2017年崇明县初三数学一模试卷及答案

合集下载

崇明区初三数学一模试卷

崇明区初三数学一模试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 已知函数f(x) = 2x - 1,若f(x) > 0,则x的取值范围是()A. x > 0.5B. x < 0.5C. x > 1D. x < 12. 在等腰三角形ABC中,AB = AC,∠B = 40°,则∠A的度数是()A. 20°B. 40°C. 80°D. 100°3. 若等比数列{an}的首项为2,公比为3,则第10项an =()A. 196B. 198C. 200D. 2024. 已知点A(-2, 3),点B(2, -3),则线段AB的中点坐标是()A. (0, 0)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)6. 若一元二次方程x^2 - 3x + 2 = 0的解为x1和x2,则x1 + x2的值是()A. 1B. 2C. 3D. 47. 在等腰三角形ABC中,AB = AC,∠B = 40°,则三角形ABC的周长是()A. 2ABB. 2ACC. 2AB + 2ACD. 2AB + BC8. 若正方形的边长为a,则其对角线的长度是()A. aB. √2aC. 2aD. √3a9. 在等腰三角形ABC中,AB = AC,∠B = 40°,则三角形ABC的面积是()A. 1/2 AB BCB. 1/2 AB ACC. 1/2 AC BCD. 1/2 AB BC sin40°10. 若函数f(x) = x^2 - 4x + 4的图像与x轴有两个交点,则该函数的图像可能是()A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一个开口向上的抛物线,顶点在x轴上D. 一个开口向下的抛物线,顶点在x轴上二、填空题(本大题共5小题,每小题5分,共25分)11. 已知函数f(x) = 2x - 1,若f(x) < 0,则x的取值范围是__________。

2017年上海各区初三数学一模卷

2017年上海各区初三数学一模卷

2016学年上海市杨浦区初三一模数学试卷一。

选择题(本大题共6题,每题4分,共24分) 1。

如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C 。

3:1 D 。

3:22。

在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A 。

100tan α B 。

100cot α C. 100sin α D. 100cos α 3。

将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B 。

22(1)1y x =-+ C. 22(1)3y x =++ D 。

22(3)3y x =-+4。

在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A 。

第一象限B 。

第二象限 C. 第三象限 D 。

第四象限 5. 下列命题不一定成立的是( )A 。

斜边与一条直角边对应成比例的两个直角三角形相似 B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒ C 。

