直线m ,n 被直线l 所截,1∠与2∠是一对( )A.同位角B.内错角C.对顶角D.同旁内角2.下列各式是二元一次方程的是( )A.223x y −=B.23x y −=C.3x y +=D.23x y z +=3.下列计算正确的是( )A.235x x x +=B.235x x x ⋅=C.()325x x =D.()3326x x = 4.已知1,2x y = =是关于x ,y 的二元一次方程210x my −=的一个解,则m 的值为( ) A.6 B.6− C.4 D.4−5.古代数学趣题:老头提篮去赶集,一共花去七十七;满满装了一菜篮,十斤大肉三斤鱼;买好未曾问单价,只因回家心里急;道旁行人告诉他,九斤肉钱五斤鱼.意思是:77元钱共买了10斤肉和3斤鱼,9斤肉的钱等于5斤鱼的钱,问每斤肉和鱼各是多少钱?设每斤肉x 元,每斤鱼y 元,可列方程组为( )A.10377,95x y x y += =B.31077,95x y x y+= = C.10377,59x y x y += = D.31077,59x y x y += =6.如图,直线AM BN ∥,把一块三角板如图放置,使直角顶点落在点A ,30°角的顶点恰好落在点B ,若AM 平分CAB ∠,则1∠的度数为( )A.135°B.125°C.120°D.105°7.已知方程组526213x y x y += +=,则2x y +=( ) A.26 B.13 C.39 D.208.下列式子中,不能用平方差公式运算的是( )A.()()x y x y −−−+B.()()y x x y +−C.()()x y x y −+−D.()()y x x y −+9.已知关于x ,y 的方程组2,352x y k x y k += +=− 有以下结论:①当0k =时,方程组的解是1,2;x y =− =②当20x y +=,则3k =;③不论k 取什么实数,x y +的值始终不变.其中正确的是( )A.①②B.①③C.②③D.①②③10.两个长为a ,宽为b 的长方形,按如图方式放置,记阴影部分面积为1S ,空白部分面积为2S ,若212S S =,则a ,b 满足( )A.2a b =B.23a b =C.34a b =D.35a b =卷II二、填空题(本题有6小题,每小题3分,共18分)11.已知方程25x y +=,用含x 的代数式表示y ,则y =______.12.计算:223a b a ⋅=______. 13.如图,将一条长方形纸片沿AB 折叠,已知70DAB ∠=°,则CBF ∠=______.14.如图,将三角形ABC 平移得到三角形A B C ′′′,若图中阴影部分面积与所有空白部分面积之比为1:6,则阴影部分面积与三角形ABC 面积的比值为______.15.已知关于x ,y 的二元一次方程组111222a x b y c a x b y c += += 的解为21x y = = ,则关于x ,y 的二元一次方程组()()1111222232,32a x b y b c a x b y b c ++−= ++−=的解为______. 16.如图,两条平行直线1l ,2l 被直线AB 所截,点C 位于两平行线之间,且在直线AB 右侧,点E 是1l 上一点,位于点A 右侧.小明进行了如下操作:连结AC ,BC ,在EAC ∠平分线上取一点D ,过点D 作DF BC ∥,交直线2l 于点F .记ACB ∠α=,CBF ∠β=,ADF ∠γ=,则γ=______(用含α,β的代数式表示).三、解答题(本题有8小题,共72分,解答需写出必要的文字说明、演算步骤或说理过程)17.(本题6分)解下列二元一次方程组:(1)329,7.x y y x += =− (2)2512,43 2.x y x y −= +=−18.(本题6分)如图,在66×的正方形方格纸中有一格点三角形ABC (即三角形的顶点都在格点上),D 是方格纸中一格点.(1)将三角形ABC 平移后得到三角形DEF ,使点A 的对应点为D ,在图中画出平移后的图形.(2)三角形DEF 是由三角形ABC 先向______平移______个单位,再向上平移______个单位得到.19.(本题8分)先化简,再求值:()()()x y x y x x y +−−−,其中2x =,1y =.20.(本题8分)如图,AE 平分BAC ∠,CAE AEC ∠∠=.(1)判断AB 与CD 是否平行,并说明理由.(2)若GF CD ∥,EF AE ⊥,4BAC F ∠∠=,求FED ∠的度数.21.(本题10分)定义:任意两个数a ,b ,按规则22c a b ab =+−运算得到一个新数c ,称c 为a ,b 的“和方差数”.(1)求2,3−的“和方差数”.(2)若两个非零数a ,b 的积是a ,b 的“和方差数”,求22a b −的值.(3)若3,4a b ab +==,求a ,b 的“和方差数”c .22.(本题10分)某校组织七年级350名学生去研学,已知1辆A 型车和2辆B 型车可以载学生110人;3辆A 型车和1辆B 型车可以载学生130人.(1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 型车需要1000元,一辆B 型车需1200元,请你设计租车方案,使得恰好送完学生,并且租车费用最少?23.(本题12分)如图1,自行车尾灯是由塑料罩片包裹的若干个小平面镜组成,利用平面镜反射光线,以提醒后方车辆注意.小亮所在学习小组对其工作原理进行探究,发现以下规律:如图2,EF 为平面镜,AB ,BC 分别为入射光线和反射光线,则ABE CBF ∠∠=.请继续以下探究:图1图2 图3 (1)探究反射规律①如图3,ABE ∠α=,105BFC ∠°=,则DCG ∠=______(用含α的代数式表示).②若光线AB CD ∥,判断EF 与FG 的位置关系,并说明理由.(2)模拟应用研究在行驶过程中,后车驾驶员平视前方,且视点D 会高于反射点C (如图4),因此小亮认为反射光线CD 应与水平视线DH 成一定角度.学习小组设计了如图5所示的模拟实验装置,使入射光线AB DH ∥,当CD 与DH 所成夹角为15°时,求BFC ∠的度数.图4 图524.(本题12分)用如图所示的正方形和长方形纸片进行拼图活动.请解决以下问题:(1)若要拼成一个长为32x +,宽为3x +的长方形,则需要A 型纸片______张,B 型纸片______张,C 型纸片______张.(2)现有A 型纸片1张,C 型纸片4张,B 型纸片若干张,恰好拼成一个正方形,求B 型纸片的张数.(3)现有A ,B ,C 三种型号的纸片共12张,恰好能拼成一个长方形(每种纸片都用上),若它的一边长为2x +,则需要三种纸片各多少张?(求出所有可能的情况)J12共同体联盟校2024(初一下)学业质量检测数学参考答案和评分标准一、选择题(本题有10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10答案 A C B D A D B C D B二、填空题(本题有6题,每小题3分,共18分)11.52y x =− 12.36a b13.40° 14.14 15.13x y =− = 16.1122αβ+或1118022αβ°−−或119022αβ°+− 三、解答题(本题有8小题,共72分)17.(本题6分)(1)329,7;x y y x += =−(2)2512,43 2.x y x y −= +=− 解得:512x y =− = 解得:12x y = =− 18.(本题6分)(1)(2)右,3,219.(本题8分)()()()x y x y x x y +−−−222x y x xy =−−+2y xy =−+当2x =,1y =时,原式121=−+=20.(本题8分)(1)AB CD ∥,理由如下:AE 平分BAC ∠CAE BAE ∠∠∴=CAE AEC ∠∠=BAE AEC ∠∠∴=AB CD ∴∥(2)设F x ∠=,则44BAC F x ∠∠==AE 平分BAC ∠2BAE CAE x ∠∠∴==CD GF ∴∥FED F x ∠∠==AE EF ⊥90AEF ∠°∴=AB CD ∥180BAE AEF FED ∠∠∠∴°++=,即290180x x °°++=30x ∴=°,30FED ∠°∴=(其他方法酌情给分)21.(本题10分)(1)()()22232319+−−×−= (2)ab 是a ,b 的“和方差数”22ab a b ab ∴=+−,即2220a b ab +−=()20a b ∴−=, a b ∴=220a b ∴−=(3)3a b +=()2222981a b a b ab ∴+=+−=−=22143c a b ab ∴=+−=−=−22.