复习线性回归方程的求法
求线性回归直线方程的步骤

请同学们回忆一下,我们以前是否学过 变量间的关系呢?
两个变量间的函数关系.
相关关系与函数关系的异同点:
相同点:两者均是指两 个变量间的关系. 不同点:①函数关系是一种确定的关系; 相关关系是一种 非确定的关系.事实上,函数关系是两个非 随机变量的关系,而相关关系是随机变量 与随机变量间的关系. ②函数关系是一种因果关系,而相关关系 不一定是因果关 系,也可能是伴随关系.
20
30
40
^ (4)当x=2时,y=143.063, 因此,这天大 约可以卖出143杯热饮。
小结:
(1)判断变量之间有无相关关系,简便方 法就是画散点图。 (2)当数字少时,可用人工或计算器,求 回归方程;当数字多时,用Excel求回归方 程。 (3)利用回归方程,可以进行预测。
热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图;
(2)从散点图中发现气温与热饮销售杯数之间关系的一
般规律; (3)求回归方程; (4)如果某天的气温是 2 C,预测这天卖出的热饮杯数。
0
解: (1)散点图
160 150 140 130 120 110 100 90 80 70 60 50 40 -10 0
10x y
2
x
i 1
2 i
10 x
110 10 0 1 110 10 0
a y bx 0 b 0 0
∴所求回归直线方程为 ^ y=x
小结:求线性回归直线方程的步骤: 第一步:列表 x , y , x y ;
i i i i
第二步:计算
x, y, xi , xi y
脂肪含量 40 35 30 25 20 15 10 5 0 20 25 30 35 40 年龄 45 50 55 60 65
高中线性回归方程的求法及应用

高中线性回归方程的求法及应用作者:胡霞来源:《新课程·中学》2017年第10期摘要:高中线性回归方程主要是一元线性回归方程,是高中学习的重难点和高考的热门考点之一,同时在平常的生活中也有广泛的应用,因此了解其求法以及应用是非常有必要的,在北师大版高中数学选修1-2中第一章第一小节重点讲述了线性回归方程的具体分析,说明了线性回归方程的解法一般是利用最小二乘法。
关键词:回归方程;高中数学;最小二乘法一、高中线性回归方程学习的重要性高中线性回归方程是一个变量和另外一个变量之间不确定性的关系,比如父母的身高与孩子的身高,食物中所含的脂肪和热量等,中间都是有一些关系的,但这些关系是不确定性的,就像是农作物的收成和栽培方式或者和施肥量之间的关系,可以说后面两者对农作物的收成有一定的影响,但并不是唯一的影响,这种影响也是不确定的,所以在研究的时候运用线性回归方程找出中间的关系,并算出相应的结果是非常重要的。
[1]除此之外,线性回归方程也是高中学习的一大难点,对于高中生来说,掌握线性回归方程可以了解更多的解题思路。
二、高中线性回归方程的求法最小二乘法是高中数学必修课中的内容,因此在讲解线性回归方程的时候,学生应该基本了解了最小二乘法,而北师大版高中数学选修1-2中第一章第一小节例1则充分讲述了如何使用最小二乘法对线性回归方程进行求解。
例题如下:始祖鸟是一种已经灭绝的动物,在一次考古活动中,科学家发现始祖鸟的化石标本共6个,其中5个同时保有股骨(一种腿骨)和肱骨(上臂的骨头)。
科学家检查了这5个标本股骨和肱骨的长度,得到了如表1的数据:之后抛出了两个题目,第一个是求出肱骨长度y对股骨长度x的线性回归方程,第二个是根据已知股骨长度是50cm求肱骨长度。
其实,这一道题最为重要的是第一题,只要线性回归方程求出来,第二题也便迎刃而解。
首先从表格不难看出随着股骨长度的增长,肱骨的长度也是随之增长的,有了这样一个基础,再假设y=a+bx,要求a、b的值,就得使得n个点与直线的距离平方和最小,这里就使用到了最小二乘法的思路。
(完整word版)线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用ˆ+a ˆ=bx ˆ的求法:第一公式:线性回归方程为y(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(x 1+x 2+x 3+⋅⋅⋅+x n )n 1(y 1+y 2+y 3+⋅⋅⋅+y n )n ˆ,有两个方法(3)求变量x 的系数bˆ=法1b∑(x -x )(y -y )iii =1n∑(x -x )ii =1n(题目给出不用记忆)2(x1-x )(y 1-y )+(x 2-x )(y 2-y )+...+(x n-x )(y n-y )][(需理解并会代入数据)=222⎡⎤(x -x )+(x -x )+...+(x -x )2n ⎣1⎦nˆ=法2b∑(x -x )(y -y )iii =1∑(x -x )ii =1n(题目给出不用记忆)2=[x 1y1+x 2y 2+...x ny n]-nx ⋅y,(这个公式需要自己记忆,稍微简单些)2222⎡⎣x 1+x 2+...+x n ⎤⎦-nx ˆˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ-a ˆ=bx ˆ。