80︒ D. 100︒二。

填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm 14。

上海市崇明县中考数学一模试卷含答案解析

上海市崇明县中考数学一模试卷含答案解析

上海市崇明县中考数学一模试卷一.选择题1.已知=,那么的值为()A.B.C.D.2.已知Rt△ABC中,∠C=90°,BC=3,AB=5,那么sinB的值是()A.B.C.D.3.将抛物线y=x2先向右平移2个单位,再向下平移3个单位,那么得到的新的抛物线的解析式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣34.如图,在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,那么下列各式中一定正确的是()A.AE•AC=AD•AB B.CE•CA=BD•AB C.AC•AD=AE•AB D.AE•EC=AD•DB5.已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A.内切B.外切C.相交D.内含6.如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张二.填空题7.化简: =.8.如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米.9.抛物线y=(a+2)x2+3x﹣a的开口向下,那么a的取值范围是.10.一斜面的坡度i=1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了米.11.如果一个正多边形的一个外角是36°,那么该正多边形的边数为.12.已知AB是⊙O的直径,弦CD⊥AB于点E,如果AB=8,CD=6,那么OE=.13.如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米.14.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.15.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为.16.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,如果点F 是弧EC的中点,联结FB,那么tan∠FBC的值为.17.新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”.如图所示,△ABC中,AF、BE是中线,且AF⊥BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果∠ABE=30°,AB=4,那么此时AC的长为.18.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为.三.解答题19.计算:﹣cot30°.20.已知,平行四边形ABCD中,点E在DC边上,且DE=3EC,AC与BE交于点F;(1)如果,,那么请用、来表示;(2)在原图中求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,,AC=14;(1)求AB、BC的长;(2)如果AD=7,CF=14,求BE的长.22.目前,崇明县正在积极创建全国县级文明城市,门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:,)23.如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF⊥BG,垂足为F,AF交CD于点E,求证:CD2=DE•DG.24.如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC=4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标.25.如图,已知矩形ABCD中,AB=6,BC=8,E是BC边上一点(不与B、C重合),过点E作EF⊥AE交AC、CD于点M、F,过点B作BG⊥AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;(2)设BE=x,,求y关于x的函数解析式,并写出定义域;(3)当△BHE为等腰三角形时,求BE的长.上海市崇明县中考数学一模试卷参考答案与试题解析一.选择题1.已知=,那么的值为()A.B.C.D.【考点】比例的性质.【分析】根据=,可设a=2k,则b=3k,代入所求的式子即可求解.【解答】解:∵ =,∴设a=2k,则b=3k,则原式==.故选B.【点评】本题考查了比例的性质,根据=,正确设出未知数是本题的关键.2.已知Rt△ABC中,∠C=90°,BC=3,AB=5,那么sinB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】首先利用勾股定理求得AC的长,然后利用正弦的定义求解.【解答】解:在直角△ABC中,AC===4,则sinB==.故选C.【点评】本题考查了正弦函数的定义,是所对的直角边与斜边的比,理解定义是关键.3.将抛物线y=x2先向右平移2个单位,再向下平移3个单位,那么得到的新的抛物线的解析式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【解答】解:抛物线y=x2的顶点坐标为(0,0),向右平移2个单位,再向下平移3个单位后的图象的顶点坐标为(2,﹣3),所以,所得图象的解析式为y=(x﹣2)2﹣3,故选:D.【点评】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.4.如图,在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,那么下列各式中一定正确的是()A.AE•AC=AD•AB B.CE•CA=BD•AB C.AC•AD=AE•AB D.AE•EC=AD•DB【考点】相似三角形的判定与性质.【专题】证明题.【分析】在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,而∠A公共,由此可以得到△ABC∽△AED,然后利用相似三角形的性质即可求解.【解答】解:∵在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,而∠A公共,∴△ABC∽△AED,∴AB:AE=AC:AD,∴AB•AD=AC•AE.故选A.【点评】此题主要考查了相似三角形的下着雨判定,解题的关键是证明两个三角形相似即可解决问题.5.已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A.内切B.外切C.相交D.内含【考点】圆与圆的位置关系.【分析】先计算两圆的半径之差,然后根据圆和圆的位置关系的判定方法可确定这两圆的位置关系.【解答】解:∵5﹣3=2>1,即圆心距小于两半径之差,∴这两圆内含.故选D.【点评】本题考查了圆和圆的位置关系:两圆的圆心距为d,两圆半径分别为R、r,:当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R﹣r(R>r);两圆内含⇔d<R﹣r(R>r).6.如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张【考点】相似三角形的应用.【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则,解得x=3,所以另一段长为18﹣3=15,因为15÷3=5,所以是第5张.故选:B.【点评】本题主要考查了相似三角形的性质及等腰三角形的性质的综合运用;由相似三角形的性质得出比例式是解决问题的关键.二.填空题7.化简: =﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.8.如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为24千米.【考点】比例线段.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,2.4÷=2400000厘米=24千米.即实际距离是24千米.故答案为:24.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.9.抛物线y=(a+2)x2+3x﹣a的开口向下,那么a的取值范围是a<﹣2.【考点】二次函数的性质;二次函数的定义.【专题】推理填空题.