导数的概念及运算

合集下载

导数的概念及其运算

导数的概念及其运算

导数的概念及其运算考试要求 1.导数概念及其实际背景,A 级要求;2.导数的几何意义,B 级要求;3.根据导数定义求函数y =c ,y =x ,y =1x ,y =x 2,y =x 3,y =x 的导数,A 级要求;4.利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,B 级要求; 【知 识 梳 理】 1.导数的概念(1)函数y =f (x )在x =x 0处的导数①定义:设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记f ′(x 0). ②几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). (2)称函数f ′(x )=f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 【诊 断 自 测】1.思考辨析(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.(×) (2)曲线的切线不一定与曲线只有一个公共点.(√) (3)若f (x )=a 3+2ax -x 2,则f ′(x )=3a 2+2x .(×)(4)物体的运动方程是s =-4t 2+16t ,在某一时刻的速度为0,则相应时刻t =2.( ×) 2.(2015·镇江调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为________.解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e .3.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于______.解析 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =33×12+a =k ,k +1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1.4.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 解析 设e x =t ,则x =ln t (t >0),∴f (t )=ln t +t ,∴f ′(t )=1t+1,∴f ′(1)=2.5.若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________. 解析 令f (x )=x ln x ,则f ′(x )=ln x +1,设P (x 0,y 0),则f ′(x 0)=ln x 0+1=2,∴x 0=e ,此时y 0=x 0ln x 0=eln e =e ,∴点P 的坐标为(e ,e). 【考点突破】考点一 利用定义求函数的导数【例1】 利用导数的定义求函数f (x )=x 3的导数.解 Δy =f (x +Δx )-f (x )=(x +Δx )3-x 3=x 3+3x ·(Δx )2+3x 2·Δx +(Δx )3-x 3=Δx [3x 2+3x ·Δx +(Δx )2], ∴Δy Δx =3x 2+3x ·Δx +(Δx )2,∴f ′(x )= ΔyΔx= [3x 2+3x ·Δx +(Δx )2]=3x 2. 规律方法 定义法求函数的导数的三个步骤 一差:求函数的改变量Δy =f (x +Δx )-f (x ). 二比:求平均变化率Δy Δx =f (x +Δx )-f (x )Δx .三极限:取极限,得导数y ′=f ′(x )=ΔyΔx.【训练1】 函数y =x +1x 在[x ,x +Δx ]上的平均变化率ΔyΔx =________;该函数在x =1处的导数是________.答案 1-1x (x +Δx ) 0考点二 导数的计算【例2】分别求下列函数的导数:(1)(2015·苏州调研)已知f (x )=12x 2+2xf ′(2 014)+2 014ln x ,则f ′(2 014)=________.解析 由题意得f ′(x )=x +2f ′(2 014)+2 014x ,所以f ′(2 014)=2 014+2f ′(2 014)+2 0142 014, 即f ′(2 014)=-(2 014+1)=-2 015. (2)分别求下列函数的导数:①y =e x ·cos x ;②y =x ⎝⎛⎭⎫x 2+1x +1x 3;③y =x -sin x 2cos x 2;④y =ln x ex解 ①y ′=(e x )′cos x +e x (cos x )′=e x cos x -e x sin x . ②∵y =x 3+1+1x 2,∴y ′=3x 2-2x3.③∵y =x -sin x 2cos x 2=x -12sin x , y ′=⎝⎛⎭⎫x -12sin x ′=1-12cos x . ④y ′==1x -ln x e x=1-x ln xx e x. 规律方法 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.【训练2】 分别求下列函数的导数:(1)y =11+x +11-x ;(2)y =sin 2x2;(3)y =(x +1)(x +2)(x +3).解 (1)∵y =11+x +11-x =21-x ,∴y ′=0-2(1-x )′(1-x )2=2(1-x )2. (2)∵y =sin 2x 2=12(1-cos x ),∴y ′=-12(cos x )′=-12·(-sin x )=12sin x .(3)法一 ∵y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11. 法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′ =[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2) =3x 2+12x +11.考点三 导数的几何意义【例3】已知曲线C :y =ln xx .(1)求曲线C 在点(1,0)处的切线l 1的方程;(2)求过原点与曲线C 相切的直线l 2的方程. 解 设f (x )=ln xx ,则f ′(x )=1-ln x x 2.(1)∴f ′(1)=1-ln 112=1,即切线l 1的斜率k =1.由l 1过点(1,0),得l 1的方程为y =x -1.(2)设l 2与曲线C 切于点P ⎝⎛⎭⎫x 0,ln x 0x 0,则切线l 2方程为 y -ln x 0x 0=1-ln x 0x 20(x -x 0),∵l 2过原点.∴-ln x 0x 0=1-ln x 0x 20·(-x 0), 化简得ln x 0=12,∴x 0=e ,∴l 2:y -12e =12e(x -e),整理得y =12e x .即为l 2的方程.