可以改写为:y =bx ˆ(y ˆ与y 不做区分)最后写出写出回归方程y例.已知x ,y 之间的一组数据:x0123y1357求y 与x 的回归方程:解:(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(0+1+2+3)=1.541(1+3+5+7)=44ˆ,有两个方法(3)求变量x 的系数b2222⎡⎤(x -x )+(x -x )+(x -x )+(x -x )1234⎣⎦ˆ法1b=(0-1.5)(1-4)+(1-1.5)(3-4)+(2-1.5)(5-4)+(3-1.5)(7-4)5==22227⎡⎣(0-1.5)+(1-1.5)+(2-1.5)+(3-1.5)⎤⎦(x1-x )(y 1-y )+(x 2-x )(y 2-y )+(x 3-x )(y 3-y )+(x 4-x )(y 4-y )][=ˆ=法2b[x 1y1+x 2y 2+...x ny n]-nx ⋅y=[0⨯1+1⨯3+2⨯5+3⨯7]-4⨯1.5⨯4=52222⎡⎤x +x +...+x -nx 12n ⎣⎦2222⎡⎤0+1+2+3⎣⎦7ˆ=4-ˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ=bx ˆ=最后写出写出回归方程y第二公式:独立性检验两个分类变量的独立性检验:525⨯1.5=77525x +77y1a ca +cy2b d总计x 1a +b c +d a +b +c +d注意:数据a 具有两个属性x 1,y 1。
新高考数学复习基础知识专题讲义22 回归方程和2×2联表(解析版)

新高考数学复习基础知识专题讲义 知识点22 回归方程和2×2联表知识理解 一.线性关系 1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系. (2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关. 2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程: 是两个具有线性相关关系的变量的一组数据的回归方程,其中是待定参数. 的计算公式.注意:回归方程必过样本中心(x,y),这也是做小题的依据和检验所求回归方程是否正确。
(3)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性. 二.独立性检验y bx a =+1122()()()n n x y x y x y ,,,,,,a b 、a b 、1122211()()()()nni i i ii i n ni ii i x x y y x y nx yb x x xn x a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑(1)2×2列联表设X ,Y 为两个变量,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)如下:(2)独立性检验利用随机变量K 2(也可表示为χ2)的观测值22n(ad bc)K (a b)(c d)(a c)(b d)-=++++(其中n =a +b +c +d 为样本容量)来判断“两个变量有关系”的方法称为独立性检验.考向一 一次线性关系【例1-1】(2021·山东高三专题练习)某工厂的每月各项开支x 与毛利润y (单位:万元)之间有如下关系,y 与x 的线性回归方程 6.5y x a =+,则a =( )A .17.5B .17C .15D .15.5 【答案】A【解析】由题意,根据表中的数据,可得2456855x ++++==,3040605070505y ++++==,即样本中心为(5,50),代入y 与x 的线性回归方程为 6.5y x a =+,解得17.5a =.故选:A . 【例1-2】(2021·全国高三专题练习)西尼罗河病毒(WNV )是一种脑炎病毒,WNV 通常是由鸟类携考向分析带,经蚊子传播给人类.1999年8-10月,美国纽约首次爆发了WNV 脑炎流行.在治疗上目前尚未有什么特效药可用,感染者需要采取输液及呼吸系统支持性疗法,有研究表明,大剂量的利巴韦林含片可抑制WNV 的复制,抑制其对细胞的致病作用.现某药企加大了利巴韦林含片的生产,为了提高生产效率,该药企负责人收集了5组实验数据,得到利巴韦林的投入量x (千克)和利巴韦林含片产量y (百盒)的统计数据如下:由相关系数r 可以反映两个变量相关性的强弱,||[0.75,1]r ∈,认为变量相关性很强;||[0.3,0.75]r ∈,认为变量相关性一般;||[0,0.25]r ∈,认为变量相关性较弱. (1)计算相关系数r ,并判断变量x 、y 相关性强弱;(2)根据上表中的数据,建立y 关于x 的线性回归方程ˆˆˆybx a =+;为了使某组利巴韦林含片产量达到150百盒,估计该组应投入多少利巴韦林? 25.69≈.参考公式:相关系数()()niix x y y r--=∑ˆˆˆybx a =+中,()()()121niii ni i x x y y b x x ==--=-∑∑,ˆˆay bx =-. 【答案】(1)0.97r =≈,x 与y 具有很强的相关性;(2)54.2千克. 