(本题10分)解:(1)设A 型车每辆载学生x 人,B 型车每辆载学生y 人, 可得:21003130x y x y += +=解得:3040x y = = ,答:A 型车每辆载学生30人,B 型车每辆载学生40人.(2)设租用A 型a 辆,B 型b 辆,可得:3040350a b +=,3435a b ∴+=因为a ,b 为正整数,所以方程的解为:18a b = = ,55a b = = ,92a b = =方案一:A 型1辆,B 型8辆,费用:100011200810600×+×=元;方案二:A 型5辆,B 型5辆,费用:100051200511000×+×=元;方案三:A 型9辆,B 型2辆,费用:100091200211400×+×=元;所以租用1辆A 型8辆B 型车花费最少,为10600元.(学生用其他方法得出最优方案,酌情给分)23.(本题12分)(1)①75α°−②EF FG ⊥180ABE ABC CBF ∠∠∠++=° ,ABE CBF ∠∠=1802ABC CBF ∠∠∴=°−同理,1802DCB BCF ∠∠=°−AB CD ∥180ABC DCB ∠∠°∴+=即180********CBF BCF ∠∠°°°−+−=90CBF BCF ∠∠°∴+=过点F 作MN BC ∥CBF BFM ∠∠∴=,BCF CFN ∠∠=180BFM CFN BFC ∠∠∠++°=180CBF BCF BFC ∠∠∠∴°++=()18090BFC CBF BCF ∠∠∠°°∴=−+=EF FG ∴⊥(3)延长BC 交DH 于点M180MDC M MCD ∠∠∠°++=180165M MCD MDC ∠∠∠°°∴+=−=MD AB ∥180M MBA ∠∠°∴+=180MCD DCB ∠∠°+=180180360165195DCB CBA MCD M ∠∠∠∠°°°°∴+=−+−=−=()136082.52FCB CBF DCB CBA ∠∠∠∠°°∴+=−−= 18097.5F FCB CBF ∠∠∠°°∴=−−= (其他方法酌情给分)24.(本题12分)(1)要A 型纸片3张,B 型纸片11张,C 型纸片6张.(2)设B 型纸片有b 张则该正方形的面积可表示为24x bx ++, ()2242x bx x ∴++=+解得4b = (其他合理方法也给分)(3)根据题意,这个长方形一边长为2x +,设这边的邻边长为ax b +,则长方形的面积为:()()()2222222x ax b ax bx ax b ax b a x b ++++++++,则有a 张A 纸片,()2b a +张B 纸片,2b 张C 纸片,因为拼成这个长方形恰好用12张纸片,所以()2212a b a b +++=,即4a b +=,因为a 和b 都是正整数,则只有三组正整数解:1a =,3b =;2a =,2b =;3a =,1b =. 所以只有下列三种情形:方案1:A 纸片1张,B 纸片5张,C 纸片6张方案2:A 纸片2张,B 纸片6张,C 纸片4张方案3:A 纸片3张,B 纸片7张,C 纸片2张(其他方法表述合理也给分)。
2022-2023学年度第二学期初一年级期中考试 (数学)(含答案)082340
2022-2023学年度第二学期初一年级期中考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A. B. C. D.2. 如图,下列各点在阴影区域内的是( )A.B.C.D.3. ,,,,,中,无理数的个数是( )A.个B.个C.个D.个4. 在一次数学活动课上,老师让同学们借助一副三角板画平行线,.下面是小曼同学的作法,老师说:“小曼的作法正确”,请回答:小曼的作图依据是( )(3,2)(−3,2)(3,−2)(−3,−2)π227−3–√343−−−√3 3.14160.3˙1234AB CDA.内错角相等,两直线平行B.两直线平行,内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.同位角相等,两直线平行5. 下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买张彩票一定能中奖.其中,正确的命题是( )A.①②B.①②③C.①②④D.①②③④6. 在平面直角坐标系中,对于点,我们把点叫做点的友好点.已知点的友好点为,点的友好点为,点的友好点为…,这样依次得到点,,,…,,若点的坐标为,则点的坐标为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 比较大小:________(填“”,“”或“”).8. 已知是一个正整数,是整数,则的最小值为________.9. 如图,,与,分别交于点,,为的平分线.若,,那么的值是________.10. 如图,若菱形的顶点,的坐标分别为,点在轴上,则点的坐标是________.0.511010xOy P(x,y)P'(1−y,x−1)P A 1A 2A 2A 3A 3A 4A 1A 2A 3A n A 1(2,1)A 2019(2,1)(0,1)(0,−1)(2,−1)10−−√3><=n 135n−−−−√n AC//BD AB AC BD A B BC ∠ABD ∠1=(x+15)∘∠2=(2x+70)∘x ABCD A B (3,0),(−2,0)D y C11. 如图,,, ,则________度.12. 将含有角的三角板的直角顶点放置于互相平行的两条直线中的一条上(如图),如果 ,那么_______.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13. 计算:.14. 如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.请在下列括号中填上理由:证明;因为(已知),所以(________).又因为 (已知),所以,即,所以________(同位角相等,两直线平行),所以(________).15. 如图,在中, ,,点从点出发沿方向以秒的速度向点匀速运动,同时点从点出发沿方向以秒的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,运动的时间是秒.过点作于点,连接,.用含的代数式式表示________,________.AB//CD ∠BAP =120∘∠APC =40∘∠PCD =30∘∠1=40∘∠2=∘+×−|−1|(−3)28–√3–√6–√AB CD MN PM AB//CD MN AB CD E F Q PM ∠AEP =∠CFQ ∠EPQ +∠FQP =180∘AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ ∠EPQ +∠FQP =180∘Rt △ABC ∠B =90∘,AC =20cm ∠A =60∘D C CA 2cm/A E A AB 1cm/B D E t (0<t ≤10)D DF ⊥BC F DE EF (1)t AD =DF =四边形能够成为菱形吗?如果能,请求出相应的值;如果不能,请说明理由;当为何值时,的面积为,请说明理由;当为何值时,为直角三角形.(请直接写出值)16. 小明和爸爸、妈妈到汉字公园游玩,回到家后,他利用平面直角坐标系画出了公园景区地图,如图所示.可是他忘记了在图中标出原点,轴及轴.只知道长廊的坐标为和农家乐的坐标为,请你帮他画出平面直角坐标系,并写出其他各点的坐标. 17. 已知点是直线上一点,,为从点引出的两条射线,,.如图,求的度数;如图,在的内部作,请直接写出与之间的数量关系________;在的条件下,若为的角平分线,试说明.18. 如图,已知,.求证:.19. 如图,已知点在 的边上.利用三角板根据要求画图:①过点作线段,垂足为点;②过点作直线,垂足为点,交于点;结合所画图形,写出与相等的所有角.20. 通过《实数》一章的学习,我们知道是一个无限不循环小数,因此的小数部分我们不可能全部写出来.聪明的小丽认为的整数部分为,所以减去其整数部分,差就是的小数部分,所以用来表示的小数部分.根据小丽的方法请完成下列问题:的整数部分为________,小数部分为________ ;AEFD t (2)t △DEF c 93–√2m 2(3)t △DEF t x y E (4,−3)B (−5,3)O AB OC OD O ∠BOD =30∘∠COD =∠AOC 87(1)1∠AOC (2)2∠AOD ∠MON =90∘∠AON ∠COM (3)(2)OM ∠BOC ∠AON =∠CON DE//AF ∠CDA =∠DAB ∠1=∠2P ∠AOB OA (1)P PC ⊥OB C P MN ⊥OA P OB D (2)∠CPO 2–√2–√2–√12–√2–√−12–√2–√(1)33−−√−−√8−–√已知的整数部分, 的整数部分为,求的立方根.21. 