规律方法 求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.【训练3】 (1)(2015·南京调研)曲线y =x +sin x 在点(0,0)处的切线方程是________.(2)已知f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的切线方程为y =ax +16,则实数a 的值是____. 解析 (1)∵y =x +sin x ,∴y ′=1+cos x ,当x =0时,y ′=1+cos 0=2,故曲线y =x +sin x 在点(0,0)处的切线方程是y -0=2(x -0),即2x -y =0.(2)先设切点为M (x 0,y 0),则切点在曲线y 0=x 30-3x 0上.① 求导数得到切线的斜率k =f ′(x 0)=3x 20-3,又切线l 过点A 、M 两点,所以k =y 0-16x 0,则3x 20-3=y 0-16x 0②联立①、②可解得x 0=-2,y 0=-2,从而实数a 的值为a =k =-2-16-2=9.【课堂总结】 [思想方法]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值,即f ′(x )在x =x 0处的函数值.(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. [易错防范]1.利用公式求导时要特别注意不要将幂函数的求导公式(x n )′=nx n -1与指数函数的求导公式(a x )′=a x lnx 混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者. 3.曲线与直线相切并不一定只有一个公共点.例如,y =x 3在(1,1)处的切线l 与y =x 3的图象还有一个交点(-2,-8). 【巩固练习】1.(2014·苏北四市模拟)曲线y =x e x +2x -1在点(0,-1)处的切线方程为________.解析 由导数运算法则可得y ′=e x +x e x +2=(x +1)e x +2,则曲线y =x e x +2x -1在点(0,-1)处的切线斜率为y ′|x =0=1+2=3.故曲线y =x e x +2x -1在点(0,-1)处的切线方程为y +1=3x ,即3x -y -1=0. 2.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4sin π4+cos π4,∴f ′⎝⎛⎭⎫π4=2-1, ∴f ⎝⎛⎭⎫π4=(2-1)cos π4+sin π4=1. 3.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点横坐标为________.解析 设切点坐标为(x 0,y 0)(x 0>0),∵y ′=12x -3x ,∴y ′|x =x 0=12x 0-3x 0=-12,即x 20+x 0-6=0,解得x 0=2或-3(舍).4.(2014·武汉中学月考)已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________. 解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1,∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log 2 016(x 1x 2…x 2 015)=-1. 5.已知f (x )=x (x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________.解析 令g (x )=(x -1)(x -2)(x -3)(x -4)(x -5),则f (x )=xg (x ),∴f ′(x )=g (x )+x ·g ′(x ). ∴f ′(0)=g (0)=(-1)·(-2)·(-3)·(-4)·(-5)=-120.6.(2014·江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.解析 y =ax 2+b x 的导数为y ′=2ax -b x 2,直线7x +2y +3=0的斜率为-72.由题意得⎩⎨⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.7如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=________. 解析 如图可知,f (5)=3,f ′(5)=-1,因此f (5)+f ′(5)=2.8.(2015·扬州调研)若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x . ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,∴x +1x -a =0有解,∴a =x +1x≥2(x >0).答案 [2,+∞)9.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 015(x )=________.解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 015(x )=f 3(x )=-sin x -cos x 10.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0. 11.设抛物线C: y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限. (1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解 (1)设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,②①代入②得x 21+⎝⎛⎭⎫k -92x 1+4=0.∵P 为切点,∴Δ=⎝⎛⎭⎫k -922-16=0得k =172或k =12.当k =172时,x 1=-2,y 1=-17. 当k =12时,x 1=2,y 1=1. ∵P 在第一象限,∴所求的斜率k =12.(2)过P 点作切线的垂线,其方程为y =-2x +5.③ 将③代入抛物线方程得x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),即2x 2=9,∴x 2=92,y 2=-4.∴Q 点的坐标为⎝⎛⎭⎫92,-4. 12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.(1)解 方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明 设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,且此定值为6.。

