2020年初一数学期中测试卷
人教版数学七年级下学期《期中检测试卷》有答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。
2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
2020学年七年级下学期期中考试数学试题(含答案)

2020年春学期初一期中考试数学试卷 2020.5注意事项:1. 考试时间为100分钟,试卷满分为110分.2. 所有答案必须填涂到答卷纸上相应位置,答案写在试卷其他部分无效.一、选择题(本大题共10小题,每小题3分,共30分.)1.把图形(1)进行平移,能得到的图形是 ( ▲ )2.下列等式从左到右的变形,属于因式分解的是 ( ▲ )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(1)1x x x x -+=-+D .22816(4)x x x -+=- 3.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( ▲ )A .2B .9C .10D . 114.下列计算正确的是 ( ▲ )A . 1266a a a =+B .22414mm =- C .877222=+ D .93339)3(y x xy = 5.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( ▲ )A.110°B.125°C.135°D.140°6.若()()A b a b a +-=+223535,则A 等于 ( ▲ ) A .ab 12 B .ab 15 C .ab 30 D .ab 607.下列说法中,正确的个数有( ▲ )①同位角相等; ②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;⑤两个角的两边分别平行,则这两个角相等。
第9题A.0个B.1个C.2个D.3个8.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c b a ,则比较a 、b 、c 、d 的大小结果是 ( ▲ )A. c d a b <<<B.c d b a <<<C. d c a b <<<D.c a d b <<<9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB,则∠M0N 的度数为( ▲ )A.60°B.45°C. 65.5°D.52.5°10.如图,若平行四边形AFPE 、BGPF 、EPHD 的面积分别为15、6、25,则阴影部分的面积是( ▲ )A.20B. 15.5C.23D.25二、填空题(本大题共8小题,每小题2分,共16分.)11.2019年末,新型冠状病毒引发的肺炎在我国爆发,被命名为2019-nCoV 的新型冠状病毒直径最小约0.00000006厘米,用科学计数法表示为 ▲ 厘米.12.若92-2++x m x )(是一个完全平方式,则m = ▲ .13. 若3424==y x ,,则=-y x 24 ▲ .14.计算)8)(4(22+++-mx x n x x 的结果不含3x 的项,那么m= ▲ .15.将长方形ABCD 折叠,折痕为EF ,BC 的对应边为''C B 与CD 交于点M ,若∠MD B '=50°,则∠BEF 的度数为 ▲ °.16.计算:()()870.1258⨯-= ▲ . 17.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = ▲ ° .18.无锡市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°.B 灯先转第17题 第18题第15题第10题动2秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 ▲ 秒.三、解答题(本大题共8小题,共64分.)19.计算:(每小题3分,共12分.)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+-- (2)23)3)(()2(x x x ---(3))2)(3()7(+--+x x x x (4))21)(12()12(2a a a +-+-+20.因式分解:(每小题3分,共9分.)(1)b a b a ab 322375303+- (2))(16)(2x y y x a -+- (3)()222224y x y x -+ 21.(6分)先化简,再求值:)3)(3()23)(12(62-++-+-x x x x x ,其中21=x22.( 8分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△'''C B A ,点C 的对应点是直线上的格点'C .(1)画出△'''C B A .(2)若连接'AA 、'BB ,则这两条线段之间的关系是 .(3)试在直线l 上画出所有符合题意的格点P ,使得由点'A 、'B 、'C 、P 四点围成的四边形的面积为9.23.(6分)如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C+∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.24.(6分)如图,AD 平分BAC ∠,EAD EDA =∠∠.(1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,求E ∠的度数.25. (8分)完全平方公式:(a ±b )2=a 2±2ab+b 2适当的变形,可以解决很多的数学问题. 例如:若a+b =3,ab =1,求a 2 +b 2 的值.解:因为a+b =3,ab =1所以(a+b )2=9,2ab =2所以a 2+b 2+2ab =9,2ab =2得a 2+b 2=7根据上面的解题思路与方法,解决下列问题:(1)若(7﹣x )(x ﹣4)=1,求(7﹣x )2+(x ﹣4)2的值;(2)如图,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设AB =5,两正方形的面积和S 1+S 2=17,求图中阴影部分面积.26.(9分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)EC B A D图② 图① 备用图(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若︒=∠-∠10B C ,∠BAD =x ° .①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.2020年春学期初一期中考试数学参考答案和评分标准2020.5一、选择题(每题3分,共30分)1. C 2 .D 3 . B 4 . C 5 . B 6. D 7. B 8. A 9. D 10. B二、填空题(每空2分,共16分)11. 8106-⨯ ; 12. 84或- ; 13.92 ; 14. 4 ;15. 70 ; 16 . 81- ; 17. 66 ; 18. 2171或 三、解答题(共64分)19. 计算(每题3分,共12分)(1)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+--;=-1+4-1------------------------2分(化错1个扣一分)= 2 ----------------------3分(2)23)3)(()2(x x x ---.