【分析】根据抛物线y=(a+2)x2+3x﹣a的开口向下,可得a+2<0,从而可以得到a的取值范围.【解答】解:∵抛物线y=(a+2)x2+3x﹣a的开口向下,∴a+2<0,得a<﹣2,故答案为:a<﹣2.【点评】本题考查二次函数的性质和定义,解题的关键是明确二次函数的开口向下,则二次项系数就小于0.10.一斜面的坡度i=1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了16米.【考点】解直角三角形的应用-坡度坡角问题.【专题】推理填空题.【分析】根据一斜面的坡度i=1:0.75,可以设出一物体由斜面底部沿斜面向前推进了20米时对应的竖直高度和水平距离,然后根据勾股定理可以解答此题.【解答】解:设一物体由斜面底部沿斜面向前推进了20米时,对应的竖直高度为x,则此时的水平距离为0.75x,根据勾股定理,得x2+(0.75x)2=202解得x1=16,x2=﹣16(舍去),即一物体由斜面底部沿斜面向前推进了20米,此时这个物体升高了16米.故答案为:16.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是明确什么是坡度,坡度是竖直高度与水平距离的比值.11.如果一个正多边形的一个外角是36°,那么该正多边形的边数为10.【考点】多边形内角与外角.【分析】利用外角和360°除以外角的度数36°可得正多边形的边数.【解答】解:360÷36=10,故答案为:10.【点评】此题主要考查了多边形的外角,关键是掌握多边形外角和为360°.12.已知AB是⊙O的直径,弦CD⊥AB于点E,如果AB=8,CD=6,那么OE=.【考点】垂径定理;勾股定理.【分析】连接OC,根据垂径定理求出CE,在△OEC中,根据勾股定理求出OE即可.【解答】解:连接OC.如图所示:∵AB是圆O的直径,AB⊥CD,∴CE=DE=CD=3,OC=OB=AB=4,在△OCE中,由勾股定理得:OE===;故答案为:.【点评】本题考查了勾股定理、垂径定理;关键是构造直角三角形,求出CE的长,用的数学思想是方程思想,把OE当作一个未知数,题目较好.13.如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距1米.【考点】相似三角形的应用.【专题】应用题.【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.【解答】解:设两个同学相距x米,∵△ADE∽△ACB,∴,∴,解得:x=1.故答案为1.【点评】本题考查了相似三角形的应用,根据身高与影长的比例不变,得出三角形相似,运用相似比即可解答.14.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.【考点】解直角三角形;坐标与图形性质.【分析】过点A作AB⊥x轴于B,根据正切等于对边比邻边列式求解即可.【解答】解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为:.【点评】本题考查了锐角三角函数的定义,过点A作x轴的垂线,构造出直角三角形是利用正切列式的关键,需要熟记正切=对边:邻边.15.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为1,则▱ABCD的面积为12.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】求出CE=3DE,AB=2DE,求出=, =,根据平行四边形的性质得出AB∥CD,AD∥BC,推出△DEF∽△CEB,△DEF∽△ABF,求出=()2=, =()2=,求出△CEB的面积是9,△ABF的面积是4,得出四边形BCDF的面积是8,即可得出平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵CD=2DE,∴CE=3DE,AB=2DE,∴=, =,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△DEF∽△CEB,△DEF∽△ABF,∴=()2=, =()2=,∵△DEF的面积为1,∴△CEB的面积是9,△ABF的面积是4,∴四边形BCDF的面积是9﹣1=8,∴平行四边形ABCD的面积是8+4=12,故答案为:12.【点评】本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.16.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,如果点F 是弧EC的中点,联结FB,那么tan∠FBC的值为.【考点】全等三角形的判定与性质;角平分线的性质;矩形的性质;圆心角、弧、弦的关系;解直角三角形.【分析】连接CE交BF于H,连接BE,根据矩形的性质求出AB=CD=3,AD=BC=5=BE,∠A=∠D=90°,根据勾股定理求出AE=4,求出DE=1,根据勾股定理求出CE,求出CH,解直角三角形求出即可.【解答】解:连接CE交BF于H,连接BE,∵四边形ABCD是矩形,AB=3,BC=5,∴AB=CD=3,AD=BC=5=BE,∠A=∠D=90°,由勾股定理得:AE==4,DE=5﹣4=1,由勾股定理得:CE==,由垂径定理得:CH=EH=CE=,在Rt△BFC中,由勾股定理得:BH==,所以tan∠FBC===.故答案为:.【点评】本题考查了矩形的性质,勾股定理,解直角三角形,垂径定理的应用,能正确作出辅助线并构造出直角三角形是解此题的关键.17.新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”.如图所示,△ABC中,AF、BE是中线,且AF⊥BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果∠ABE=30°,AB=4,那么此时AC的长为2.【考点】三角形的重心;勾股定理.【专题】计算题;三角形.【分析】根据三角形中位线的性质,得到EF∥AB,EF=AB=2,再由勾股定理得到结果.【解答】解:如图,连接EF,∵AF、BE是中线,∴EF是△CAB的中位线,可得:EF=×4=2,∵EF∥AB,∴△PEF~△ABP,∴===,在Rt△ABP中,AB=4,∠ABP=30°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE中,∴AE=,∴AC=2,故答案为:.【点评】本题考查了相似三角形的判定和性质、勾股定理等知识,熟练应用相似三角形的判定与性质是解题关键.18.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为.【考点】翻折变换(折叠问题).【分析】由BD:DC=1:3,可设BD=a,则CD=3a,根据等边三角形的性质和折叠的性质可得:BM+MD+BD=5a,DN+NC+DC=7a,再通过证明△BMD∽△CDN即可证明AM:AN的值.【解答】解:∵BD:DC=1:3,∴设BD=a,则CD=3a,∵△ABC是等边三角形,∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,由折叠的性质可知:MN是线段AD的垂直平分线,∴AM=DM,AN=DN,∴BM+MD+BD=5a,DN+NC+DC=7a,∵∠MDN=∠BAC=∠ABC=60°,∴∠NDC+∠MDB=∠BMD+∠MBD=120°,∴∠NDC=∠BMD,∵∠ABC=∠ACB=60°,∴△BMD∽△CDN,∴(BM+MD+BD):(DN+NC+CD)=AM:AN,即AM:AN=5:7,故答案为.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.计算:﹣cot30°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=﹣=﹣==2.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.已知,平行四边形ABCD中,点E在DC边上,且DE=3EC,AC与BE交于点F;(1)如果,,那么请用、来表示;(2)在原图中求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形法则,易得,再由三角形法则,可求得,又由DE=3EC,CD∥AB,根据平行线分线段成比例定理,即可得,继而求得答案;(2)首先过点F作FM∥AD,FN∥AB,根据平行四边形法则即可求得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC且AD=BC,CD∥AB且CD=AB,∴,又∵,∴,∴DC=4EC,又∵AB=CD,∴AB=4EC,∵CD∥AB,∴,∴,∴,∴;(2)如图,过点F作FM∥AD,FN∥AB,则,分别是向量在、方向上的分向量.