导数的定义与计算

导数的定义与计算

导数的定义与计算导数是微积分中的重要概念,它用于描述函数在某一点处的变化率。

本文将介绍导数的定义和计算方法。

一、导数的定义在数学中,导数可以通过极限的方法来定义。

设函数y=f(x),若函数在点x处的导数存在且有限,则导数表示为f'(x),它表示函数f(x)在点x处的变化率。

导数可以理解为函数在某一点的瞬时变化率。

通过导数,我们可以研究函数的变化趋势、拐点、极值等重要性质。

二、导数的计算方法导数的计算方法有多种,下面将介绍一些常见的计算方法。

1. 函数可导情况下的基本运算法则(1)常数法则:若c为常数,则导数(常数)=0。

(2)幂函数法则:若f(x)=x^n,其中n为常数,则导数f'(x)=nx^(n-1)。

(3)指数函数法则:若f(x)=a^x,其中a为常数,则导数f'(x)=a^x*ln(a)。

(4)对数函数法则:若f(x)=log_a(x),其中a为常数,则导数f'(x)=1/(x*ln(a))。

(5)三角函数法则:若f(x)=sin(x),则导数f'(x)=cos(x)。

2. 导数的基本运算法则(1)和差法则:若f(x)=u(x)+v(x),则导数f'(x)=u'(x)+v'(x)。

(2)积法则:若f(x)=u(x)v(x),则导数f'(x)=u'(x)v(x)+u(x)v'(x)。

(3)商法则:若f(x)=u(x)/v(x),则导数f'(x)=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。

(4)复合函数法则:若f(x)=g(h(x)),则导数f'(x)=g'(h(x))*h'(x)。

3. 使用导数计算函数的极值为了找到函数的极值点,我们可以先求得函数的导数,然后解方程f'(x)=0。

解得的x值即为函数的极值点。

三、导数的应用导数是微积分的基本工具,它在许多实际问题中具有广泛的应用。

导数的概念及计算

导数的概念及计算

导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。

微积分导数的概念及运算法则

微积分导数的概念及运算法则

微积分导数的概念及运算法则微积分是数学的一个分支,主要研究函数的变化与数量之间的关系。

在微积分中,导数是其中一个重要的概念。

导数可以用来描述函数其中一点上的变化率,它告诉我们函数在其中一点附近的变化情况。

导数的概念:函数在其中一点上的导数,是指函数在该点附近有定义的区间内的变化率。

换句话说,导数就是函数在其中一点的瞬时变化率。

设函数y=f(x),如果函数在点x0的邻近有定义,那么它在x0点的导数表示为f'(x0)或dy/dx,x=x0,它的值定义为:f'(x0) = lim_(h→0) [f(x0+h) - f(x0)] / h导数表示了函数在其中一点上的切线的斜率或斜率的极限,所以导数可以用来描述函数在其中一点的变化趋势。

导数的运算法则:导数具有一些运算法则,这些规则可以帮助我们在计算导数时进行简化:1. 常数法则:常数的导数为0,即d/dx(c) = 0,其中c是一个常数。

2.乘法法则:如果y=u(x)*v(x),其中u(x)和v(x)都是可导函数,则y的导数可以通过以下公式计算:dy/dx = u'(x) * v(x) + u(x) * v'(x)3.除法法则:如果y=u(x)/v(x),其中u(x)和v(x)都是可导函数,且v(x)不等于0,则y的导数可以通过以下公式计算:dy/dx = [u'(x) * v(x) - u(x) * v'(x)] / [v(x)]²4.加法法则:如果y=u(x)+v(x),其中u(x)和v(x)都是可导函数,则y的导数等于u'(x)+v'(x)。

5.减法法则:如果y=u(x)-v(x),其中u(x)和v(x)都是可导函数,则y的导数等于u'(x)-v'(x)。

6.复合函数法则:如果y=g(f(x)),其中f(x)和g(x)都是可导函数,则y的导数可以通过以下公式计算:dy/dx = g'(f(x)) * f'(x)7.反函数法则:如果y=f(x)是一个可导函数,且f'(x)不等于0,则它的反函数x=f^(-1)(y)的导数可以通过以下公式计算:dx/dy = 1 / (dy/dx)这些导数的运算法则可以帮助我们在计算比较复杂的函数的导数时进行简化。