= 3398x x +- ------------2分(每个化简1分)= 3x --------------------3分(3) )2)(3()7(+--+x x x x= )6(722---+x x x x ------------2分 = 68+x --------------------3分(4) )21)(12()12(2a a a +-+-+ =)14(14422--++a a a ------------2分 =24+a ------------3分20.把下列各式分解因式:(每题3分,共9分)(1) b a b a ab 322375303+-=)2510(322a ab b ab +-------------1分 =2)5(3a b ab -------------3分(2) )(16)(2x y y x a -+-=)16)((2--a y x -----------------------------------1分 =)4)(4)((-+-a a y x -------------------------------3分(3) ()222224y x y x -+ = )2)(2(2222xy y x xy y x -+++--------1分 = 22)()(y x y x -+ ------------3分21.(6分)解:原式= 9)26(6222-+---x x x x ------------------2分 = 72-+x x --------------------4分当21=x ,原式=7-2141+=416- -----------------------6分22. (8分)(1)画图--------------2分 (2)平行且相等--------------4分(3)8分23. (6分)(1)证明:∵AD ⊥BC∴∠1+∠C=90°………………1′∵∠C+∠ADE =90°∴∠1=∠ADE ………………2′∴DE ∥AC ………………3’(2) EF ⊥BC ………………4′∵∠1=∠2,∠1=∠ADE∴∠2=∠ADE∴EF ∥AD ………………5′∴∠EFD =∠ADC=90°∴EF ⊥BC ………………6′(其他方法酌情给分)24. (6分)解:(1)∠E AC =∠B ………………1′理由:∵AD 平分∠BAC∴∠1=∠2………………2′∵∠ADE=∠B+∠1,∠EAD=∠2+∠EAC ,且∠EAD=∠EDA∴∠B=∠EAC ………………3’(2)∵:13CAD E =∠∠:∴设∠CAD (即∠2)=x °,则∠E=x 3°∵∠B=50°∴∠EAD=∠EDA=(50+x )° (4)∴180325050=+++x x∴16=x ………………5′∴∠E=48° ………………6′(其他方法酌情给分)25. (8分)解:(1)设4,7-=-=x b x a则由题意可得:1,3==+ab b a∴7291232)(2222=-=⨯-=-+=+ab b a b a 即7)4()7(22=-+-x x ………………4′ (2)………………8′26. (9分)(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC ………………3′(2)①∵∠B+∠C=90°,︒=∠-∠10B C∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=5O °∵∠DFE=BAF B ∠+∠∴50402=+x 5=x ………………3′②由题意可得,∠ADC=x +40, ∠ABD=x -140 ,∠EDF=x x x 2100)40(140-=+--∠DFE=x 240+(ⅰ)若∠EDF=∠DFE x x 2402-100+= 15=x (ⅱ)若∠EDF=∠E 402-100=x 30=x(ⅲ)若∠DFE =∠E 40240=+x 0=x (舍去)综上可得3015或=x . ………………3′。
山东省烟台市2020年初一数学第一学期期中考试试题及答案

山东省烟台市2020年初一数学第一学期期中考试试题及答案(第一部分:基础演练,满分120分)一、 选择题(3′×12=36′) 1、 -12的相反数等于( )A. 1B. -1C. 2D. -2 2、下列等式正确的是( ) A.-52=(-5)2;B.55--= ; C.3232-22=⎪⎭⎫ ⎝⎛ ; D. 3331-31-=⎪⎭⎫ ⎝⎛3、下列各式计算结果是负数的是( )A. -(-5)100B. (-2)×(-3)×(-4)2C. (-7)9×(-9)7D. (-3)×(-5)×(-4)×(-7+7)4、有理数m ,n 在数轴上对应点的位置如图所示:则m ,-m ,-n 的大小关系是( ) A. m<-n<-m B. -n<m<-m C. -n<-m<m D. -m<-n<m5、下列说法正确的是( )A. 近似数7.0万精确到千位B. 近似数100.170精确到0.01C. 近似数71亿精确到个位D. 近似数10.7×102精确到十分位 6、用一个平面去截如图的长方体,截面不可能为( )7、由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色的面积为( )9 B. 11 C. 14 D. 188、若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出的结果应为( )A. 21B. 213C. 217D. 2499、下列说法正确的是( ) A. 棱柱的侧面可以是三角形;B .用一个平面截一个正方体,得到的截面可能是七边形;C .将一个直角三角板绕直角边旋转一周所得几何体是圆锥;D .由六个大小一样的正方形所组成的图形是正方体的展开图.10、下列几何体是由4个相同的小正方体搭成的,其中从正面和左面看到的形状图相同的是( )A.B. C. D.11、如图,计算机按所示程序工作,如果输入的数是2,那么输出的数是( ) A. 54 B. -54 C. 558 D. -55812、如图,从一个棱长为3cm 的正方体的一顶点处挖去一个棱长为1cm 的正方体,则剩余部分的体积和表面积分别是( )A. 27cm 3,51cm 2B. 26cm 3,51cm 2C. 27cm 3,54cm 2D. 26cm 3,54cm 2二、填空题(3分×6=18分) 13、下列各数:31%,--1,2-5,0,-1.6,3.14,51-2⎛⎫ ⎪⎝⎭,-32其中整数是 ;负分数是 ;正有理数是 .14、2019年10月1日,庆祝中华人民共和国成立70周年盛典在北京天安门广场隆重举行,以盛大的阅兵仪式、群众游行和联欢活动欢庆共和国70华诞.中央广播电视总台现场直播,以宏大的视听盛宴向全世界展示新时代中国盛世盛景.数字显示,10月1日两场重大活动直播在电视端的总收视规模达到7.99亿人,数据7.99亿用科学计数法表示为 .15、数轴上A 、B 两点之间的距离为5,已知点A 表示的数为-3,则点B 表示的数为 .16、一辆公交车上原有14人,经过3个站点时乘客上、下车情况如下(上车人数记为正,下车人数记为负,单位:人),此时公交车上有 人.17、已知a ,b 互为相反数,x ,y 互为倒数,m 的绝对值为2,21xy -3a -3b -m = . 18、一个几何体由几个大小相同的小正方体搭成,右图分别给出了从上面、左面看到的这个几何体的形状图,则搭成这个几何体的小正方体的个数可能是 . 