【解析】(1)1(12345)35x =⨯++++=,()11620232526225y =⨯++++=, ()()51(13)(1622)(23)(2022)(33)(2322)ii i xx y y x =--=-⨯-+--+-⨯-∑(43)(2522)(53)(2622)25+-⨯-+-⨯-=,()52222221(13)(23)(33)(43)(53)10i i x x =-=-+-+-+-+-=∑,()522221(1622)(2022)(2322)i i y y =-=-+-+-∑22(2522)(2622)66+-+-=,则()()50.97iix x y y r --==≈∑ 所以x 与y 具有很强的相关性.(2)由(1)得,()()()5152125ˆ 2.510iii i i x x y y bx x ==--===-∑∑, ˆˆ22 2.5314.5ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. 当150y =(百盒)时,54.2x =(千克)故要使某组利巴韦林含片产量达到150百盒,估计该组应投入54.2千克利巴韦林. 【举一反三】1.(2021·全国高三专题练习)某工厂某产品产量x (千件)与单位成本y (元)满足回归直线方程77.36 1.82y x =-,则以下说法中正确的是( )A .产量每增加1000件,单位成本约下降1.82元B .产量每减少1000件,单位成本约下降1.82元C .当产量为1千件时,单位成本为75.54元D .当产量为2千件时,单位成本为73.72元 【答案】A【解析】令()77.36 1.82f x x =-,因为(1)()77.36 1.82(1)77.36 1.82 1.82f x f x x x +-=-+-+=-, 所以产量每增加1000件,单位成本约下降1.82元.2.(2021·安徽省六安中学高三开学考试)“关注夕阳、爱老敬老”—某马拉松协会从2013年开始每年向敬老院捐赠物资和现金.下表记录了第x 年(2013年是第一年)与捐赠的现金y (万元)的对应数据,由此表中的数据得到了y 关于x 的线性回归方程ˆ0.35ymx =+,则预测2019年捐赠的现金大约是( )A .5万元B .5.2万元C .5.25万元D .5.5万元 【答案】C【解析】由已知得,3456 2.534 4.54.5, 3.544x y ++++++====,所以样本点的中心点的坐标为(4.5,3.5),代入ˆ0.35ymx =+, 得3.5 4.50.35m =+,即0.7m =,所以ˆ0.70.35yx =+, 取7x =,得ˆ0.770.35 5.25y=⨯+=, 预测2019年捐赠的现金大约是5.25万元.3.(2021·全国高三专题练习)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验、某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:(1)请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;(2)求y关于x的线性回归方程,并预测该公司2020年2月份的市场占有率;(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的A、B两款车型报废年限各不相同,考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据、如果你是该公司的负责人,你会选择采购哪款车型?参考数据:621()17.5ii x x =-=∑,61()()35i i i x x y y =--=∑36.5≈参考公式:相关系数C ;回归直线方程为ˆˆˆybx a =+,其中121()()ˆ()niii nii x x y y b x x ==--=-∑∑,ˆˆay bx =- 【答案】(1)散点图见解析,可用线性回归模型拟合两变量之间的关系;(2)ˆ29y x =+,23%;(3)应选择B 款车型.【解析】(1)散点图如图所示,111316152021166y +++++==,∴621()76i i y y =-=∑,∴()()350.9636.5niix x y y r --====≈∑,∴两变量之间具有较强的线性相关关系, 故可用线性回归模型拟合两变量之间的关系;(2)121()()35217.5()ˆniii ni i x x y y bx x ==--===-∑∑,又1234563.56x +++++==, ∴ˆˆ162 3.59ay bx =-=-⨯=,∴回归直线方程为ˆ29y x =+; ∴2020年2月的月份代码7x =,∴27923y =⨯+=, ∴估计2020年2月的市场占有率为23%;(3)用频率估计概率,A 款单车的利润X 的分布列为:∴()5000.100.35000.410000.2350E X =-⨯+⨯+⨯+⨯=(元),B 款单车的利润Y 的分布列为:∴()3000.152000.47000.3512000.1400E Y =-⨯+⨯+⨯+⨯=(元), 以每辆单车产生利润的期望值为决策依据,故应选择B 款车型.4.(2021·全国高三专题练习)近年来,“双11”网购的观念逐渐深入人心.