导数的定义与计算方法

导数的定义与计算方法

导数的定义与计算方法导数是微积分中的重要概念之一,用于研究函数的变化率和曲线的切线斜率。

本文将从导数的定义入手,介绍导数的计算方法,并给出一些例题来帮助读者更好地理解和应用导数。

一、导数的定义在数学上,给定一个函数y=f(x),其导数定义为函数在某一点x处的变化率。

导数可以用极限来表示,即:f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx其中f'(x)表示函数f(x)在点x处的导数,Δx为自变量的增量。

导数的值可以表示函数在该点的切线斜率,即函数曲线在该点处的速率。

二、导数的计算方法导数的计算方法有多种,下面列举几种常见的:1. 基本导数公式对于常见的基本函数,存在一些导数的基本公式,如:- 常数函数导数为零:d/dx(c) = 0,其中c为常数;- 幂函数导数为功率减一:d/dx(x^n) = nx^(n-1),其中n为常数;- 指数函数导数等于自身:d/dx(e^x) = e^x;- 对数函数导数为倒数:d/dx(ln(x)) = 1/x。

通过应用基本导数公式,可以计算更复杂函数的导数。

2. 导数的四则运算规则对于已知的函数f(x)和g(x),导数的四则运算规则如下:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- 商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2以上规则为导数的基本运算规则,可以根据需要进行组合和推广。

3. 链式法则如果函数y=f(g(x))是由两个函数复合而成,那么它的导数可以用链式法则来计算。

链式法则可以表示为:d/dx(f(g(x))) = f'(g(x)) * g'(x)通过链式法则,可以求解更复杂的复合函数的导数,进一步扩展了导数的计算方法。

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算

B.(x2ex)′=x(x+2)ex D.x-1x′=1-x12
答案:BC
解析:A 项ln1x′=-ln12x·(ln x)′=-xln12x; D 项x-1x′=1+x12.
2.已知 f(x)=coesx x,则 f′(x)=________.
答案:-sin
x+cos ex
x
解析:f′(x)=coesx
答案:C 解析:由题意可知 y′=2cos x-sin x,则 y′|x=π=-2.所以曲线 y =2sin x+cos x 在点(π,-1)处的切线方程为 y+1=-2(x-π),即 2x +y+1-2π=0,故选 C.
6.[2019·全国Ⅰ卷]曲线 y=3(x2+x)ex 在点(0,0)处的切线方程为 ________.
答案:C 解析:∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1x, ∴f′(1)=2f′(1)+1,∴f′(1)=-1.
2.[选修二·P18 A 组 T6]曲线 y=1-x+2 2在点(-1,-1)处的切线 方程为________.
答案:2x-y+1=0 解析:∵y′=x+222,∴y′|x=-1=2.∴所求切线方程为 2x-y+1 =0.
4.设 f(x)=ln(3-2x)+cos 2x,则 f′(0)=________.
答案:-23 解析:因为 f′(x)=-3-22x-2sin 2x,所以 f′(0)=-23.
三、走进高考 5.[2019·全国Ⅱ卷]曲线 y=2sin x+cos x 在点(π,-1)处的切线方 程为( ) A.x-y-π-1=0 B.2x-y-2π-1=0 C.2x+y-2π+1=0 D.x+y-π+1=0
微点 2 未知切点求切线方程 [例 2] 已知函数 f(x)=xln x,若直线 l 过点(0,-1),并且与曲线 y=f(x)相切,则直线 l 的方程为________.

导数概念与运算

导数概念与运算

导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=xx f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x xy ∆∆=0lim→∆x xx f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,xy ∆∆有极限。

如果xy ∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=xx f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xy x ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x'=; ⑧()1l g log a a o x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''vuv v u -(v ≠0)。