在平面直角坐标系中,已知点.当点在轴的左侧时,求的取值范围;若点到两坐标轴的距离相等,求点的坐标.22.如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.23. 如图,在直角坐标系中,已知,,将线段平移至,点在轴正半轴上(不与点重合),连接,,,.写出点的坐标;当的面积是的面积的倍时,求点的坐标;设,,,判断,,之间的数量关系,并说明理由.(2)10−−√a 8−5–√b a +b Q(4−2n,n−1)(1)Q y n (2)Q Q PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF xOy A(6,0)B(8,6)OA CB D x A OC AB CD BD (1)C (2)△ODC △ABD 3D (3)∠OCD =α∠DBA =β∠BDC =θαβθ参考答案与试题解析2022-2023学年度第二学期初一年级期中考试 (数学)试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】生活中的平移现象【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是.【解答】解:图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.观察图形可知图案通过平移后可以得到.故选.2.【答案】A【考点】点的坐标【解析】先判断出阴影区域在第一象限,且长宽为的矩形,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,是长宽为的正方形,、在第一象限,且,,所以点在阴影区域内,故正确;、在第二象限,故错误;、在第四象限,故错误;、在第三象限,故错误.故选.3.【答案】B【考点】无理数的判定【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:,等;开方开不尽的数;以及…,等有这样规律的数.由此即可判定选择项.D D D 44A (3,2)3<42<4(3,2)B (−3,2)C (3,−2)D (−3,−2)A π2π0.1010010001【解答】解:在,,,,,中,无理数是:,共个.故选.4.【答案】A【考点】平行线的判定【解析】本题考查了作图-复杂作图和平行线的判定方法.【解答】解:,(内错角相等,两直线平行),故选.5.【答案】A【考点】命题与定理真命题,假命题【解析】根据切线的性质对①进行判断;根据概率公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据概率的意义对④进行判断.【解答】解:圆的切线垂直于经过切点的半径,所以①正确;掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是,所以②正确;在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;某种彩票的中奖率为,佳佳买张彩票不一定能中奖,所以④错误.故选.6.【答案】C【考点】规律型:点的坐标【解析】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每个点为一个循环组依次循环是解题的关键,也是π227−3–√343−−−√3 3.14160.3˙π−3–√2B ∵∠ABC =∠DCB =90°∴AB ∥CD A 0.511010A 4本题的难点.【解答】解:观察发现:,,,,,依次类推,每个点为一个循环组依次循环,余,点的坐标与的坐标相同,为.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】【考点】实数大小比较算术平方根【解析】根据,再比较即可.【解答】解:∵,∴,故答案为:.8.【答案】【考点】实数的运算【解析】【解答】解:∵,∴的最小值是.故答案为:.9.【答案】【考点】平行线的性质角的计算【解析】(2,1)A 1(0,1)A 2(0,−1)A 3(2,−1)A 4(2,1)A 5(0,1)A 6…∴5∵2019÷4=5043∴A 2019A 3(0,−1)C >3=9–√32=9<10>310−−√>15135=×3×5=×153232n 151520由平行线的性质可得,再由角平分线的定义得出,得出方程即可解答.【解答】解:,∴,∵平分,∴,∵,,∴,.故答案为:.10.【答案】【考点】坐标与图形性质【解析】【解答】解:∵菱形的顶点,的坐标分别为,,点在轴上,∴,∴,∴由勾股定理知:,∴点的坐标是:,故答案为.11.【答案】【考点】平行线的性质【解析】过点作,由平行线的性质结合的度数可求解的度数,根据可得,即可求解的度数.【解答】解:如图,过点作,∴.∵,∴.∵,∠2+∠ABD =180∘∠ABD =2∠1∵AC//BD ∠2+∠ABD =180∘BC ∠ABD ∠ABD =2∠1∠1=(x+15)∘∠2=(2x+70)∘2+=(x+15)∘(2x+70)∘180∘∴x =2020(−5,4)ABCD A B (3,0)(−2,0)D y AB =5AD =5OD ===4A −O D 2A 2−−−−−−−−−−√−5232−−−−−−√C (−5,4)(−5,4)160P PE//AB ∠APC ∠CPE CD//AB CD//PE ∠C P PE//AB ∠A+∠APE =180∘∠A =120∘∠APE =−=180∘120∘60∘∠APC =40∘∴.∵,∴ ,∴,∴.故答案为:.12.【答案】【考点】平行线的判定与性质【解析】作出辅助线,利用平行线的性质即可得出答案.【解答】解:过点作,如图,∵, ,∴,∴,,∵,∴.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.【答案】解:原式 .【考点】实数的运算【解析】【解答】解:原式 . 14.【答案】两直线平行,同位角相等,,两直线平行,同旁内角互补∠CPE =∠APE−∠APC =−=60∘40∘20∘AB//CD CD//PE ∠C +∠CPE =180∘∠C =−=180∘20∘160∘16020E EF//AB EF//AB AB//CD EF//AB//CD ∠1=∠GEF =40∘∠2=∠HEF ∠GEF +∠HEF =60∘∠2=−=60∘40∘20∘20=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√EP//FQ【考点】平行线的判定与性质【解析】根据平行线的判定与性质证明即可.【解答】证明:因为(已知),所以(两直线平行,同位角相等).又因为 (已知),所以,即,所以(同位角相等,两直线平行),所以(两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.15.【答案】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.【考点】AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ EP//FQ ∠EPQ +∠FQP =180∘EP//FQ (1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8一元二次方程的应用——其他问题动点问题动点问题的解决方法三角形的面积平行四边形的判定平行四边形的性质勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.16.【答案】(1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.【考点】位置的确定【解析】此题暂无解析【解答】解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.17.【答案】解:由题意可知:,,,∵,,∴,∴.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.【考点】角的计算角平分线的定义【解析】D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)(1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘∠AON +=∠COM20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON AOC +∠AOC8(1)由题意可知:=,即∴=,即可求解;(2)由图可见:=;(3)是的角平分线,可以求出==,而==,∴=.