三、解答题(66分)19、(16分)计算:(1) 11813--++-2332⎛⎫ ⎪⎝⎭() (2)()11832-24--÷⨯(3) 4100211-1+1+-6223⎛⎫⨯÷- ⎪⎝⎭(4)29410.4427100⎡⎤⎛⎫⎛⎫--⨯÷-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦20、(6分)已知(a+3)2与2b -互为相反数,求ab+(a+b )2019的值.(12分)若a 、b 均为有理数,且5=a ,b 的倒数是21-.求a+b 的值; (2)若a b ab -=-,求ba ab 2251-的值.22、(10分)福山体校近期要检查学生的100米短跑训练情况,规定达标的成绩是15秒.小亮同学每天坚持锻炼,并记录了一周内的成绩变化情况,如下表所示:表中正数表示比前一天多用时间,负数表示比前一天少用时间,已知上星期日小亮的成绩为15.2秒,未达标.本周日小亮的成绩能否达标?请通过计算加以说明.23、(10分)小明准备用如图所示的纸片折成一个正方体. (1)他是否能成功?(2)将期中一个正方形挪到其他位置,使之能折成一个正方体.画出一种挪动后的平面展开图.星期 一 二 三 四 五 六 日100米成绩变化/秒 +0.7 +1.1 0 -0.9 +0.3 -1 -0.624、(12分)某汽车厂计划上半年内每月生产20辆汽车,由于另有任务,需改变计划,实际每月生产量与计划量相比情况如下表(增加为正,减少为负).月份一二三四五六实际生产(辆)22 18 24 25与计划相比增减(辆)+2 -3 0 +5(1)请你把上表填完整;(2)生产量最多的一个月比生产量最少的一个月多生产多少辆?(3)半年内总生产量比原计划多了还是少了,多或少多少辆?(4)若按照上半年的销售情况计算,该厂全年可生产多少辆汽车?(第二部分:能力挑战,满分30分)25、(14分)用5块正方体的木块搭出的几何体如图所示.(1)画出它从正面、左面、上面三个方向看到的形状图;如果每个小正方体的棱长为2,要给这个几何体地面以上的部分涂上颜色,求涂色部分的面积;(2)在这个图形中,再添加一个小正方体,使得它从正面和左面看到的图形不变,操作后,请画出从上面看到的所有可能的形状图.26、(16分)出租车司机王师傅,某一天上午在东西走向的大街上营运,若规定向东为正,向西为负,行车里程(单位:千米),依先后次序记录如下.-5,+7,+6,-9,+5,-7,-7,+6.(1)将最后一名乘客送到目的地,王师傅在这天的出发地何方?距离是多少?(2)这天上午,该出租车行驶的路程是多少?(3)这天上午,该出租车离出发地最远的路程是多少?(4)这天上午,王师傅从出发后到将最后一名乘客送到目的地,他经过出发地次,其中他最后一次经过出发地时,该出租车行驶的路程是千米.2019-2020学年度第一学期期中学业水平考试初一数学试题参考答案及评分建议(如有错误请组长及时更正)一、选择题(每小题3分,满分36分)二、填空题(每小题3分,满分18分)13.-|-1|,0,23-; 2-5,-1.6,5)21(-; 31%,3.14. 14.7.99×10815.2或-8 16.11 17.212,211- 18.5或6或7 (5,6,7)三、解答题(满分66分)19.计算(本题共4个小题,满分16分)解:(1)11813()()2332--++- =132+31+38-21=132-21+31+38……………2分 =3+3 =6.………………4分 (2)()4123218⨯-÷--=41)16(18⨯--- ……………2分 =)4(18--- =14-.…………………4分(3) 2631211121004-÷⨯⎪⎭⎫ ⎝⎛-++- = 236312111÷⨯⎪⎭⎫ ⎝⎛-++-…………………2分 236313621÷⎪⎭⎫⎝⎛⨯-⨯=()21218÷-= 26÷= 3=………………4分(4)⎪⎭⎫ ⎝⎛-÷⎥⎥⎦⎤⎢⎢⎣⎡⨯⎪⎭⎫⎝⎛--1001274494.02=⎥⎦⎤⎢⎣⎡⨯--27416814.0×(-100) =⎥⎦⎤⎢⎣⎡--434.0×(-100)(-0.4)×(-100)-43×(-100)…2分=40+75 =115.………4分20. (本题满分6分) ∵(a +3)² +|b-2|=0,∴⎩⎨⎧=-=+0203b a , ……………2分 ∴⎩⎨⎧==23-b a ,………4分∴81-923-3-)(201922019=+=++=++)()()(b a a b……6分21. (本题满分12分)解:由|a |=5,b 的倒数是12-,得5a =±,b = -2.………2分 (1)当a =5,b =-2时,a +b =5-2=3;……………4分 当a =-5,b =-2时,a +b =-5-2=-7;…………6分(2)由|b -a |=b -a ,得b -a 是非负数,所以b =-2,a =-5, ……9分 则原式=221(5)(2)(5)(2)5-⨯--⨯-⨯-=2010-+=10. ……12分22. 本题满分10分)解:小亮的成绩能达标……………2分15.2+0.7+1.1+0-0.9+0.3-1-0.6=14.8(秒) …………………8分 14.8<15,所以该同学本周日能够达标. ……………………10分 23. (本题满分10分)解:(1)不能; …………………………………4分 (2)答案不唯一,如: …… 10分24.(本题满分12分)解:(1)如图:……………4分(2)5-(-3)=8辆; …………6分(3)2+(-3)+(-2)+0+4+(+5)=6(辆),∴半年内总销售量比原计划多了,多了6辆;……………9分 (4)22+17+18+20+24+25=126(辆)(或20×6+6=126),………10分 126×2=252(辆),∴该中心全年可销售252辆汽车.…………………………12分四、附加题:(满分共30分) 25.(本题满分14分). 解:(1)如图所示:……6分月份 一 二 三 四 五 六 实际每月销售(辆) 17 20与计划相比增减(辆) -2 +4①②③ ④⑤⑥(2)(2×2)×(4×2+3×2+4)=4×18=72………………9分答:这个几何体地面以上涂色部分的面积为72.…………10分(3)要使从正面和从左面看的形状图不变,添加的一个小正方体只能在底层第2行空缺的两个位置上,故添加后从上面看的形状图是………14分解:(1)-5+(+7)+(+6)+(-9)+(+5)+(-7)+(-7)+(+6)=-5+7+6-9+5-7-7+6=-4(千米)……………………3分答:上午结束营运在出发地的西面4千米处。
2020年秋学期七年级期中学情调研测试数学试题及答案