某人统计了近5年某网站“双11”当天的交易额,,统计结果如下表:(1)请根据上表提供的数据,用相关系数r 说明y 与x 的线性相关程度,线性相关系数保留三位小数.(统计中用相关系数r 来衡量两个变量之间线性关系的强弱.若相应于变量x 的取值i x ,变量y 的观测值为i y (1i n ≤≤),则两个变量的相关系数的计算公式为:.统计学认为,对于变量,如果[]1,0.75r -∈-,那么负相关很强;如果[]0.751r ∈,,那么正相关很强;如果(]0.75,0.30r ∈--或[)0.30,0.75r ∈,那么相关性一般;如果[]0.25,0.25r ∈-,那么相关性较弱);(2)求出关于x 的线性y 回归方程,并预测2020年该网站“双11”当天的交易额.参考公式:121()()()ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆay bx =-43.1≈. 【答案】(1)0.998;变量y 与x 的线性相关程度很强;(2)ˆ 4.3 4.1yx =+;29.9百亿元. 【解析】(1)由题意,根据表格中的数据, 可得:1(12345)35x =++++=,1(912172126)175y =++++=,则1()()(13)(917)(53)(2617)43niii x x y y =--=--++--=∑,43.1=≈,所以()()430.99843.1niix x y y r --==≈∑ 所以变量y 与x 的线性相关程度很强.(2)由(1)可得3x =,17y =,1()()43niii x x y y =--=∑,又由2221222(13)(23)(3(3)(43)(53)1)0nii x x ==-+-+-+-+-=-∑,所以121()()43 4.30)ˆ1(niii ni i x x y y bx x ==--===-∑∑,则ˆˆ17 4.33 4.1a y bx=-=-⨯=, 可得y 关于x 的线性回归方程为ˆ 4.3 4.1y x =+ 令6x =,可得ˆ 4.36 4.129.9y=⨯+=, 即2020年该网站“双11”当天的交易额29.9百亿元.考向二 独立性检验【例2】(2021·江苏泰州市·高三期末)2021年是脱贫攻坚的收官之年,国务院扶贫办确定的贫困县全部脱贫摘帽,脱贫攻坚取得重大胜利,为确保我国如期全面建成小康社会,实现第一个百年奋斗目标打下了坚实的基础在产业扶贫政策的大力支持下,西部某县新建了甲、乙两家玩具加工厂,加工同一型号的玩具质监部门随机抽检了两个厂的各100件玩具,在抽取中的200件玩具中,根据检测结果将它们分成“A ”、“B ”、“C ”三个等级,A 、B 等级都是合格品,C 等级是次品,统计结果如下表所示:(表一)(表二)在相关政策扶持下,确保每件合格品都有对口销售渠道,但从安全起见,所有的次品必须由原厂家自行销.(1)请根据所提供的数据,完成上面的2×2列联表(表二),并判断是否有95%的把握认为产品的合格率与厂家有关?(2)每件玩具的生产成本为30元,A 、B 等级产品的出厂单价分别为60元、40元.另外已知每件次品的销毁费用为4元.若甲厂抽检的玩具中有10件为A 等级,用样本的频率估计概率,试判断甲、乙两厂能否都能盈利,并说明理由.附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【答案】(1)列联表答案见解析,没有95%的把握认为产品的合格率与厂家有关;(2)甲厂能盈利,乙不能盈利,理由见解析. 【解析】(1)2×2列联表如下()2220075352565 2.38 3.84110010014060K ⨯⨯-⨯=≈<⨯⨯⨯,∴没有95%的把握认为产品的合格率与厂家有关.(2)甲厂10件A 等级,65件B 等级,25件次品, 对于甲厂,单件产品利润X 的可能取值为30,10,34-.X 的分布列如下:()3010341010204E X ∴=⨯+⨯-⨯=>, ∴甲厂能盈利,对于乙厂有10件A 等级,55件B 等级,35件次品, 对于乙厂,单位产品利润Y 的可能取值为30,10,34-,Y 分布列如下:()30103401020205E Y ∴=⨯+⨯-⨯=-<,乙不能盈利. 【举一反三】1.(2021·山东高三专题练习)共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2021年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列22⨯列联表,并根据列联表的独立性检验,判断是否有85%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表(2)将(1)中频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量X,求X的分布列与期望.参考数据:独立性检验界值表其中,22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++【答案】(1)列联表见解析,有85%的把握可以认为经常使用共享单车与年龄有关;(2)分布列见解析,数学期望为0.3.