【解答】解:由题意可知:,,,∵,,∴,∴.解:由题知,,,所以,即.故答案为:.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.18.【答案】证明:∵,∴.∵,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:∵,∴.∵,∴,∴.19.【答案】解:如图所示:直线,点,即为所求;∠AOD ∠AOC +∠COD ∠AOC +∠AOC 87150∘∠AON +20∘∠COM OM ∠BOC ∠CON ∠MON −∠COM 35∘∠AON ∠AOC −∠CON 35∘∠AON ∠CON (1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘(2)∠AOM =∠AOC +∠COM =∠AOC +70∘∠AOM =∠AON +∠MON =∠AON +90∘∠AOC +=∠AON +70∘90∘∠AON +=∠COM 20∘∠AON +=∠COM 20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2(1)MN C D∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.【考点】作图—复杂作图垂线余角和补角【解析】此题暂无解析【解答】解:如图所示:直线,点,即为所求;∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.20.【答案】,∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.【考点】估算无理数的大小立方根的应用(2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM (1)MN C D (2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM 5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3【解析】此题暂无解析【解答】解:∵,∴,即的整数部分为,小数部分为.故答案为:; .∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.21.【答案】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.【考点】点的坐标【解析】无无【解答】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.22.【答案】解:.理由如下:如图,过作,∵,(1)25<33<365<<633−−√33−−√5−533−−√5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)∠C =∠1+∠2C CD//PQ PQ//MN∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.23.【答案】解:如图,PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.【考点】几何变换综合题坐标与图形性质【解析】(1)由点的坐标的特点,确定出,,得出;(2)分点在线段和在延长线两种情况进行计算;(3)分点在线段上时,和在延长线两种情况进行计算;【解答】解:如图,A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD =3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD ×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBAα+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBAα−β=θα+β=θα−β=θFC =2OF =6C(2,6)D OA OA D OA α+β=θOA α−β=θ(1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD=3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBA α+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBA α−β=θα+β=θα−β=θ。
东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)
2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知a b >,下列不等式成立的是( )A. a b −>−B. 22a b −<−C. 22a b <D. 0a b −<【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵a b >,∴a b −<−,故不符合题意;B . ∵a b >,∴a b −<−,∴22a b −<−,故符合题意;C .∵a b >,∴22a b >,故不符合题意;D . ∵a b >,∴0a b −>,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中α∠的度数为( )A. 60°B. 65°C. 75°D. 85°【答案】C【解析】 【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出115ABD ABC ∠=∠−∠=°,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出6045ABD ABC ∠=°∠=°,,∴1604515ABD ABC ∠=∠−∠=°−°=°,∵90D ∠=︒,∴180901575α∠=°−°−°=°,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知12x y = =是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( ) A. -1B. 1C. 2D. 3 【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵12x y = =是关于x 、y 的方程x +ky =3的一个解, ∴把12x y = =代入到原方程,得1+2k =3, 解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. 1.5C. 2D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则 5353x −<<+,即28x <<,只有选项D 符合题意.故选D .7. 不等式53x −≥的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】 【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:53x −≥,∴2x ≤,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配x 名工人生产电压表,y 名工人生产电流 ) A. 6022014x y y x += ×=B. 6014202x y x y += =C. 601420x y x y += =D. 6021420x y x y += ×=【答案】D【解析】 【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配x 名工人生产电压表,y 名工人生产电流表,由题意,得6021420x y y y += ×=. 故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程327x y +=,用含x 的代数式表示y ,则y =______.