导数的概念与导数运算考点及题型全归纳

导数的概念与导数运算考点及题型全归纳

第三章 导数及其应用第一节 导数的概念与运算基础知识1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率lim →Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim→Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx .f ′(x )与f ′(x 0)的区别与联系f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0.2.导数的几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).曲线y =f (x )在点P (x 0,f (x 0))处的切线是指以P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.3.函数f (x )的导函数称函数f ′(x )=lim →Δ0xf (x +Δx )-f (x )Δx为f (x )的导函数.4.导数的运算(1)几种常见函数的导数①(C )′=0(C 为常数);②(x n )′=nx n -1(n ∈Q *); ③(sin x )′=cos_x ;④(cos x )′=-sin_x ;⑤(e x )′=e x ; ⑥(a x )′=a x ln_a (a >0,a ≠1);⑦(ln x )′=1x ;⑧(log a x )′=1x ln a(a >0,a ≠1). (2)导数的四则运算法则 ①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )[v (x )]2(v (x )≠0).熟记以下结论: (1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x );(4)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.考点一 导数的运算[典例] 求下列函数的导数.(1)y =ln x +1x ;(2)y =(2x +1)·e x ; (3)y =1+x 5x 2;(4)y =x -sin x 2cos x2.[解] (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)y ′=[(2x +1)·e x ]′=(2x +1)′·e x +(2x +1)·(e x )′=2e x +(2x +1)·e x =(2x +3)·e x .(3)∵1+x 5x2=x 35+x -25,∴y ′=⎝ ⎛⎭⎪⎫1+x 5x 2′=(x 35)′+(x -25)′=35x -25-25x -75.(4)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=1-12cos x .[题组训练]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数.(1)y =cos x -sin x ; (2)y =(x +1)(x +2)(x +3); (3)y =ln x x 2+1.解:(1)y ′=(cos x )′-(sin x )′=-sin x -cos x .(2)∵y =(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ·ln x(x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.考点二 导数的几何意义考法(一) 求曲线的切线方程[典例] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D[解题技法]若已知曲线y =f (x )过点P (x 0,y 0),求曲线过点P 的切线方程的方法(1)当点P (x 0,y 0)是切点时,切线方程为y -y 0=f ′(x 0)·(x -x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过点P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 考法(二) 求切点坐标[典例] 曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. [答案] C[解题技法] 求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法(三) 求参数的值(范围)[典例] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.[解析] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a =2在(0,+∞)上有解,a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). [答案] (-∞,2)[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.[题组训练]1.曲线y =e x 在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( )A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B ∵y ′=e x ,令e x =1,得x =0.当x =0时,y =1,∴点A 的坐标为(0,1). 2.设曲线y =a (x -1)-ln x 在点(1,0)处的切线方程为y =2x -2,则a =( )A .0B .1C .2D .3解析:选D ∵y =a (x -1)-ln x ,∴y ′=a -1x ,∴y ′|x =1=a -1.又∵曲线在点(1,0)处的切线方程为y =2x -2, ∴a -1=2,解得a =3.3.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0 解析:选B 因为点(0,-1)不在曲线y =f (x )上,所以设切点坐标为(x 0,y 0).又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧ y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.所以切点坐标为(1,0),所以f ′(1)=1+ln 1=1,所以直线l 的方程为y =x -1,即x -y -1=0.[课时跟踪检测]A 级1.设f (x )=x e x 的导函数为f ′(x ),则f ′(1)的值为( )A .eB .e +1C .2eD .e +2解析:选C 由题意知f (x )=x e x ,所以f ′(x )=e x +x e x ,所以f ′(1)=e +e =2e. 2.曲线y =sin x +e x 在x =0处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y ′=cos x +e x ,∴当x =0时,y ′=2.又∵当x =0时,y =1,∴所求切线方程为y -1=2x ,即2x -y +1=0.3.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.4.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上,所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.5.(2018·合肥第一次教学质量检测)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1,令a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.6.