【解析】(1)补全的列联表如下:于是100a =,20b =,60c =,20d =,∴22200(100206020) 2.083 2.0721208016040K ⨯⨯-⨯=≈>⨯⨯⨯,即有85%的把握可以认为经常使用共享单车与年龄有关. (2)由(1)的列联表可知,经常使用共享单车的“非年轻人”占样本总数的频率为20100%10%200⨯=, 即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1, ∵~(3,0.1)X B ,0,1,2,3X =∴3(0)(10.1)0.729P X ==-=,(1)0.243P X ==(2)0.027P X ==,3(3)0.10.001P X ===,∴X 的分布列为E X=⨯=.∴X的数学期望()30.10.3【举一反三】1.(2021·全国高三专题练习)某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21 改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36 (1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?(2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T天(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(以120天计)内的维护方案:T=30,k=1,2,3,4.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.附:22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)见解析,有99%的把握认为技术改造前后的连续正常运行时间有差异.(2)见解析;均值为2.275万元. 【解析】(1)列联表为:()224055151510 6.63520202020K ⨯-⨯∴==>⨯⨯⨯∴有99%的把握认为技术改造前后的连续正常运行时间有差异.(2)由题知,生产周期内有4个维护周期,一个维护周期为30天,一个维护周期内,生产线需保障维护的概率为14P =. 设一个生产周期内需保障维护的次数为ξ,则1~4,4B ξ⎛⎫⎪⎝⎭;一个生产周期内的正常维护费为0.542⨯=万元,保障维护费为()()20.210.10.12ξξξξ⨯+=+万元.∴一个生产周期内需保障维护ξ次时的生产维护费为()20.10.12ξξ++万元.设一个生产周期内的生产维护费为X ,则X 的所有可能取值为2,2.2,2.6,3.2,4.()4181214256P X ⎛⎫==-= ⎪⎝⎭ ()31411272.214464P X C ⎛⎫==-= ⎪⎝⎭ ()222411272.6144128P X C ⎛⎫⎛⎫==-=⎪ ⎪⎝⎭⎝⎭ ()3341133.214464P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭ ()41144256P X ⎛⎫=== ⎪⎝⎭所以,X 的分布列为()2 2.2 2.6 3.242566412864256E X ∴=⨯+⨯+⨯+⨯+⨯ 162237.6140.438.44582.4 2.275256256++++===∴一个生产周期内生产维护费的均值为2.275万元.2.(2021·四川成都市·高三一模)一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:(1)根据列联表判断是否有95%的把握认为“网红乡土直播员”与性别有关系?(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.设被选中的2名“乡土直播推广大使”中男性人数为ξ,求ξ的分布列和期望.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)分布列见解析;期望为23. 【解析】(1)由题中22⨯列联表,可得()2210010302040 4.762 3.84150503070K ⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系. (2)在“网红乡土直播员”中按分层抽样的方法抽取6人, 男性人数为106230⨯=人;女性人数为206430⨯=人. 由题,随机变量ξ所有可能的取值为0,1,2.()022426620155CC P C ξ====,()1124268115C C P C ξ===,()2024261215C C P C ξ===, ∴ξ的分布列为∴ξ的数学期望()28110201251515153E ξ=⨯+⨯+⨯==. 考向三 非一次性回归方程【例3-1】(2021·全国高三专题练习)在一项调查中有两个变量x 和y ,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y 关于x 的回归方程的函数类型是( )A .y a bx =+B .y c =+C .2y m nx =+D .xy p qc =+(0q >)【答案】B【解析】散点图呈曲线,排除A 选项,且增长速度变慢,排除选项C 、D ,故选B .【例3-2】.