七年级数学第1页(共4页)2020年秋学期七年级期中学情调研测试数学试题第一部分 基础题(100分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.一只长满羽毛的鸭子大约重A .50克B .2千克C .20千克D .50千克2.下列说法正确的是A .整数包括正整数和负整数;B .零是整数,但不是自然数;C .无限小数不是有理数;D .整数和分数都是有理数.3.以下代数式书写规范的是A .y x ÷B .a 321 C .a×3 D .ab 4.如图,根据有理数a,b,c 在数轴上的位置,下列关系正确的是A .c >a >0>bB .a >b >0>cC .b >0>a >cD .b >0>c >a 5.下列各组代数式中,是同类项的是A .5x 2y 与15xyB .-5x 2y 与15yx 2C .5a x 2与15yx 2 D .83与x 3 6.下列各对数中,互为相反数的是 A .-(-3)和+(+3) B .-(+3)和+(-3)C .-(+3)和+(+3)D .-(-3)和3 7.下列代数式a ,-2ab ,3x , x y +,22x y +,-1, 2312ab c , 2x y +中,单项式共有 A .2个 B .3个C .4个D .5个 8.绝对值等于它本身的数是 A .零 B .负数 C .正数D .正数和零 二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.赵老师的身份证号码是32092319720224****,赵老师是 ▲ 年出生的.101112. .单项式3-的系数是 ▲ . 13.在0、-1、1、31这四个数中,最大数与最小数的差.........是 ▲ .七年级数学第2页(共4页) 14.若n m y x y x -和25是同类项,则n m -= ▲ .15.中间一个奇数为a 的三个连续奇数的和为 ▲ .16.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,代数式cd b a m 4332+++ 的值为 ▲ 。
2020年初一下册数学期中试卷及答案

2020年初一下册数学期中试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. 2B. 3√2C. 0.333...D. √9答案:B2. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26答案:C3. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:D4. 某数的平方根是3,则这个数是:A. 9B. 8C. 7D. 6答案:A5. 下列哪个数是正数:A. -2B. -1C. 0D. 1答案:D6. 下列哪个数是负数:A. 2B. -2C. 0D. 1答案:B7. 下列哪个数的立方根是3:A. 27B. 64C. 125D. 243答案:A8. 已知a=2,b=3,则a²+b²的值是:A. 13B. 11C. 9D. 7答案:A9. 下列哪个数是无理数:A. √9B. √16C. √25D. √36答案:B10. 下列等式正确的是:A. √(4)²=2B. √(9)²=3C. √(16)²=4D. √(25)²=5答案:C二、填空题(每题4分,共40分)1. 2的平方是______。
答案:42. 3的立方是______。
答案:273. 5的平方根是______。
答案:√54. 16的平方根是______。
答案:±45. 0.333...的值是______。
答案:1/36. -2的立方是______。
答案:-87. 81的平方根是______。
答案:98. 125的立方根是______。
答案:59. 7²的值是______。
答案:4910. (-3)²的值是______。
答案:9三、解答题(共20分)1. 计算下列各数的平方根:(1) 64(2) 121(3) 256答案:(1) ±8(2) 11(3) ±162. 已知a=5,b=3,求a²+b²的值。
2020-2020学年达州市北师大七年级上期中数学试卷含答案解析

四川省达州市2020-2020学年七年级(上)期中数学试卷(解析版)一、精心选一选,慧眼识金!((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为25 ±0.25千克”,则下列面粉中合格的有()A. 24.70 千克B. 25.32 千克C. 25.51 千克D. 24.86 千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A. 1.94X1010B. 0.194X1010C. 19.4X109D. 1.94 X 1093.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B ,圆柱体C.球体D ,三棱柱4. - 23的意义是()A. 3个—2相乘B. 3个—2相力口C. - 2乘以3D. 3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A. 0个B. 1个C. 2个D. 3个6.将如图RtAABC绕直角边AC旋转一周,所得几何体的左视图是((1) 78 - 23+ 70=70+70=1 ;(2) 12- 7X (- 4) +8+ (- 2) =12+28- 4=36; (3) 12+ (2X3) =12 + 2X3=6X3=18;(4) 32X 3.14+3X (- 9.42) =3x 9.42+3X (- 9.42) =0.其中错误的有()A. 1个B. 2个C. 3个D. 4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字二个数起,每个数都等于 1与它前面那个数的差的倒数 的排列规律,利用这个规律可得a 2020等于()C. 2 D, 3an. 右a1=y,从第通过探究可以发现这些数有一定A.7.下列计算:表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为(9,有若干个数,第一个数记为a1,第二个数记为a2,…,第n 个数记为10.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是 1, 3和4,则这6个整数的和是()备”字所代表的面相对的面上的汉字16. 在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?17. 《庄子.天下篇》中写道:工尺之植,日取其半,万世不竭 ”意思是:一根一尺的木棍, 如果每天截取它的一半,永远也取不完,如图.A. 15B. 9 或 15C. 15或 21D. 9, 15 或 21二、耐心填一填,一锤定音!(本部分 在题中的横线上)11.计算(-3) - (-7) =.7个小题,每小题3分,共21分.把最后答案直接填12 .如图所示的三个几何体的截面分别是:(1);(3)13 .把边长为lcm 的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.;(2)14.如图所示的是一个正方体的表面展开图,则与1-2三、用心做一做,马到成功!(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.( 6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数: ;(3)绝对值大于3且小于6的所有负整数: ;(4)在数轴上,与表示-1的点距离为5的所有数: ;(5)倒数等于本身的数: ;(6)绝对值等于它的相反数的数: .19.( 7分)画一条数轴,在数轴上表示出 3.5和它的相反数,-2和它的倒数,最小的自然数.然后用S ”把这些数连接起来.20.(16分)计算:⑴⑵(3)(4)21.( 6分)根据实验测定,高度每增加100米,气温大约下降0.6C.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是- 16C,如果当时地面温度是8C, 那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形, 其长为10cm ;从上面看到的是等边三角形,其边长为4cm求这个几何体的侧面积.