为【答案】7322x − 【解析】【分析】本题考查了解二元一次方程,根据327x y +=,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵327x y +=∴273y x =−7322y x =− 故答案为:7322x − 10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过5m ,通过桥洞的车高m x 应满足的不等式为_____________.【答案】5x ≤##5x ≥【解析】【分析】根据不等式的定义列不等式即可.5m ,∴5x ≤.故答案为5x ≤.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组10{212x x −<−≥的最小整数解为_________. 【答案】2【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组10{212x x −<−≥得:32x ≥, ∴最小整数解为2,故答案为:2.的12. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则DEF ∠的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解: 正五边形内角和为540°且CD 在直线l 上,5401085EDC °∴∠==°, 正六边形内角和为720°且FG 在直线l 上, 7201206EFG °∴∠==°, 在EDF 中,180DEF EDF EFD ∠=°−∠−∠,18010872EDF ∠=°−°=° ,18012060EFD ∠=°−°=°,48DEF ∴∠=°,故答案是:48.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各一直金几何?”译文问题:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子,问一头牛、一只羊一共值多少两银子?”则1头牛、1只羊一共值 ______ 两银子.【答案】5【解析】【分析】设每头牛值x 两银子,每只羊值y 两银子,根据“5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,可得出关于x ,y 的二元一次方程组,利用()7+÷①②,即可求出结论.【详解】解:设每头牛值x 两银子,每只羊值y 两银子,根据题意得:52192516x y x y += +=①②, ()7+÷①②得:5x y +=, ∴1头牛、1只羊一共值5两银子,故答案为:5.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买x 个跳绳,y 个呼啦圈,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买x 个跳绳,y 个呼啦圈,依题意得:812120x y +=, 2103y x ∴=−. x ,y 均为正整数,x ∴为3的倍数,∴38x y = = 或66x y = =或94x y = = 或122x y = = , ∴该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)23328y x x y =− +=(2)28452x y x y += −=【答案】(1)21x y = =(2)32x y = =【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:23328y x x y =− +=①② 把①代入②得:()32238x x +−=,解得2x =, 把2x =代入①得2231y =×−=,∴方程组的解为21x y = =; 小问2详解】解:28452x y x y += −=①② 2×−①②得:714y =,解得2y =,把2y =代入①得:228x +=,解得3x =, ∴方程组解为32x y = = . 16. 解下列不等式(组):(1)()32723x +≥;(2)()313122x x x x −> −−≥【的【答案】(1)13x ≥(2)无解【解析】 【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键. (1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:()32723x +≥,62123x +≥,62x ≥,13x ≥; 【小问2详解】解:()313122x x x x −> −−≥, 由()31x x −>,得33x x −>,解得32x >, 由3122x x −−≥,得243x x −≥−1x ≤, 此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的ABC ,线段MN 在网格线上.(1)画出AB 边上的高线CD ;(2)画出BC 边上的中线AE ;(3)在线段MN 上任取一点P ,则ABP 的面积是______.【答案】(1)见详解 (2)见详解(3)5【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C作CD垂直于BA的延长线,交点为点D,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出MN与AB的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:AB边上的高线CD如图所示:【小问2详解】解:BC边上的中线AE如图所示:【小问3详解】解:如图所示:∴ABP 的面积12552=××=. 18. 如图,在ABC 中,AN 是ABC 的角平分线,50B ∠=°,80ANC ∠=°,求C ∠的度数.【答案】70° 【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和. 【详解】解:∵5080ANC B BAN B ANC ∠=∠+∠∠=°∠=°,,. ∴805030BAN ANC B ∠∠∠=−=°−°=°,∵AN 是BAC ∠角平分线,∴223060BAC BAN ∠∠×°°,在ABC 中,180180506070C B BAC ∠=°−∠−∠=°−°−°=°. 19. 若一个多边形的内角和的14比它的外角和多90°,那么这个多边形的边数是多少? 【答案】12 【解析】【分析】设这个多边形的边数是n ,根据题意,列方程1(2)180360904n −×°=°+°求解即可. 【详解】解:设这个多边形的边数是n , 由题意得:1(2)180360904n −×°=°+°, 解得:12n =,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键. 20. 在长方形ABCD 中,放入5个形状大小相同的小长方形(空白部分),其中8cm AB =,12cm BC =,求图中阴影部分图形的面积.【答案】236cm 【解析】【分析】设小长方形的长为xcm ,宽为ycm ,根据图形中大长方形的长和宽列二元一次方程组,求出x 和y 的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为xcm ,宽为ycm ,根据题意,得:3128x y x y +=+=,解得:62x y ==, ∴每个小长方形的面积为()22612cm ×=, ∴阴影部分的面积()281251236cm =×−×=.21. 阅读下列材料:解方程组23237432323832x y x yx y x y +− +=+− += .小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的()23x y +看成一个整体,把()23x y −看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令23mx y =+,23n x y =−.原方程组化为743832m nm n += += ,解得6024m n = =− , 把6024m n = =− 代入23m x y =+,23n x y =−,得23602324x y x y +=−=− ,解得914x y = = ,∴原方程组的解为914x y ==. (1)学以致用:运用上述方法解方程组:()()()()213211224x y x y ++−=+−−=(2)拓展提升: 已知关于x ,y 的方程组111222a x b y c a x b y c +=+=的解为34x y = = ,请直接写出关于m 、n 的方程组()()1112222323a m b n c a m b n c +−=+−= 的解是______. 