(2021·全国高三专题练习)根据公安部交管局下发的通知,自2021年6月1日起,将在全国开展“一盔一带”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔,为的就是让大家重视交通安全.某地交警部门根据某十字路口的监测数据,从穿越该路口的骑行者中随机抽查了200人,得到如图所示的列联表:(1)是否有97.5%的把握认为自觉带头盔行为与性别有关?(2)通过一定的宣传和相关处罚措施出台后,交警在一段时间内通过对某路口不带头盔的骑行者统计,得到上面的散点图和如下数据:观察散点图,发现两个变量不具有线性相关关系,现考虑用函数y ax=+对两个变量的关系进行拟合,通过分析得y与1有一定的线性相关关系,并得到以下参考数据(其中1w=):请选择合适的参考数据,求出y关于x的回归方程.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++.) 2k对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为:1221ˆni i i ni i u v nuvunu β==-=-∑∑,ˆˆv u αβ=-. 【答案】(1)没有;(2)100ˆ10yx=+. 【解析】(1)由列联表计算22200(30701090)754.68755.024120804016016K ⨯⨯-⨯===<⨯⨯⨯.故没有97.5%的把握认为骑行者自觉带头盔行为与性别有关. (2)由1w x =,则by a x =+可转化为y a bw =+,又306516y ==, 得6162216173.860.415148.34ˆ1001.49260.16810.48346i ii ii w y wybww ==--⨯⨯====-⨯-∑∑,则ˆˆ511000.4110ay bw =-=-⨯=. 故y 关于x 的回归方程为100ˆ1010010yw x=+=+ 【举一反三】1.(2021·河南周口市·高三月考)已知变量y 关于变量x 的回归方程为0.5ˆbx ye -=,其一组数据如下表所示:若9.1ˆye =,则x =( ) A .5B .6C .7D .8 【答案】B【解析】由0.5ˆbx ye -=,得n 0ˆl .5ybx =-,令ln z y =,则0.5z bx =-,由题意,12342.54x +++==,1346 3.54z +++==,因为(),x z 满足0.5z bx =-,所以3.5 2.50.5b =⨯-,解得 1.6b =, 所以 1.60.5z x =-,所以 1.60.5ˆx ye -=,令 1.60.59.1x e e -=,解得6x =.故选:B.2.(2021·全国高三专题练习)近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:表:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内y a bx =+与xy c d =⋅(c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断,不必说明理由); (2)根据(1)的判断结果及表中的数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠,预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要()*n n N ∈年才能开始盈利,求n 的值.参考数据:其中lg i i v y =,7117ii v v ==∑ 参考公式:对于一组数据(),i i u v ,()22,u v ,…,(),n n u v ,其回归直线v a u β=+的斜率和截距的最小二乘估计公式分别为:1221ni i i n i i u v nuv u nuβ==-=-∑∑,a v u β=-.【答案】(1)xy c d =⋅;(2)0.253.4710x y =⨯,347;(3)7.【解析】(1)因为散点近似在指数型函数的图象上,所以xy c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型:(2)∵xy c d =⋅,两边同时取常用对数得:()lg lg lg lg xy c dc xd =⋅=+;设lg y v =,∴lg lg v c x d =+,∵4x =, 1.54v =,721140i i x ==∑, ∴717221750.1274 1.547lg 0.25140716287i i i ii x v xv d x x ==--⨯⨯====-⨯-∑∑,把样本中心点()4,1.54代入lg 0.25v c x =+,得:lg 0.54c =,∴0540.25v x =+,∴lg 0.540.25y x =+,∴y 关于x 的回归方程式:0.540.250.540.250.25101010 3.4710x x x y +==⨯=⨯; 把8x =代入上式:∴0.2583.4710347y ⨯=⨯=; 活动推出第8天使用扫码支付的人次为347;(3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4;()20.1P Z ==;()11.80.30.152P Z ==⨯=;()11.60.60.30.73P Z ==+⨯=;()11.40.30.056P Z ==⨯= 所以,一名乘客一次乘车的平均费用为:20.1 1.80.15 1.60.7 1.40.05 1.66⨯+⨯+⨯+⨯=(元), 由题意可知:1.661120.6612800n n ⨯⨯⋅-⨯⋅->,203n >,所以,n 取7;估计这批车大概需要7年才能开始盈利. 