(4分)已知|x|=3, y 2=25,且x>y,求出x, y 的值.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从出发,晚上到达 B 地.规定向东为正,当天的航行记录如下(单位: km ) : -16, -7, 12,6, 10, - 11 , 9. B 在A 地的哪侧?相距多远?若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?如果把正方体的棱 2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设如果把正方体的棱三等分, 然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有 3个面涂有颜色的有 a 个,各个面都没有涂色的有b 个,则a+b=(3)如果把正方体的棱 4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有 2个面涂有颜色的有 c 个,各个面都没有涂色的有b 个,则c+b=(4)如果把正方体的棱 n 等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有 2个面涂有颜色的有 c 个,各个面都没有涂色的有b 个,则c+b=23. 24. (4 分)已知 12m — 6|+ (-1) 2=0,求 m - 2n 的值.25. 26. (10分)将一个正方体的表面全涂上颜色.其中3面被涂上颜色的有 a 个,则a=(2) 从王面看以左面看从上面青3等分2020-2020 学年四川省达州市七年级(上)期中数学试卷参考答案与试题解析一、精心选一选,慧眼识金!((本部分10 个小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1 .一种面粉的质量标识为“25± 0.25 千克” ,则下列面粉中合格的有()A.24.70 千克B.25.32 千克C.25.51 千克D.24.86千克【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25- 0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:25+0.25=25.25;25-0.25=24.75,,合格的面粉质量在24.75和2.25之间,故选:D .【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2 .在我国南海某海域探明可燃冰储量约有194 亿立方米.194 亿用科学记数法表示为()A. 1.94X1010B. 0.194X1010C. 19.4X109D. 1.94X109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为ax 10n的形式,其中1W| a| <10, n为整数.确定n的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值》1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为: 1.94X1010.故选:A .ax 10n的形式,其此题考查了科学记数法的表示方法.科学记数法的表示形式为中1w|a|v10, n为整数,表示时关键要正确确定a的值以及n的值.3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()白A.长方体B.圆柱体C.球体D.三棱柱【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形. 故选:C.【点评】本题考查几何体的分类和三视图的概念.4. - 23的意义是()A. 3个—2相乘B. 3个—2相力口C. -2乘以3D. 3个2相乘的积的相反数【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:-23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A. 0个B. 1个C. 2个D. 3个【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】 解:① 没有最小的整数,故 ① 错误; ② 有理数中没有最大的数,故 ②正确;③ 如果两个数的绝对值相等,那么这两个数相等或互为相反数,故 ④ 互为相反数的两个数的绝对值相等,故 ④ 正确; 故选:C.【点评】 本题考查了有理数,没有最大的有理数,没有最小的有理数.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】 解:RtAABC 绕直角边AC 旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形, 故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.下列计算:(1) 78 - 23+ 70=70+70=1 ;(2) 12- 7X (- 4) +8+ (- 2) =12+28- 4=36; (3) 12+ (2X3) =12 + 2x3=6x3=18;(4) 32X 3.14+3X (- 9.42) =3X 9.42+3X (- 9.42) =0.其中错误的有()③错误;6.将如图RtAABC 绕直角边AC 旋转一周,所得几何体的左视图是(A. 1个B. 2个C. 3个D. 4个【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78—4=77■,错误;(2)原式=12+28— 4=36,正确;(3)原式=12+ 6=2,错误;(4)原式=3X 9.42+3X (- 9.42) =0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3歹U,从左到右的列数分别是4, 3, 2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.一* …一、, -―… ―99 .有若干个数,第一个数记为 a i,第一个数记为a 2,…,第n 个数记为a n.若a i 专,从第二个数起,每个数都等于 1与它前面那个数的差的倒数 的排列规律,利用这个规律可得a 2020等于(【分析】根据每个数都等于 1与它前面那个数的差的倒数 + 3=672 可知a 2020=a 3. 2 【解答】解:当ail 时,_ 1 -1-^^=1 J”, 1 I 1 a 3=l 一力=1-3 =力「2020 + 3=672,1a 2020=a 3=一故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于 可知这列数的周期为 3是解题的关键.10 .如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是 1, 3和4,则这6个整数的和是()A. 15B. 9 或 15C. 15或 21D. 9, 15 或 21【考点】 认识立体图形;有理数的加法.通过探究可以发现这些数有一定”可知这列数的周期为 3,由2020 1与它前面那个数的差的倒数【考点】规律型:数字的变化类.