【答案】(1)11x y == (2)143m n = =−【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令1m x =+,2n y =−得23124m n m n +=−=,解得21m n = =− 即1221x y +=−=− 即可求解;(2)结合题意,利用整体代入法求解,令2x m =+,3y n =−,则()()1212222323a m b n c a m b n c +−=+−= 可化为121222a x b y c a x b y c +=+= ,且解为34x y = = 则有2334m n +=−= ,求解即可. 【小问1详解】解:令1m x =+,2ny =−, 原方程组化为23124m n m n += −=,解得21m n ==− ,1221x y +=∴ −=−,解得:11x y ==, ∴原方程组的解为 11x y = =; 【小问2详解】解:在()()1212222323a m b n c a m b n c +−=+−= 中,令2x m =+,3y n =−,则()()1212222323a m b n c a m b n c +−=+−= 可化为121222a x b y c a x b y c += += , ∵方程组121222a x b y c a x b y c +=+= 解为34x y = = ,∴2334m n +=−=, 143m n = ∴ =−,故答案为:143m n ==−.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台 【解析】【分析】(1)设购进1台甲种农耕设备需x 万元,1台乙种农耕设备需y 万元,根据“购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备m 台,则购进乙种农耕设备()7m −台,利用总价=单价×数量,结合总价不超过10万元,可得出关于m 的一元一次不等式,解之可得出m 的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式. 【小问1详解】解:设购进1台甲种农耕设备需x 万元,1台乙种农耕设备需y 万元,根据题意得:2 4.23 5.1x y x y += +=,解得: 1.51.2x y ==.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; 【小问2详解】解:设购进甲种农耕设备m 台,则购进乙种农耕设备()7m −台, 根据题意得:()1.5 1.2710m m +−, 解得:153m ≤, 又m 为正整数,m ∴的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在ABC 中,点D 是BC 延长线上一点,ABC ∠的平分线BP 与ACD ∠的平分线CP 相交于点P .则有12P A ∠=∠, 请补全下面证明过程:证明:BP 平分ABC ∠,CP 平分ACD ∠, 2ABC PBC ∴∠=∠,2ACD ∠=∠______(______). ACD A ∠=∠+∠ ______(三角形的一个外角等于与它不相邻的两个内角的和), 22PCD A PBC ∴∠=∠+∠._____PCD PBC ∠=∠+∠ (三角形的一个外角等于与它不相邻的两个内角的和),12P A ∴∠=∠. 【应用】如图②,在四边形MNCB 中,设M α∠=,N β∠=,若180αβ+>°,四边形的内角MBC ∠与外角NCD ∠的角平分线BP CP ,相交于点P .为了探究P ∠的度数与α和β的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边BM 与CN 交于点A .如图③,若106BMN∠=°,124MNC ∠=°,则______A ∠=°,因此______P ∠=°. 【拓展】如图④,在四边形MNCB 中,设M α∠=,N β∠=,若180αβ+<°,四边形的内角MBC ∠与外角NCD ∠的角平分线所在的直线相交于点P ,请直接写出P ∠=______.(用含有α和β的代数式表示)【答案】探究:PCD ;角平分线的定义;PBC ;P ;应用:50°;25°;拓展:121902αβ°−− 【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义: 探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出A ∠的度数,再有探究的结论即可得到答案;拓展:延长MB 交NC 的延长线于A ,则由三角形内角和定理可得180A αβ=°−−∠;再由题意可得PB PC ,分别平分ABH ACB ∠,∠,则11190222PA αβ==°−−∠∠. 【详解】解:探究:证明:BP 平分ABC ∠,CP 平分ACD ∠, 2ABC PBC ∴∠=∠,2ACD PCD ∠=∠(角平分线的定义). ACD A ABC ∠=∠+∠ (三角形的一个外角等于与它不相邻的两个内角的和), 22PCD A PBC ∴∠=∠+∠.PCD P PBC ∠=∠+∠ (三角形的一个外角等于与它不相邻的两个内角的和), 12P A ∴∠=∠, 故答案为:PCD ;角平分线的定义;PBC ;P ; 应用:延长了边BM 与CN 交于点A .如图③, ∵106BMN∠=°,124MNC ∠=°,∴1807418056AMN BMN ANM MNC =°−=°=°−=°∠∠,∠∠, ∴18050A AMN ANM =°−−=°∠∠∠, ∴1252P A ∠=∠=°, 故答案:50°;25°.拓展:如图,延长MB 交NC 的延长线于A ,∵M α∠=,N β∠=, ∴180180A M N αβ=°−−=°−−∠∠∠; ∵四边形的内角MBC ∠与外角NCD ∠的角平分线所在的直线相交于点P , ∴PB PC ,分别平分ABH ACB ∠,∠,∴11190222PA αβ==°−−∠∠, 故答案为:121902αβ°−−.24. 如图①,点O 为数轴原点,3OA =,正方形ABCD 的边长为6,点P 从点O 出发,沿射线OA 方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为(1)点A 表示的数为______,点D 表示的数为______. (2)APC △的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段3PE =,点E 在数轴上点P 右侧,以PE 为边向上作正方形PEFG ,当DPF 与ABG 面积和为16时,直接写出t 的值.【答案】(1)3,9 (2)t 的值为12秒或52秒 (3)1318t =或236或316或14918.【解析】【分析】(1)根据线段OA 的长和正方形的边长可以求解.(2)根据P 点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据P 点运动确定正方形的位置再去讨论DPF 与ABG 面积和为16时的t 值. 本题考查了数轴与动点的结合,表示出P 点的运动距离是本题的解题关键. 【小问1详解】解: 3OA = ,且O 为数轴原点,在O 的右侧,A ∴表示的数为3,正方形的边长为6,639OD ∴=+=,D ∴表示的数为9.故答案是3,9; 【小问2详解】解:∵APC △的面积为6, ∴116622APC S AP CD AP =×=××=△, 解得2AP =,P 点从O 点开始运动且速度为每秒2个单位长度,2OP t ∴=,∵3OA =,∴当点P 在AO 之间时,则3322AP OP t =−=−=,解得12t =, ∴当点P 在OA 的延长线上时,则3232AP OP t =−=−=,解得52t =, ∴APC △的面积为6时,t 的值为12秒或52秒; 【小问3详解】解:①当P 点在A 点左侧时,2OP t =,由题意得:连接BG AG PF FD ,,,,如图所示:∵36OA AD ==,, ∴9OD =,∵速度为每秒2个单位长度,设运动时间为t 秒, ∴902t ≤≤, ∴32PA OA OP t =−=−, ∴()11279233222DPF S PD EF t t =××=−×=− , ()116329622ABGS AB AP t t =××=××−=− , ∵DPF 与ABG 面积和为16, ∴27396162DPF ABG S S t t +=−+−= , 解得1318t =, 当P 点在A 点右侧时,连接BG AG PF FD ,,,,如图所示:同理得()11279233222DPF S PD EF t t =××=−×=− , ()116236922ABGS