【点评】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,,AC=14;(1)求AB、BC的长;(2)如果AD=7,CF=14,求BE的长.【考点】平行线分线段成比例.【分析】(1)由平行线分线段成比例定理和比例的性质得出,即可求出AB的长,得出BC 的长;(2)过点A作AG∥DF交BE于点H,交CF于点G,得出AD=HE=GF=7,由平行线分线段成比例定理得出比例式求出BH,即可得出结果.【解答】解:(1)∵AD∥BE∥CF,∴,∴,∵AC=14,∴AB=4,∴BC=14﹣4=10;(2)过点A作AG∥DF交BE于点H,交CF于点G,如图所示:又∵AD∥BE∥CF,AD=7,∴AD=HE=GF=7,∵CF=14,∴CG=14﹣7=7,∵BE∥CF,∴,∴BH=2,∴BE=2+7=9.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH是解决问题的关键.22.目前,崇明县正在积极创建全国县级文明城市,门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:,)【考点】解直角三角形的应用.【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由如下:过C作CH⊥MN,垂足为H,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∴车速为m/s.∵60千米/小时=m/s,又∵14.6<,∴此车没有超速.【点评】此题主要考查了勾股定理以及锐角三角函数关系的应用,得出AB的长是解题关键.23.如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF⊥BG,垂足为F,AF交CD于点E,求证:CD2=DE•DG.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据垂直的定义得到∠ADC=∠CDB=90°,根据余角的性质得到∠ACD=∠B,由于∠ADC=∠CDB,即可得到结论;(2)根据∠ACB=90°,CD⊥AB,得到∠CAD=∠BCD,推出Rt△ACD∽Rt△CBD,于是得到CD2=AD•BD,根据AF⊥BG,GD⊥AB,证得∠EDA=∠EFG=∠GDP=90°,推出△BGD∽△ADE,于是得到AD•BD=DG•DE即可得到结论.【解答】证明:(1)∵CD⊥AB,∴∠ADC=∠CDB=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠B,又∵∠ADC=∠CDB,∴△ACD∽△CBD;(2)∵AF⊥BG,∴∠AFB=90°,∴∠FAB+∠GBA=90°,∵∠GDB=90°,∴∠G+∠GBA=90°,∴∠G=∠FAB,又∵∠ADE=∠GDB=90°,∴△ADE∽△GDB,∴,∴AD•BD=DE•DG,∵△ACD∽△CBD,∴,∴CD2=AD•BD,∴CD2=DE•DG.【点评】此题主要考查的是相似三角形的判定和性质,垂直的定义,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC=4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标.【考点】二次函数综合题.【分析】(1)根据OA与OC的关系,可得A点坐标,根据待定系数法,可得函数解析式;(2)根据锐角三角函数,可得PH的长,根据相似三角形的性质,可得MC的长,根据三角形的面积,可得关于x的方程,根据解方程,可得答案.【解答】解:(1)∵C(0,4),O(0,0),∴OC=4.∵OC=4OA,∴OA=1.∵点A在x轴的负半轴上,∴A(﹣1,0).设这条抛物线的解析式为y=ax2+bx+c,∵抛物线过点 A(﹣1,0),B(3,0),C(0,4)∴,解得,∴这条抛物线的解析式为y=﹣x+x+4,它的顶点坐标为(1,);(2)过点P作PH⊥AC,垂足为H.∵P点在x轴的正半轴上,∴设P(x,0).∵A(﹣1,0),∴PA=x+1.∵在Rt△AOC中,OA2+OC2=AC2又∵OA=1,OC=4,∴AC===,∵∠AOC=90°,∴sin∠CAO===∵∠PHA=90°,∴sin∠CAO===∴PH=.∵PM∥BC,∴=∵B(3,0),P(x,0)①点P在点B的左侧时,BP=3﹣x∴=,∴CM=.∵S△PCM=2,∴CM•PH=2,∴••=2.解得x=1.∴P(1,0);②点P在点B的右侧时,BP=x﹣3∴=,∴CM=,∵S△PCM=2,∴CM•PH=2,∴••=2.解得x1=1+2,x2=1﹣2(不合题意,舍去)∴P(,0).综上所述,P的坐标为(1,0)或(,0).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用锐角三角函数得出PH 的长是解题关键,又利用相似三角形的性质得出CM的长,利用三角形的面积得出关于x的方程.25.如图,已知矩形ABCD中,AB=6,BC=8,E是BC边上一点(不与B、C重合),过点E作EF⊥AE交AC、CD于点M、F,过点B作BG⊥AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;(2)设BE=x,,求y关于x的函数解析式,并写出定义域;(3)当△BHE为等腰三角形时,求BE的长.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)由矩形的四个角为直角,得到∠ABC为直角,再由BG垂直于AC,AE垂直于EF,得到一对直角相等,利用同角的余角相等得到一对角相等,再利用外角性质得到另一对角相等,利用两角相等的三角形相似即可得证;(2)延长BG,交AD于点K,利用两角相等的三角形相似得到三角形ABK与三角形ABC相似,由相似得比例求出AK的长,由AK与BE平行,得到三角形AHK与三角形BHE相似,表示出EH,由第一问的结论,利用相似三角形对应边成比例表示出,即可确定出y与x的函数解析式,并求出定义域即可;(3)当△BHE为等腰三角形时,分三种情况考虑:①当BH=BE时,利用等腰三角形的性质,角平分线定义及锐角三角函数定义求出BE的长;②当HB=HE时,利用等腰三角形的性质及锐角三角函数定义求出BE的长;③当EB=EH时,利用等腰三角形的性质及勾股定理求出BE的长即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠ABC=90°,即∠ABG+∠CBG=90°,∵EF⊥AE,BG⊥AC,∴∠AEF=∠BGA=90°,∴∠AEF=∠ABC,∠ACB+∠CBG=90°,∴∠ABG=∠ACB,∵∠AEC=∠ABC+∠BAE,即∠AEF+∠CEF=∠ABC+∠BAE,∴∠BAE=∠CEF,又∵∠ABG=∠ACB,∴△ABH∽△ECM;(2)解:延长BG交AD于点K,∵∠ABG=∠ACB,又∵在矩形ABCD中,∠BAK=∠ABC=90°,∴△ABK∽△BCA,∴=,即=,∴AK=,∵在矩形ABCD中,AD∥BC,且BE=x,∴==,∴EH=•AH,∵△ABH∽△ECM,∴==,∵=y,∴y==•=•=(0<x<8);(3)解:当△BHE为等腰三角形时,存在以下三种情况:①当BH=BE时,则有∠BHE=∠BEH,∵∠BHE=∠AHG,∴∠BEH=∠AHG,∵∠ABC=∠BGA=90°,∴∠BEH+∠BAE=∠AHG+∠EAM=90°,∴∠BAE=∠EAM,即AE为∠BAC的平分线,过点E作EQ⊥AC,垂足为Q,如图2所示,则EQ=EB=x,CE=8﹣x,∵sin∠ACB===,∴x=3,即BE=3;②当HB=HE时,则有∠HBE=∠HEB,∵∠ABC=∠BGC=90°,∴∠BAE+∠HEB=∠BCG+∠HBE=90°,∴∠BAE=∠BCG,∴tan∠BAE=tan∠BCA==,∴x=,即BE=;③当EB=EH时,则有∠EHB=∠EBH,又∵∠EHB=∠AHG,∴∠AHG=∠EBH,∵∠BGA=∠BGC=90°,∴∠CAE+∠AHG=∠BCG+∠EBH=90°,∴∠CAE=∠BCG,∴EA=EC=8﹣x,∵在Rt△ABE中,AB2+BE2=AE2,即62+x2=(8﹣x)2,解得:x=,即BE=,综上所述,当△BHE是等腰三角形时,BE的长为3或或.【点评】此题属于相似形综合题,涉及的知识有:矩形的性质,相似三角形的判定与性质,平行线等分线段定理,勾股定理,锐角三角函数定义,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.。