・•・这列数的周期为 3,【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6 或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A .【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、耐心填一填,一锤定音!(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(-3) - (-7) = 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(―3) —(― 7) = (― 3) +7=7 - 3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数. 这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:( 1) 圆;(2) 长方形:(3) 三角形【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆, 截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14 cm. 【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:二•正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,•••要剪12-5=7条棱,1X (7X2)=1 X 14=14 (cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7, 14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与奋”字所代表的面相对的面上的汉字是 _【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面生”与面是”相对,面活与面奋”相对,面就“与面斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0, b>0,且| a| v | b| ,用之”把a, - a, b, - b连接起来:―b v av — av b【考点】有理数大小比较. 【分析】有理数大小比较的法则: 数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:: a<0, b>0,- a>0, - bv 0, - I al <1 bl , - a< b,— b< a< - a< b.故答案为:-bvav - a< b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确: ①正数都大于0;②负数都小于0;③正数大于一切负数; ④ 两个负数,绝对值大的其值 反而小.16 .在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,所有可能的情况是剪去1号、2号或3号小正方形.①正数都大于0;②负数都小于0;③正数大于一切负问应剪去几号小正方形?【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答. 【解答】解:二.剩余的部分恰好能折成一个正方体, .•・展开图中没有田字形,・♦・应剪去1号、2号或3号小正方形. 故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的 只要有 白”字格的展开图都不是正方体的表面展开图.11中形式是解题的关键,17.《庄子.天下篇》中写道:二尺之植,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.【考点】规律型:图形的变化类.故答案为:1【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、用心做一做,马到成功!(本部分 8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.写出符合下列条件的数: (1)最小的正整数:1; (2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数: -4, - 5 ;(4)在数轴上,与表示-1的点距离为5的所有数: 4, - 6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数 .【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答. 【解答】解:如图.(1)最小的正整数:1; (2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:-4, - 5; (4)在数轴上,与表示-1的点距离为5的所有数:4, -6;由图易得:I -2A 2-【分析】由图可知第一次剩下-1-出第n 次剩下【解答】解:;第二次剩下 丁,共截取22n共截取1 - k,截取1-二2(5)倒数等于本身的数:士1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1 ; 0; - 4, - 5; 4, - 6;± 1 ;0或负数.1-7 -5 -4-3-2-101 2 3 4 5 61:【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.画一条数轴,在数轴上表示出 3.5和它的相反数,-2和它的倒数,最小的自然数.然后用法”把这些数连接起来.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出 3.5和它的相反数,-2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用夕”号连接起来即可.3.5>0>— 0.5>— 2> — 3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.-14--1-X[2- (- 3) 2].(16分)(2020秋?渠县校级期中)计算:⑴⑵(3)(4)【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可. (2)应用乘法分配律,求出算式的值是多少即可.(3) (4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.3 1 1 ^^^"+^")4 2 4) =15X — =22;一=亍= "12=一1 —/X [2-9]1.yx [ - 7]1 -I,【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序: 先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算; 如果有括号, 要先做括号内的运算.21 .根据实验测定,高度每增加 100米,气温大约下降0.6 C.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是-16C ,如果当时地面温度是 8C,那么小张【解答】解:(1)+ (3 2=1 —(2) 15X 彳 一(T5)X 上+15X2=15X ( (3)一5 + 28 (—2)X (-514一万+(一)x (一5 142.