AB AP t t =××=××−=− , ∵DPF 与ABG 面积和为16, ∴27369162DPF ABG S S t t +=−+−= , 解得236t =, ②点P 从D 向O 运动时,则9999222t <≤+=, 连接BG AG PF FD ,,,,如图所示:∴9926222PD t AP AD PD t=×−=−=−−,此时119272332222DPF S PD EF t t =××=×−×=− , 119662456222ABG S AB AP t t=××=××−−=−, ∵DPF 与ABG 面积和为16, ∴273456162DPF ABG S S t t +=−+−= ,第21页/共21页解得316t =, 当P 点在A 点左侧时, 由题意得:连接BG AG PF FD ,,,,如图所示:∴92292962152PD t t AP PD AD t t=×−=−=−=−−=−,, 此时119272332222DPF S PD EF t t =××=×−×=− , ()11621564522ABG S AB AP t t =××=××−=− , ∵DPF 与ABG 面积和为16, ∴273645162DPF ABG S S t t +=−+−= , 解得14918t =, 综上:1318t =或236或316或14918.。
2024年春季福建省南安市初一年下学期期中考试数学试题参考答案
2024年春季期中教学质量测试初一年数学参考答案及评分标准一、选择题(每小题4分,共40分)1.C 2.D 3.B 4.A 5.B 6.C 7.D 8.A 9.B 10.B二、填空题(每小题4分,共24分)11.如:30-=x (答案不唯一) 12.1135-x 13.> 14.7≥m 15.1- 16.10075x y =⎧⎨=-⎩三、解答题(共86分)17.解:5x −10−1=−4x −2, ………………………………………………2分5x +4x =−2+10+1, ………………………………………………4分 9x =9, ………………………………………………6分 x =1. ………………………………………………8分 18.V W X 2x −y =0……①3x −2y =1……②解法一:由①得:y =2x ……③ ………………………………………2分把③代入②得:3x −2×2x =1解得:x =−1 ………………………………………………4分 将x =−1代入③得:y =−2 ……………………………………6分所以 V W X x =−1y =−2. ………………………………………………8分 解法二:①×2得:4x −2y =0……③③-②得:x =−1, ………………………………………………3分 将x =−1代入①得:−2−y =0,解得:y =−2, ………………………………………………6分所以 V W X x =−1y =−2. ………………………………………………8分 19.V W X Y Y Y Y Y Y 4x −1<3x +2……①x ⩾x −23……②, 解:解不等式①得:x <3, ………………………………………………2分解不等式②得:x ⩾−1,………………………………………………4分 ∴不等式组的解集为:−1⩽x <3, …………………………………6分 该不等式组的解集在数轴上表示如图所示:…………………8分20.解:(1)由题意得|k |−4=0,k −4≠0,∴k =−4; ……………………………………………………………3分(2)解方程5x =3−7x 得:x =14, ……………………………………5分由(1)得,原方程为:8x +3m −2=0, …………………………6分 将x =14代入:2+3m −2=0, ……………………………………7分∴m =0. ………………………………………………………………8分21.解:设小明收集了x 节废电池,则小华收集了(x +5)节废电池, ……1分根据题意得:x +10=2(x +5−10), …………………………………4分 解得:x =20, …………………………………………………………6分 当x =20时,x +5=20+5=25. ………………………………………7分 经检验,符合题意.答:小华收集了25节废电池,小明收集了20节废电池. …………8分22.解:(1)C ; …………………………………………………………………3分(2)戊; …………………………………………………………………5分不等式两边同时乘以负数时不等号方向没有改变; ……………8分(3)17x >.……………………………………………………………10分23.解:探索1:动点P 从点A 运动至点B 需要 15 秒; ………………………2分 探索2:15+(24−12)÷(3×3)=493(秒),∴当动点P 运动至点B 和点C 之间时,15<t <493,此时,点P 表示的数为12+3×3(t −15)=9t −123; ……………4分探索3:OC =24−0=24,BC =24−12=12,BD =36−12=24, ∴PB +PC =16共2两种情况.①当点P 在点O 和点B 之间,即3<t <15时,点P 表示的数为0+(3×13)(t −3)=t −3, ∴PB =12−(t −3)=15−t ,PC =24−(t −3)=27−t ,∴15−t +27−t =16,解得:t =13; …………………………………………………7分②当点P 在点C 的右侧,即t >493时,点P 表示的数为24+3(t −493)=3t −25, ∴PB =3t −25−12=3t −37,PC =3t −25−24=3t −49,∴3t −37+3t −49=16,解得:t =17.答:动点P 的运动的时间是13秒或17秒.……………………10分24.解:(1)根据题意得:V W X a −b =45b −3a =4,……………………………………………2分解得:V W X a=12b=8;…………………………………………………………4分(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,根据题意得,12x+8(10−x)⩽90,……………………………………………………6分∴x⩽2.5,∵x取非负整数,∴x=0,1,2∴10−x=10,9,8∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.…………………………………9分(3)由题意:220x+180(10−x)⩾1840,…………………………………11分∴x⩾1,又∵x⩽2.5,∴x为1,2.当x=1时,购买资金为12×1+8×9=84(万元),当x=2时,购买资金为12×2+8×8=88(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.…………13分25.解:(1)方程260+-=x y的所有正整数解为:V W X x=1y=4,V W X x=2y=2;………2分(2)方程250-+-=x y my固定的解为:V W X x=2.5y=0,……………………5分(3)由题意得:260x yx y+=⎧⎨+-=⎩,解得V W X x=6y=−6,………………………7分将V W X x =6y =−6代入250-+-=x y my ,解得m =136; ………………9分 (4)260250x y x y my +-=⎧⎨-+-=⎩……②……①, ①−②得:210y my --=, 即y =12−m , ………………………………………………………11分 ∵y 恰为整数,m 也为整数, ∴2−m 是1的约数, ∴2−m =1或−1, 则m =1或3.…………………………………………………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11. 的相反数是,绝对值是。
12.如果 , ,那么0.0003的平方根是。
13.命题“同角的余角相等”改写成“如果……那么……”的形式是
。
14.如图所示,想在河的两岸搭建一座桥 ,
搭建方式最短的是,
理由是
15.小刚在小明的北偏东60°方向的500m处,则小明在小刚的。
∴∠FDE=∠DEB(两直线平行,内错角 相等) ……(7分)
21.(6分)(1)B(3,0)、C(5,3)、D(0,3)……(3分)
(2) (平方单位)……(6分)
22.(7分)解:不能,设长方形纸片的长为2xcm ,宽为xcm,则:
2x·x=30……(2分)
2x2=30
x2=15
x= ……(3分)
(1)计算 (2)求满足条件的x值
19.(6分)根据语句画图,并回答问题。如图,∠AOB内有一点P.