上海市2017崇明区初三数学一模试卷(含答案)

上海市2017崇明区初三数学一模试卷(含答案)

崇明县崇明县 2017 2017年第一学期教学质量调研测试卷九年级数学九年级数学 2017.1 2017.1(测试时间:(测试时间:100100分钟,满分分钟,满分 150 150分)一、选择题1.1.如果如果5x =3y 5x =3y((x ,y 均不为0),那么x :y 的值是()5 3 A . ;B . ;353 8C . 5 8D .2.2.在在R t △ABC 中,∠A =90=90°°,AC =12,BC =13, 那么tan B 的值是()5A .1212 5B . 12 13C .5D .133.3.抛物线抛物线y =3x2向上平移2 个单位长度后所得新抛物线的顶点坐标为()A .(-2,0)B .(0,-2)C .(2,0)D .(0,2)4.4.设设A (-2(-2,,y 1),B (1, y 2 ),C (2, y 3) 是抛物线y (x 1)a= +2+上的三点,那么y y ,,,的大小关系为()1yy23A1y y B.y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2.y .y >>>235.5.如图,给出下列条件:①如图,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ; ③AC = AB ④,AC 2= AD •AB 其中不能判定△ABC ~△ACD 的条件为()CD BCA .①B .②C .③D .④6.6.如图,圆如图,圆 O 过点 B 、C ,圆心 O 在等腰直角三角形 ABC 内部,∠BAC =90=90°°,OA =1,BC =6,那么圆 O 的半径为 ()A . 13B .2 13C .3 2D .2 3二、填空题+ =,用 a 表示 b ,那么 b =7.7.如果如果 a b 2(3a - b)8.8.如果两个相似三角形的对应高之比为如果两个相似三角形的对应高之比为1:2,那么他们的对应中线的比为9.9.已知线段已知线段 AB 的长度为 4 , C 是线段 AB 的黄金分割点,且 CA >CB 那么 CA 的长度为10.10.如图,如图,AD ∥BE ∥FC ,他们依次交直线 l 1、l 2 于点 A 、B 、C 和点 D 、E 、F ,如果AB BC2 , DF7.5 ,那么 DE3的长为11111.如图,为了估计河的宽度,在河的对岸选定一个目标点.如图,为了估计河的宽度,在河的对岸选定一个目标点 P ,在近岸取点 Q 和 S ,使点 P 、Q 、S 在一条直线上,且直线 PS 与河垂直,在过点 S 且与直线 PS 垂直的直线 a 上选择适当的点T ,PT 与过点 Q 且与 PS 垂直的直线 b 的交点为 R 如果 QS =60m , ST =120m , QR =80m ,那么 PQ 为m .1212.如果两圆的半径分别为.如果两圆的半径分别为 2cm 和 6cm ,圆心距为 3cm ,那么两圆的位置关系是 ;1313.如果一个圆的内接正六边形的周长为.如果一个圆的内接正六边形的周长为 36 36,那么这个圆的半径为,那么这个圆的半径为 ;1414.如果一条抛物线的顶点坐标为.如果一条抛物线的顶点坐标为 (2,1) ,并过点 (0,3) ,那么这条抛物线的解析式为;1515.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为 4m .如果在坡度为如果在坡度为 1:2 1:2 1:2 的山坡上种植树,也的山坡上种植树,也要求株距为 4m ,那么相邻两树间的坡面距离为m.1616.如图,.如图,.如图,6 6 6 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O )为 60 ,A ,B ,C 都在格点上,那么 tan ABC 的值是;1717.如图,.如图, O 的半径是的半径是 4 4 4,,ABC 是 O 的内接三角形,过圆心 O 分别作 AB ,BC ,AC 的垂线,垂足为 E ,F ,G ,连接 EF ,如果 OG1,那么 EF 为;1818.如图,已知.如图,已知ABC 中,ABC 45 ,AH ⊥BC 于点 H ,点 D 在 AH 上,且 DHCH ,联结 BD ,将 B H D绕点 H 旋转,得到EHF (点 B 、 D 分别与点 E 、 F 对应),联结 AE ,当点 F 落在 AC 上时,(F 不与 C 重合) 如果 BC4 , tan C3 ,那么 AE 的长为;三、解答题(本大题共三、解答题(本大题共 7 7题,满分题,满分 78 78分) 1919.(本题满分.(本题满分.(本题满分 10 10分)计算: sin 30 cot 260 2 sin 45 tan 453 tan 6022020..(本题 10分,第一小题分,第一小题 6 6分,第二小题分,第二小题 4 4分)如图,在△ABC 中,点 D 、 E 分别在边 AB 、 AC 上,如果 DE ∥BC ,AD BD1 , DA a , DC b . 2(1)请用 a 、 b 来表示 DE ; (2)在原图中求作向量DE 在a 、b方向上的分向量方向上的分向量. .(不要求写作法,但要指出所作图中表示结论的向量)21.(21.(本题满分本题满分本题满分 10 10分)如图,小东在教学楼距地面 9 米高的窗口 C 处,测得正前方旗杆顶部 A点的仰角为 37 旗杆底部 B的俯角为45 ,升旗时,国旗上端悬挂在距地面 2.25 米处,若国旗随国歌声冉冉升起,并在国歌播放 45 秒结束时到达旗杆顶端,则国旗应以多少米端,则国旗应以多少米//秒的速度匀速上升?(参考数据: sin370.60 ,cos cos 37370.80,tan 370.75 )22.(22.(本题满分本题满分本题满分 10 10分)如图,矩形 EFGD 的边 EF 在ABC 的边 BC 上,顶点 D 、G 分别在边 AB 、AC 上,且 DE 2EF ,ABC中,边 BC 的长度为12cm ,高 AH 为 8cm ,求矩形 DEFG 的面积的面积. .23.(23.(本题满分本题满分本题满分 12 12分,其中每小题各分,其中每小题各 6 6分)3如图,在 Rt ABC 中, ACB 90 ,CD AB , M 是 CD 边上一点, DH BM 于点 H , DH 的延长线交AC 的延长线于点 E .求证求证::(1)AED ∽ CBM (2) AE CMACCD24.(24.(本题满分本题满分本题满分 12 12分,其中每小题各分,其中每小题各 4 4分)在平面直角坐标系中,抛物线3 2y xbx c 与 y 轴交于点 A (0,3) ,与x 轴的正半轴交于点 B (5,0) ,点 D在5线段 OB 上,且 OD1 ,联结 AD 、将线段 AD 绕着点 D 顺时针旋转 90.得到线段DE ,过点 E 作直线 lx 轴,垂足为 H ,交抛物线于点 F . (1)求这条抛物线的解析式; (2)联结 DF ,求 cotEDF 的值;(3)点 G 在直线 l 上,且EDG 45 ,求点 G 的坐标的坐标..25. (25. (本题满分本题满分本题满分 14 14分,其中第(分,其中第(11)小题)小题 4 4分,第(分,第(22)小题)小题 4 4分,第(分,第(33)小题)小题 4 4分)43在ABC 中,ACB 90,cot A ,AC 6 2 ,以BC 为斜边向右侧作等腰直角EBC ,P 是BE 延长2线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD,CD 交线段BE 于点F ,联结BD .PC(1)求证:;CECD BC(2)若PE x ,BDP 的面积为y ,求y 关于x 的函数解析式,并写出定义域;.(3)当BDF 为等腰三角形时,求PE 的长的长.5参考答案1.B2.B3.D4.C5.C6..A7. 5 3a 8.1: 2 9. 2 5 2 10.3 11.120 12.12.内含内含 13.6 14.y x 21.215. 2 5 16.3217. 15 18.3 51019.5 62020((1).21DEa b (2)略 21.0.3 21.0.3 米米/秒 22.18平方厘米33 3123 23.23.略略 24.24.((1)yx 2x(2)2 (3)(4,6)或34,55 225.25.((1)略(2)x24xy (0 x 4) (3)4或4 2 4267、我们各种习气中再没有一种象克服骄傲那麽难的了。

2017上海各区数学一模 24、25汇总 - 解析

2017上海各区数学一模 24、25汇总  - 解析

2017年上海市一模压轴题 解析一、(2017徐汇一模)24. 解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M . ∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--. 25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABAC BD EC ; ∴x BD EC ==;y x PE --=3;QPDBAC E F∵AC DF //,∴AB BD AP DF =;即323xy y x =--,∴3239+-=x x y ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ;︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB AD BC DE =;即33223x x -=; 解得 7324254-=x .二、(2017黄埔一模) 24.(本题满分12分)解:(1)令抛物线的表达式为c bx ax y ++=2,由题意得:⎪⎩⎪⎨⎧=++=++=++64160390c b a c b a c b a ,解得:⎪⎩⎪⎨⎧=-==682c b a ,所以抛物线的表达式为6822+-=x x y . (2)由(1)得平移前抛物线的对称轴为直线x =2,顶点为()2,2-.则平移后抛物线的对称轴为直线x =8,令()0,8a D -,其中0>a ,则()0,8a E +。

崇明初中一模数学试卷答案

崇明初中一模数学试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,正数是()A. -3B. 0C. 1.5D. -2答案:C解析:正数是大于0的数,选项C中的1.5是大于0的,因此选C。

2. 下列等式中,正确的是()A. 2a = a + aB. 3x + 2 = 2x + 3xC. 5b - 3b = 2b + 1D. 4c + 2c = 6c答案:A解析:等式A中的2a表示a加上a,等式B中的3x + 2不等于2x + 3x,等式C 中的5b - 3b不等于2b + 1,等式D中的4c + 2c等于6c,因此选A。

3. 若x = 2,则下列代数式中,值为5的是()A. 3x - 4B. 2x + 1C. x - 3D. 4x - 7答案:A解析:将x = 2代入各选项中,得到3x - 4 = 32 - 4 = 6 - 4 = 2,2x + 1 = 22 + 1 = 4 + 1 = 5,x - 3 = 2 - 3 = -1,4x - 7 = 42 - 7 = 8 - 7 = 1,因此选B。

4. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 三角形D. 梯形答案:A解析:在相同的边长下,正方形的面积最大,因此选A。

5. 若一个等腰三角形的底边长为8,腰长为6,则这个三角形的面积是()A. 24B. 28C. 32D. 36答案:C解析:等腰三角形的面积公式为底边长乘以高除以2,高可以通过勾股定理计算,即h = √(腰长^2 - (底边长/2)^2)。