(4) - 14- —X[2- (- 3) 2]所在位置离地面的高度是多少米?【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8- (- 16) ] +0.6=24+0.6=40 (米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.已知如图为一几何体的三种形状图:(1)这个几何体的名称为三棱柱;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm, 求这个几何体的侧面积.从正面看从左面看从上面看【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3X 10X4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.已知|x|=3, y2=25,且x>y,求出x, y 的值.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、v,再根据条件确定x、y.【解答】解:|x|=3,..x= ± 3-y2=25,•-y= ±5,-x>y,x=3 , y= - 5 或x= - 3, y= - 5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.已知|2m —6|+ (£―1) 2=0,求m —2n 的值.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m- 6=0, y - 1=0,解得,m=3, n=2,【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km) : - 16, -7, 12, - 9, 6, 10, - 11, 9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1) — 16+ (— 7) +12+ (— 9) +6+10+ (— 11) +9 =-16-7+12- 9+6+10- 11+9 =-6 (km), | — 6| =6km ,答:B地在A地的西边,相距6km;(2)0.46 X (|—16|+| -7|+12+| -9|+6+10+| -11|+9)=0.46 X (16+7+12+9+6+10+11+9)=0.46 X 80=36.8 (升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解芷“和负”的相对性,明确什么是一对具有相反意义的量. 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.(26)( 10分)(2020秋?渠县校级期中)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= 8 ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= 9 ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= 32 ; (4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到n3个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= 12 (n -2) + (n- 2) 3 .【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到( 1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.( 4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12 (n- 2)个,各面均不涂色(n-2) 3个,b+c=12 (n-2) + (n-2) 3.故答案为:8, 9, 32, n3, 12 (n-2) + (n-2) 3.【点评】本题主要考查了正方体的组合与分割. 手操作. 要熟悉正方体的性质,在分割时有必要可动【考点】认识立体图形.。
2020学年第一学期期中考试七年级数学试题卷

2020学年第一学期期中考试七年级数学试题卷满分120分,考试时间:90分钟一、选择题(每小题3分,共36分)1.54的倒数是(▲). A .54 B .45 C .54- D .45-2.下列实数中是无理数的是(▲).A .3B .9C .72D .3.143.下列各式计算结果为负数的是(▲).A .()1--B .)1(+-C .21-D .1-- 4.近日,投资达50亿的阳明古镇一期滨水商业街正式开始营业,其中50亿用科学计数法表示为(▲).A .5×109B .5×108C .0.5×1010D .50×108 5.64的算术平方根是(▲).A .±4B .4C .±8D .8 6.与27最接近的整数是(▲).A .5B .6C .7D .8 7.下列表述中,正确的个数是(▲).①存在绝对值最小的数; ①任何数都有相反数;①绝对值等于本身的数是正数; ①0是最小的有理数;⑤绝对值是同一个正数的数有两个,它们互为相反数.A .1个B .2个C .3个D .4个 8.若a 2=9,b 2=4,且ab <0,则a −b 的值为(▲).A .5B .−2C .±5D .±29.以下说法,正确的是(▲).A .数据475301精确到万位可表示为480000.B .王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的. C .近似数1.5046精确到0.01,结果可表示为1.50. D .小林称得体重为42千克,其中的数据是准确数. 10.如图,面积为3的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若AD =AE ,则数轴上点E 所表示的数为(▲).A .−3B .1−3C .−1−3D .251--11.数轴上A 、B 、C 三点所代表的数分别是a 、b 、2,且b a b a -=---22.下列四个选项中,有(▲)个能表示A 、B 、C 三点在数轴上的位置关系. ① ② ③④A .1个B .2个C .3个D .4个12.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =(▲).A .64B .65C .66D .67 二、填空题(每小题3分,共18分) 13.3-的相反数是 ▲ .14.如果收入100元记作+100元,则支出50元记作 ▲ 元. 15.若规定一种运算:a *b =a −b+ab ,则3*(−2)= ▲ .16.某粮店出售的两种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ▲ kg .17.1930年,德国汉堡大学的学生考拉兹,曾经提出过这样一个数学猜想:对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能够得到1.这一猜想后来成为著名的“考拉兹猜想”,又称“奇偶归一猜想”.虽然这个结论在数学上还没有得到证明,但举例验证都是正确的,例如:取正整数5,最少经过下面5步运算可得1,即:1248165222213−→−−→−−→−−→−−−→−÷÷÷÷+⨯如果正整数m 最少经过6步运算可得到1,则m 的值为 ▲ .18.