(1)过点P画PC‖OB交OA于点C,画PD‖OA交OB于点D.
(2)写出图中与∠CPD互补的角.(写两个即可)
(3)写出图中与∠O相等的角. (写两个即可)
20.(7分)完成下面推理过程:
如图,已知DE‖BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
而∠1=∠2
∴∠2=∠BCD……(4分)
∴CD‖FG……(5分)
∴∠CDB=∠FGB=90°……(6分)
∴CD⊥AB……(7分)
24.(8分)解:设∠B= °,∠A= ……(2分)
有两种情况:
(1)当∠B=∠A时……(3分)(2)当∠A+∠B=180°时……(6分)
即 即
∴∠B=∠A=60°……(5分)∴∠A=80° ∠B=100°……(8分)
25.(10分)
(1)直角坐标系建立正确……(2分),C点坐标(1,1)……(3分)
(2) 画正确……(5分) 坐标(a+2,b-1)……(6分)
(3)设点D的坐标为(a,0),则:
即: ……(8分)
∴ 或
∴ 或
因此,点D的坐标为(5,0)或(1,0)……(10分)
(用三角形的面积的差求出点D的坐标也可以)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.已知在同一平面内三条直线a、b、c,若a‖c,b‖c,则a与b的位置关系是()。
A.a⊥b
B.a⊥b或a‖b
C.a‖ b
D.无法确定
8.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( )。
A.30°
(请用方向和距离描述小明相对于小刚的位置)
16.绝对值小于 的所有整数是.
17.定义 “在四边形ABCD中,若AB‖CD,且AD‖BC,则四边形ABCD叫做平行四边形。”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3), 则第四个顶点的坐标是.
三、解答下列各题:(共59分)
18.(每小题4分,共8分)
C.20°
B.25°
D.15°
9.一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64
B.36
C.81
D.49
10.在平面直角坐标系中,已知点A(-4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()。
A.(0,-2)
B.(4,2)
C.(4,4)
D.(2,4)
(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.
B
A
C
20 12—2013学年度第二学期七年级期中质量检测
数学试卷·参考答案
一、选择题(每小题3分,共30分)
1
2
3
4
5
6
7
8
9
10
C
C
B
B
C
A
C
B
D
C
二、填空(每小题3分,共21分)
11. , 12. 13.如果两个角都是同一个角的余角,那么这两个角相等。14.PM垂线段最短15.南偏西60°方向的500m处16. ,
∵DE‖BC(已知)
∴∠ADE=.( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴‖.( )
∴∠FDE=∠DEB.( )
21.(6分)如图,四边形ABCD为平行四边形,OD=3,CD=AB=5,点A坐标为(-2,0)
(1)请写出B、C、D各点的坐标;
17.(4,3)或(-2,3)或(2,-3)
三、解答题:(共55分)
18.( 8分)(1)解:原式=0.2-3+2…(3分)(2)解:x-1= …(1分)
=-0.8…(4分)即x-1= …(2分)
所以x= …(3分)
或x= … (4分)
19.(6分)(1)画图正确(2分)
(2)∠PDO,∠PCO(答案不唯一写对给2分)
(2)求四边形ABCD的面积。
22.(7分)小丽想在一块面积为36m2正方形纸片上,沿着边 的方向裁出一块面积为30m2的长方形纸片,并且使它的长宽的比为2︰1。问:小丽能否用这块正方形纸片裁出符合要求的长方形纸片,为什么?
23.(7分)如图,∠ADE=∠B,∠1=∠2,FG⊥AB,问:CD与AB垂直吗?试说明理由。
C.
D.
4.如图,已知AB⊥CD,垂足为O,EF为过
O点的一条直线,则∠1与∠2的关系一定成立的是()。
A.相等
C.互补
B.互余
D.互为对顶角
5.下列说法正确的是()。
A.无限小数都是无理数
C.无理数是无限不循环小数
B.带根号的数都是无理数
D.实数包括正实数、负实数
6.已知点P(m长为2 cm
因为15>9所以 >3 >6……(4分)
而正形纸片的边长为 cm=6 cm。……(6分)
因为正方形纸片的边长小于长方形的长,所以不能裁剪出符合要求的长方形。……(7分)
23.(7分)CD与AB垂直。
∵∠ADE=∠B……(1分)
∴DE‖BC……(2分)
∴∠1=∠BCD……(3分)
24.(8分)已知,∠A与∠B的两边分别平行,∠A比∠B的一半大30 °,求∠A、∠B的度数。
25.(10分)三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),
B(-2,4).
(1)请你在方格中建立直角坐标系,并写出C点的坐标;
(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是 .
(3)∠PCA,∠PDB(答案不唯一写对给2分)
20.(7分)∵DE‖BC(已知)
∴∠ADE=∠ABC(两直线平行,同位角相等)……(2分)
∵DF、BE分别平分∠ADE、∠ABC
∴∠ADF= ∠ADE
∠ABE= ∠ABC(角平分线定义) ……(4分)
∴∠ADF=∠ABE
∴DF‖BE(同位角相等,两直线平行) ……(6分)
2013-2014学年度第二学期七年级期中质量检测
数学试卷
(完卷时间:120分钟满分:100分)
一、选择题:(选一个正确答案的序号填入括号内,每小题2分,共20分)
1.下面的四个图形中,∠1与∠2是对顶角的是()。
A.
B.
C.
D.
2. 的平方根是()。
A.
B.
C.
D.
3.下列式子正确的是()。
A.
B.