代入数据得到h = √(6^2 - (8/2)^2) = √(36 - 16) = √20 = 2√5。

因此面积为8 2√5 / 2 = 8√5,近似值为32,因此选C。

二、填空题(每题5分,共50分)6. 若a = 3,b = -2,则a + b的值是()答案:1解析:a + b = 3 + (-2) = 1。

7. 下列等式中,正确的是()A. 2a = a + aB. 3x + 2 = 2x + 3xC. 5b - 3b = 2b + 1D. 4c + 2c = 6c答案:D解析:等式D中的4c + 2c等于6c。

崇明区年初三数学一模试卷及标准答案

崇明区年初三数学一模试卷及标准答案

崇明区年初三数学一模试卷及答案————————————————————————————————作者:————————————————————————————————日期:崇明区2017-2018学年第一学期教学质量调研测试卷九年级数学(完卷时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,那么tan A 的值是………………………( ▲ )(A)34; (B)43; (C)35; (D)45.2.抛物线22(3)4y x =+-的顶点坐标是 ……………………………………………………( ▲ )(A)(3,4);(B)(3,4)-;(C)(3,4)-;(D)(3,4)--.3.如图,在ABC △中,点D ,E 分别在边AB ,AC 上,DE BC ∥.已知6AE =,34AD DB =, 那么EC 的长是 ………………………………………………………………………………( ▲ ) (A) 4.5;(B) 8;(C) 10.5;(D) 14.4.如图,在平行四边形ABCD 中,点E 在边DC 上,:3:1DE EC =,联结AE 交BD 于点F ,那么DEF △的面积与BAF △的面积之比为………………………………………………( ▲ )(A)3:4;(B)9:16;(C)9:1;(D)3:1.5.如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是……………( ▲ ) (A) 外离;(B) 外切;(C) 相交;(D) 内切.6.如图,在Rt ABC △中,90ABC ∠=︒,6AB =,10AC =,BAC ∠和ACB ∠的平分线相交于点E ,过点E 作EF BC ∥交AC 于点F ,那么EF 的长为………………………………( ▲ )(A)52; (B)83; (C)103; (D)154.二、填空题:(本大题共12题,每题4分,满分48分)7.已知23x y =(0)y ≠,那么x yy+= ▲ . 学校 班级 准考证号 姓名…………………密○……………………………………封○……………………………………○线……………………………8.计算:13222a b a b ⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭r r rr ▲ .9.如果一幅地图的比例尺为1:50000,那么实际距离是3km 的两地在地图上的图距是▲ cm .10.如果抛物线2(1)4y a x =+-有最高点,那么a 的取值范围是 ▲ . 11.抛物线224y x =+向左平移2个单位长度,得到新抛物线的表达式为 ▲ . 12.已知点11(,)A x y 和22(,)B x y 是抛物线22(3)5y x =-+上的两点,如果124x x >>,那么1y 2y .(填“>”、“=”或“<”)13.在Rt ABC △中,90BAC ∠=︒,AD BC ⊥,垂足为点D ,如果6AC =,8AB =,那么AD 的长度为 ▲ .14.已知ABC △是等边三角形,边长为3,G 是三角形的重心,那么G A 的长度为 ▲ . 15.正八边形的中心角的度数为 ▲ 度.16.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为 ▲ . 17.如图,在55⨯正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(2,3)-,点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是 ▲ .18.如图,在ABC △中,90ACB ∠=︒,点D , E 分别在,AC BC 上,且CDE B ∠=∠,将CDE △沿DE折叠,点C 恰好落在AB 边上的点F 处,如果8AC =,10AB =,那么CD 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒20.(本题满分10分,每小题各5分)如图,在ABC △中,BE 平分ABC ∠交AC 于点E ,过点E 作ED BC ∥交AB 于点D , 已知5AD =,4BD =.(1)求BC 的长度;(2)如果AD a =u u u r r ,AE b =u u u r r ,那么请用a r 、b r 表示向量CB u u u r.21.(本题满分10分,每小题各5分)如图,CD 为⊙O 的直径,CD AB ⊥,垂足为点F ,AO BC ⊥,垂足为点E ,2CE =. (1)求AB 的长; (2)求⊙O 的半径.A BCD E (第20题图)(第21题图)AB C O FE D22.(本题满分10分)如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.(第22题图) AD BCE37°45°北东(第23题图)A BD ECG F24.(本题满分12分,每小题各4分)如图,抛物线243y x bx c =-++过点(3,0)A ,(0,2)B .(,0)M m 为线段OA 上一个动点(点M与点A 不重合),过点M 作垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N .(1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是MN 的中点,那么求此时点N 的坐标;(3)如果以B ,P ,N 为顶点的三角形与APM △相似,求点M 的坐标.(第24题图)AMP NB Ox yB Oxy (备用图)A25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF .(1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1) AB C DF EB DF EC A(第25题图2) B DF ECA(第25题图3)崇明区2017学年第一学期教学质量调研测试卷九年级数学参考答案(201801)一、选择题(本大题共6题,每题4分,满分24分)1、A2、D3、B4、B5、D6、C二、填空题(本大题共12题,每题4分,满分48分)7、528、 a b -+r r 9、 6 10、 1a <-11、 22(2)4y x =++ 12、> 13、4.8 14、 315、45 16、 1:2.4 17、 (1,1)-- 18、258三、解答题:(本大题共7题,满分78分)19、解:原式=132322232-⨯+⨯- …………………………………………5分 332322=+-+ ………………………………………………3分 12232=-………………………………………………………2分 20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠ ∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分 ∴4BD DE == ∵ED BC ∥ ∴DE ADBC AB=……………………………………1分 又∵5AD =,4BD = ∴9AB =∴459BC = ∴365BC =………………………………………2分 (2)∵ED BC ∥ ∴5=9DE AD BC AB =∴95BC DE = …………………………………………………………1分又∵ED u u u r 与CB u u ur 同向 ∴95CB ED =u u u r u u u r ………………………………1分∵AD a =u u u r r ,AE b =u u u