七巧板被西方人称为“东方魔术”.下面的两幅图是由同一副七巧板拼成的.已知七巧板拼成的正方形(如图1)边长为a (cm ).若图2的“小兔子”图案中的阴影部分面积为12cm 2,那么a = ▲ cm .三、解答题(共66分)19.(8分)把下列各数之前的序号填在相应的大括号内:①32,②−0.31,③−(−2),④327-,⑤3,⑥0,⑦3π,⑧1.1010010001…(每两个1之间依次多一个0),⑨1.732(1)正分数集合:{ ▲ } (2)负有理数集合:{ ▲ }(3)无理数集合:{ ▲ } (4)非负整数集合:{ ▲ } 20.(9分)计算:(1)3×2−(−8)÷2(2))94()211(222-⨯-+-(3)21581691273-+⨯-21.(8分)把下列实数表示在数轴上,并比较它们的大小(用“<”连接).(−2)2,38-,0,−1,3822.(9分)(1)如果|m −4|+(n +5)2=0,求(m +n )2021+m 3的值;(2)已知实数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求3721e d c ab +++⨯的值.23.(10分)在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出2的近似值,得出1.4<2<1.5.利用“逐步逼近“法,请回答下列问题:(1)19介于连续的两个整数a 和b 之间,且a <b ,那么a = ▲ ,b = ▲ . (2)x 是19+2的小数部分,y 是19−1的整数部分,则x = ▲ ,y = ▲ . (3)在(2)的条件下,求(19−x )y 的平方根.24.(10分)有8筐杨梅,以每筐5千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下(单位:kg):+0.3 +0.1 −0.2 −0.3 +0.2 −0.4 +0.5 +0.3回答下列问题:(1)这8筐杨梅中,最接近5千克的那筐杨梅为多少千克?(2)以每筐5千克为标准,这8筐杨梅总计超过多少千克或者不足多少千克?(3)若杨梅每千克售价40元,则出售这8筐杨梅可卖多少元?25.(12分)有依次排列的3个数:6,8,3,对任意相邻的两个数,都用左边的数减去右边的数,所得之差写在两个数之间,可产生一个新数串①:6,−2,8,5,3,这称作第一次操作;对数串①进行同样的操作后也可产生一个新的数串①:6,8,−2,−10,8,3,5,2,3……依次操作下去.(1)数串①的所有数之和为▲ ,数串①的所有数之和为▲ .(2)第3次操作以后所产生的数串①为6,▲ ,8,10,−2,8,−10,−18,8,5,3,-2,5,3,2,−1,3.所有数之和为▲ .(3)请列式计算:操作第2020次产生的新数串的所有数字之和是多少?参考答案满分120分,考试时间:90分钟一、选择题(每小题3分,共36分)二、填空题(每小题3分,共18分)三、解答题(共66分)19.(8分)正分数集合:{ ①⑨ } 负有理数集合:{ ②④ } 无理数集合:{ ⑤⑦⑧ } 非负整数集合:{ ③⑥ } (每空漏答错答均不给分)20.(9分)(1)10;(2)−5;(3)2(每小题3分)21.(8分)数轴略,38-<−1<0<38<(−2)2 22.(9分)(1)63(4分)(2)215-或217(5分)23.(10分)解:(1)a = 4 ,b = 5 .(各2分)(2)x y = 3 .(各2分)(3)±8.(2分)24.(10分)(1)最接近5千克的那筐杨梅的质量为:5+0.1=5.1(千克);(3分)(2) +0.3+0.1−0.2−0.3+0.2−0.4+0.5+0.3=0.5,答:这8筐杨梅总计超过0.5千克.(4分) (3)(5×8+0.5)×40=1620(元),答:出售这8筐杨梅可卖1620元.(3分)25.(12分)(1)20,23(各2分)(2)−2,26(各2分)(3)(6+8+3)+3×2020=6077(4分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学期中测试卷
姓名 班级 学号 得分
一、 填空(每题3分,共42分)
1. 形如 的方程叫最简方程。
2. 已知x=2是方程kx-3=12+k 的解,则k= 。
3. 当y= 时,512-y 与410
3-y 互为相反数 。
4. 把方程82=-y x 化成用x 代数式表示y : 。
5. 解二元一次方程组通常有 和 两种消元方法。
6. 若==-+⎪⎪⎩
⎪⎪⎨⎧-==k k y x y x 则的解是方程,0219531
52 。
7. 写出二元一次方程2x+3y=14的正整数解 。
8. 在直角坐标平面内,点的坐标可以用一对 来表示。
9. 若点M 的横坐标为2,点M 到x 轴的距离为5,则点M 的坐标为 。
10. 方程组⎩⎨⎧=+=10
32y x y x 的解是 。
11. 已知代数式n x mx -+22,当1-=x ,它的值是2,当1=x 时,它的值是6,则m= ,n= 。
12. 某工厂生产一种产品,现在的成本是37.4元,比原来的成本降低15%,则原来成本是
元。
13. 方程组⎪⎩
⎪⎨⎧=+-=+=+215x z z y y x ,的解是 。
二、 选择题(每题2分,共10分)
1 如果241322b a b a x x +与是同类项,则x= ( )
(A) 21 (B) 2
3 (C) 31 (D)以上都不对 2 使方程03)1()1(22=+++-x k x k 成为一元一次方程,则k 是 ( )
(A )1± (B )1- (C )1 (D )以上都不对
3 下列方程组中不是二元一次方程组的是 ( )
(A )⎩⎨⎧=+=-51y x y x (B )⎩⎨⎧==+253xy y x (C )⎩
⎨⎧==65y x (D )⎩⎨⎧=-=+9253y x y x 4 如果2-=+b a ,82=-b a ,那么a b -2的值是 ( )
(A )14 (B )-14 (C )18 (D )6
5 初一年级学生准备分组活动,若每组7人,则多出3人;若每组8人,则有
一组少5人,设初一年级的学生人数为x 人,分成y 组,则可得方程组 ( )
三、 解下列方程(组)(前3题每题5分,后两题每题6
分共27分)
1
2)9(3)9(5=+-+y y
2
32221+-=--x x x
3
⎩⎨⎧=+=-2521734y x y x
4 ⎪⎩⎪⎨⎧=+-+=-++24
33)(2632y x y x y x y x
5 ⎪⎩
⎪⎨⎧=-+=+-=++0230
2100767z y x z y x z y x
四、 简答题(6分)
1 在直角坐标平面内,画出下列图形
1)
画出线段AB ,使满足条件:)2,4(-A 、)0,5(-B 2)
画出过点M ()2,1--和点N (0,6)的射线MN ;
五、列方程(组)解下列应用题(每题5分,共10分)1一件皮茄克服装,按成本加四成作为售价,后因季节性原因,按原价的八折优惠出售,优惠价是1344元,问这件皮茄克服装的成本是多少?
2 邮购一种期刊,不满100册,需另加书价的10%的邮费,超过100册,免收邮费,已知这种期刊每册1.5元,两次邮购共152册(其中第二次邮购超过100册),总计金额234元,问两次各购几册?
六 方程组,16202中⎩⎨
⎧=+=-my x y x 当m 是什么数时,(5分) 1)
方程组有正数解? 2) 方程组有正整数解?。