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧ a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).7.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x =-1,∴ex =a ,又-1a·e 0x =-x 0+1,∴x 0=2,a =e 2.答案:e 28.(2019·安徽名校联考)已知函数f (x )=2x -ax 的图象在点(-1,f (-1))处的切线斜率是1,则此切线方程是________.解析:因为f ′(x )=-2x 2-a ,所以f ′(-1)=-2-a =1,所以a =-3,所以f (x )=2x +3x ,所以f (-1)=-5,则所求切线的方程为y +5=x +1,即x -y -4=0. 答案:x -y -4=09.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析:因为y ′=-1-cos xsin 2x ,所以y ′|=2x π=-1,由条件知1a =-1, 所以a =-1. 答案:-110.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.答案: 211.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ; (3)y =cos x ex .解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1,∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e-34.答案:-e-343.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得{ f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题精讲
考点一 导数的运算
【例1】分别求下列函数的导数:
(1)y=exlnx;(2)y=x ;
(3)y=x-sin cos ;(4)y=ln .
规律方法(1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.
(2)求经过点A(2,-2)的曲线f(x)的切线方程.
规律方法(1)导数f′(x0)的几何意义就是函数y=f(x)在点P(x0,y0)处的切线的斜率,切点既在曲线上,又在切线上.切线有可能和曲线还有其他的公共点.
(2)“曲线在点P处的切线”是以点P为切点,“曲线过点P的切线”则点P不一定是切点,此时应先设出切点坐标.
5.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f′2(x),…,fn+1(x)=fn′(x),n∈N*,则f2 015(x)等于()
2.函数y=f(x)的导函数
如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.
3.基本初等函数的导数公式
基本初等函数
导函数
f(x)=c(c为常数)
f′(x)=0
f(x)=xα(α∈Q*)
考点三 导数几何意义的综合应用
【例3】已知函数f(x)=2x3-3x.
(1)求f(x)在区间[-2,1]上的最大值;
(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围.
规律方பைடு நூலகம்解决本题第(2)问的关键是利用曲线上点的坐标表示切线方程,可将问题等价转化为关于x0的方程有三个不同的实根,构造函数后,利用函数的单调性求极值,通过数形结合方法找到t满足的条件即可.
2.已知曲线y=lnx的切线过原点,则此切线的斜率为()
A.eB.-eC. D.-
3.已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)=()
A.-1B.0C.2D.4
4.已知函数y=f(x)及其导函数y=f′(x)的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.
导数的概念及运算
学习目标
1.了解导数概念的实际背景
2.通过函数图象直观理解导数的几何意义
3.能根据导数的定义求函数y=c(c为常数),y=x,y= ,y=x2,y=x3,y= 的导数
4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y=f(ax+b)的复合函数)的导数.
f′(x)=αxα-1
f(x)=sinx
f′(x)=cos__x
f(x)=cosx
f′(x)=-sin__x
f(x)=ex
f′(x)=ex
f(x)=ax(a>0,a≠1)
f′(x)=axln__a
f(x)=lnx
f′(x)=
f(x)=logax
(a>0,a≠1)
f′(x)=
4.导数的运算法则
若f′(x),g′(x)存在,则有
(3)当曲线y=f(x)在点(x0,f(x0))处的切线垂直于x轴时,函数在该点处的导数不存在,切线方程是x=x0.
【训练2】(1)曲线y=e-5x+2在点(0,3)处的切线方程为________.
(2)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.
(2)①如函数为根式形式,可先化为分数指数幂,再求导.
②复合函数求导,应先确定复合关系,由外向内逐层求导,必要时可换元处理.
【训练1】求下列函数的导数:
(1)y=x2sinx;(2)y= + ;(3)y= .
考点二 导数的几何意义
【例2】已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在点(2,f(2))处的切线方程;
教学内容
1.判断正误(在括号内打“√”或“×”)
(1)f′(x0)与(f(x0))′表示的意义相同.()
(2)求f′(x0)时,可先求f(x0)再求f′(x0).()
(3)曲线的切线与曲线不一定只有一个公共点.()
(4)若f(x)=e2x,则f′(x)=e2x.()
2.某汽车的路程函数是s(t)=2t3- gt2(g=10 m/s2),则当t=2 s时,汽车的加速度是()
【训练3】(1)过点A(2,1)作曲线f(x)=x3-3x的切线最多有()
A.3条B.2条C.1条D.0条
(2)若函数f(x)= x2-ax+lnx存在垂直于y轴的切线,则实数a的取值范围是________.
1.曲线y=ax在x=0处的切线方程是xln 2+y-1=0,则a=()
A. B.2C.ln 2D.ln
(1)[f(x)±g(x)]′=f′(x)±g′(x);
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
(3) ′= (g(x)≠0).
5.复合函数的导数
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.
知识梳理
1.函数y=f(x)在x=x0处的导数
(1)定义:称函数y=f(x)在x=x0处的瞬时变化率lim__ =lim 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=lim =lim __ .
(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).
A.14 m/s2B.4 m/s2
C.10 m/s2D.-4 m/s2
3.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()
A.0B.1C.2D.3
4.设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=________.
5.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________.
相关文档
最新文档