r r ∴ED a b =-u u u r r r……………………………1分∴9955CB a b =-u u u r r r…………………………………………………………2分21、(1)∵CD AB ⊥,AO BC ⊥∴90AFO CEO ==︒∠∠ ………………………………………1分 在AOF COE △和△中AFO CEO AOF COE AO CO =⎧⎪=⎨⎪=⎩∠∠∠∠∴AOF COE △≌△ ……………………………………………1分 ∴CE AF = ………………………………………………………1分 ∵2CE = ∴2AF=∵CD 是O e 的直径,CD AB ⊥ ∴12AF BF AB ==……………………………………………1分 ∴4AB = …………………………………………………………1分(2) ∵AO 是O e 的半径,AO BC ⊥∴2CE BE == ………………………………………………1分 ∵4AB = ∴12BE AB =∵90AEB =︒∠ ∴30A =︒∠ ……………………2分 又∵90AFO =︒∠ ∴232AF CosA AO AO === …………1分 ∴433AO =即O e 的半径是433………………………1分 22、解:由题意可得37A =︒∠,45AEC =︒∠,90D =︒∠,5DE km = 过点C 作CH AD ⊥,垂足为点H 则90AHC EHC ==︒∠∠ ∴34CH tanA AH == ………………………………………………………1分 1CHtan HEC EH==∠ ………………………………………………………1分 设CH x =则43AH x =,EH x = …………………………………………2分 ∴5DH x =+ ………………………………………………………1分∵90AHC D ==︒∠∠ ∴CH BD ∥ ∴AH AC DH BC= …………2分 ∵C 点是AB 边的中点 ∴AC BC = ∴AHDH = …………1分 ∴453x x =+ 解得15x = ………………………………………………1分 ∴42015353AE x x km =+=+= ………………………………………1分 23、(1)∵四边形ABCD 是正方形∴90BCD ADC ==︒∠∠,AB BC = …………………………1分 ∵BF DE ⊥ ∴90GFD =︒∠∴BCD GFD =∠∠∵BGC FGD =∠∠∴BGC DGF △∽△ ………………………………………………2分 ∴BG BC DG DF= ………………………………………………………1分 ∴DG BC DF BG ⋅=⋅ ……………………………………………1分∵AB BC =∴DG AB DF BG ⋅=⋅ ……………………………………………1分(2)联结BD∵BGC DGF △∽△ ∴BG CG DG FG= ………………………………………………………1分 ∴BG DG CG FG = 又∵BGD CGF =∠∠∴BGD CGF △∽△ ………………………………………………2分∴BDG CFG =∠∠ ………………………………………………1分∵四边形ABCD 是正方形,BD 是对角线 ∴1452BDG ADC ==︒∠∠ ……………………………………1分∴45CFG =︒∠ ……………………………………………………1分24、(1)解:设直线AB 的解析式为y kx b =+(0k ≠)∵(3,0)A ,(0,2)B ∴302k b b +=⎧⎨=⎩ 解得232k b ⎧=-⎪⎨⎪=⎩ ……………………………………1分 ∴直线AB 的解析式为223y x =-+ ………………………………1分 ∵抛物线243y x bx c =-++经过点(3,0)A ,(0,2)B ∴493032b c c ⎧-⨯++=⎪⎨⎪=⎩ 解得1032b c ⎧=⎪⎨⎪=⎩ …………………………1分∴2410233y x x =-++ ……………………………………………1分 (2)∵MN x ⊥轴, (,0)M m∴设2410(,2)33N m m m -++,2(,2)3P m m -+ ∴2443NP m m =-+, 223PM m =-+ ……………………1分 ∵P 点是MN 的中点∴NP PM =∴2424233m m m -+=-+ ………………………………………1分 解得112m =,23m =(不合题意,舍去) ………………………1分∴(,)23N ……………………………………………………1分 (3)∵(3,0)A ,(0,2)B , 2(,2)3P m m -+ ∴13AB =,133BP m = ∴13133AP m =- ∵BPN APM =∠∠∴当BPN △与APM △相似时,存在以下两种情况:1° BP PM PN PA= ∴213223341341333m m m m m -+=-+- 解得118m = ……………………1分 ∴11(,0)8M …………………………………………………………1分 2°BP PA PN PM= ∴213131333424233m m m m m -=-+-+ 解得52m = ……………………1分 ∴5(,0)2M ……………………………………………………………1分 25、(1)∵90ACB =︒∠,45cosA = ∴45AC AB = ∵8AC = ∴10AB = ……………………………1分 ∵D 是AB 边的中点 ∴152AD AB == ∵DE AC ⊥ ∴90DEA DEC ==︒∠∠∴5cosA AD == ∴4AE = ∴844CE =-= ∵在Rt AED △中,222AE DE AD += ∴3DE = ……………………1分 ∵DF DE ⊥ ∴90FDE =︒∠又∵90ACB =︒∠ ∴四边形DECF 是矩形∴4DF EC == ………………………………………………………………1分 ∵在Rt EDF △中,222DF DE EF += ∴5EF = …………………1分(2)不变 ……………………………………………………………………………1分过点D 作DH AC ⊥,DG BC ⊥,垂足分别为点H 、G由(1)可得3DH =,4DG =∵DH AC ⊥,DG BC ⊥∴90DHC DGC ==︒∠∠又∵90ACB =︒∠ ∴四边形DHCG 是矩形∴90HDG =︒∠∵90FDE =︒∠∴HDG HDF EDF HDF -=-∠∠∠∠ 即EDH FDG =∠∠ ……1分 又∵90DHE DGF ==︒∠∠∴EDH FDG △∽△ ……………………………………………………1分 ∴34DE DH DF DG == …………………………………………………………1分 ∵90FDE =︒∠ ∴34DE tan DFE DF ==∠ ……………………1分 (3)1° 当QF QC =时,易证90DFE QFC +=︒∠∠,即90DFC =︒∠ 又∵90ACB =︒∠,D 是AB 的中点∴152CD BD AB === ∴132BF CF BC === …………………………………………………1分2° 当FQ FC =时,易证FQC DEQ DCB △∽△∽△∵在Rt EDF △中,34DE tan DFE DF ==∠ ∴设=3DE k ,则4DF k =,5EF k =当FQ FC =时,易证3DE DQ k ==,∴53CQ k =-∵DEQ DCB △∽△ ∴56DE DC EQ BC == ∴185EQ k = ∴75FQ FC k == ∵FQC DCB △∽△ ∴56FQ DC CQ BC == ∴755536k k =- 解得125117k = ∴71251755117117FC =⨯= ∴1755276117117BF =-= ……………………………………………………2分 3° 在BC 边上截取BK=BD=5,由勾股定理得出25DK =当CF CQ =时,易证CFQ EDQ BDK △∽△∽△∴设=3DE k ,则3EQ k =,5EF k = ∴2FQ k =∵EDQ BDK △∽△ ∴525DE BD DQ DK == ∴655DQ k = ∴6555CQ FC k ==- ∵CQF BDK △∽△ ∴525CQ BD FQ DK == ∴65555225k k -= 解得5511k = ∴2511FC = ∴254161111BF =-= ………………………………………………………2分。

2017年上海市各区初三数学一模18题集锦(含答案)

2017年上海市各区初三数学一模18题集锦(含答案)

九年级一模18题1、(2017年杨浦区一模第18题)△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是________.【答案】12tan cot cot EFD DFB CEB ∠=∠=∠,问题的本质是在△EBC 中,已知两边EB=BC=6,∠ABC 的余弦为3,求边EC 长.可由余弦定理,或过E 点向BC 添高,得EC=1255,cos CEB ∠=1tan 2EFD ∠=.2、(2017年徐汇区一模第18题)如图,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是________.【答案】13392AP DF AQ BE ===请注意本题中面积法的作用.3、(2017年长宁区一模第18题)如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.【答案】722或以A 为原点,射线AC 为横轴正半轴,建立直角坐标系.①设AE=a ,则'DA DA =,得22(4)(3)25a a -++=,解得a =1,从而'(1,1)(8,6)A B -,,'2A B =;②22(4)(3)25a a -+-=,解得a =7,从而'(7,7)(8,6)A B ,,'2A B =.4、(2017年崇明区一模第18题)如图,已知ABC ∆中,45ABC ∠= ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为.【答案】3105△AEH 相似于△CFH ,且相似比为3:1,过H 向AC 做垂线段HM ,则11022cos 2110FC CM CH C ==⋅⋅∠=⋅⋅31035AE CH ==.5、(2017年宝山区一模第18题)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═12,那么CF:DF═________.【答案】65∵DE⊥AB,tanA═12,∴DE=12AD,∵Rt△ABC中,AC═8,tanA═12,∴BC=4,AB=4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE=5,∴CE=8﹣5=3,∴Rt△BCE中,BE=5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.6、(2017年奉贤区一模第18题)如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP 所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是________.【答案】1∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG=5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=23(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为________.【答案】13PQ垂直平分CD,故CM=6,∠PMC=∠QMC=90°,注意到∠PCM=∠A,∠QCM=∠B,于是32tan tan661323PQ PM QM CM PCM CM QCM=+=⋅∠+⋅∠=⨯+⨯=.8、(2017年闵行区一模第18题)如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B落在点B1处,如果B1D⊥AC,那么BD=________.【答案】32-作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE=BD,则BD+BD=2,解得BD=2﹣2.如图,在Rt △ABC 中,∠C=90°,∠B=60°,将△ABC 绕点A 逆时针旋转60°,点B 、C 分别落在点B'、C'处,联结BC'与AC 边交于点D ,那么'BD DC=________.【答案】2过C ’作C’H ⊥AC 于点H,则33'''22BC a CA C A C H C A a =====,,,于是23''32BD BC a DC C H a ===.10、(2017年普陀区一模第18题)如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果14DP DE =,那么S △DPQ :S △CPE 的值是________.【答案】115由重心定理及条件,易知DP :PE :BC=1:3:6,于是△DPQ 与△EPC 的高之比为1:5,从而S △DPQ :S △CPE 1115315=⨯=.如图,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连接BD ,如果∠DAC=∠DBA ,那么BD AB的值是________.【答案】512-如图,由旋转的性质得到AB=AD ,∠CAB=∠DAB ,∴∠ABD=∠ADB ,∵∠CAD=∠ABD ,∴∠ABD=∠ADB=2∠BAD ,∵∠ABD+∠ADB+∠BAD=180°,∴∠ABD=∠ADB=72°,∠BAD=36°,过D 作∠ADB 的平分线DF ,∴∠ADF=∠BDF=∠FAD=36°,∴∠BFD=72°,∴AF=DF=BD ,∴△ABD ∽△DBF ,∴,即,解得=.12、(2017年松江区一模第18题)如图,在△ABC 中,∠ACB=90°,AB=9,cosB=23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E ,则点A 、E 之间的距离为________.【答案】过C 作CH ⊥AB 于H ,△ACE 相似于△BCE ,相似比为2,所以2222cos cos 93AE BD BH BC B AB B ⎛⎫===⋅∠=⋅∠=⨯= ⎪⎝⎭.如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=1,BC=3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为________.【答案】23CP 垂直平分线段BD ,CD=CB=3,从而得到,设AP=x ,则-x ,在△APD中,由勾股定理得2221)x x +=,解得255x =,BP=355,于是sin ∠ADP=23..14、(2017年黄浦区一模第18题)如图,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =.D NMC BA 【答案】23。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年崇明县初三数学一模试卷
一、选择题:
1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( )
;35.A ;53.B 83.C 8
5.D 2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )
125.A 512.B 1312.C 13
5.D 3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( )
)0,2-.(A )-2,0.(B )0,2.(C )2,0.(D
4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )
321y y y .>>A 231y y B.y >> 123y y y .>>C 213y y y .>>D
5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③
BC
AB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( ) ①.A ②.B ③.C ④.D
6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )
13.A 132.B 23.C 32.D
二、填空题 7.如果)b -a 2(3b a =+,用a 表示b ,那么b =
8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为
9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___
10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53
AB DF BC ==,那么DE 的长为 11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .
12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ; 13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;
14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;
15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.
16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;
17.如图,O 的半径是4,ABC ∆是O 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;
18.如图,已知 ABC ∆中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;
三、解答题(本大题共7题,满分78分)
19.(本题满分10分)计算: 2tan 45sin 30cot 602sin 453tan 60⋅+-
20.(本题10分,第一小题6分,第二小题4分)
如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =,DC b =. (1)请用a 、b 来表示DE ;
(2)在原图中求作向量DE 在a 、b 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)
21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)
22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.
23. (本题满分12分,其中每小题各6分)如图,在Rt ABC 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E . 求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.
24.(本题满分12分,其中每小题各4分)
在平面直角坐标系中,抛物线235
y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F .
(1)求这条抛物线的解析式;
(2)联结DF ,求EDF ∠cot 的值;
(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.
25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)
在ABC ∆中,︒=∠90ACB ,2
3cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F ,联结BD .
(1)求证:
BC
CE CD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)当BDF ∆为等腰三角形时,求PE 的长.
参考答案
1.B
2.B
3.D
4.C
5.C
6..A
7.53a 8.1:2 9.2 10.3 11.120 12.内含 13.6 14.()221y x =-- .
15.19.5
6 20(1).2133DE a b =+ (2)略 21.0.3米/秒 22.18平方厘米
23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝

25.(1)略(2)24(04)2
x x y x +=<≤ (3)4或4。

相关文档
最新文档