3.(2021·全国高三专题练习)某公司研发了一种帮助家长解决孩子早教问题的萌宠机器人.萌宠机器人语音功能让它就像孩子的小伙伴一样和孩子交流,记忆功能还可以记住宝宝的使用习惯,很快找到宝宝想听的内容.同时提供快乐儿歌、国学经典、启蒙英语等早期教育内容,且云端内容可以持续更新.萌宠机器人一投放市场就受到了很多家长欢迎.为了更好地服务广大家长,该公司研究部门从流水线上随机抽取100件萌宠机器人(以下简称产品),统计其性能指数并绘制频率分布直方图(如图1):产品的性能指数在[)50,70的适合托班幼儿使用(简称A 类产品),在[)70,90的适合小班和中班幼儿使用(简称B 类产品),在[]90,110的适合大班幼儿使用(简称C 类产品),A ,B ,C ,三类产品的销售利润分别为每件1.5,3.5,5.5(单位:元).以这100件产品的性能指数位于各区间的频率代替产品的性能指数位于该区间的概率. (1)求每件产品的平均销售利润;(2)该公司为了解年营销费用x (单位:万元)对年销售量y (单位:万件)的影响,对近5年的年营销费用i x ,和年销售量()1,2,3,4,5i y i =数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中ln i i u x =,ln i i y υ=,5115i i u u ==∑,5115i i υυ==∑.根据散点图判断,by a x =⋅可以作为年销售量y (万件)关于年营销费用x (万元)的回归方程.(i )建立y 关于x 的回归方程;(ii )用所求的回归方程估计该公司应投入多少营销费,才能使得该产品一年的收益达到最大? (收益=销售利润-营销费用,取 4.15964e =). 参考公式:对于一组数据()()()1122,,,,,,n n u u u υυυ,其回归直线u υαβ=+的斜率和截距的最小二乘估计分别为()()()121ˆnii i nii uu uuυυβ==--=-∑∑,ˆˆu αυβ=-. 【答案】(1)每件产品的平均销售利润为4元(2)(i )1464y x =(ii )该厂应投入256万元营销费. 【解析】(1)设每件产品的销售利润为ξ元,则ξ的所有可能取值为1.5,3.5,5.5, 由直方图可得,A ,B ,C 三类产品的频率分别为0.15、0.45、0.4, 所以,()1.50.15P ξ==,()3.50.45P ξ==,()5.50.4P ξ==, 所以随机变量ξ的分布列为:所以, 1.50.15 3.50.45 5.50.44E ξ=⨯+⨯+⨯=, 故每件产品的平均销售利润为4元;(2)(i )由by a x =⋅得,()ln ln ln ln by a xa b x =⋅=+,令ln u x =,ln y υ=,ln c a =,则c bu υ=+,由表中数据可得,()()()515210.41ˆ0.251.61ii i ii uu buuυυ==--===-∑∑, 则24.8716.30ˆˆ0.25 4.15955cbu υ=-=-⨯=, 所以,ˆ 4.1590.25u υ=+,即14.1594ˆln 4.1590.25ln ln y x e x ⎛⎫=+=⋅ ⎪⎝⎭, 因为 4.15964e =,所以14ˆ64y x =, 故所求的回归方程为1464y x =;(ii )设年收益为z 万元,则()14256z E y x x x ξ=⋅-=-, 设14t x =,()4256f t t t =-,则()()332564464f t t t'=-=-,当()0,4t ∈时,()0f t '>,f t 在()0,4单调递增, 当()4t ,∈+∞时,()0f t '<,ft 在()4,+∞单调递减,所以,当4t =,即256x =时,z 有最大值为768,即该厂应投入256万元营销费,能使得该产品一年的收益达到最大768万元.1.(2021·全国高三专题练习)给出下列说法:①回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,且至少过一个样本点; ②两个变量相关性越强,则相关系数||r 就越接近1; ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程ˆ20.5y x =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位. 其中说法正确的是( )A .①②④B .②③④C .①③④D .②④ 【答案】B【解析】对于①中,回归直线ˆˆˆybx a =+恒过样本点的中心(,)x y ,但不一定过一个样本点,所以不强化练习正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数||r 就越接近1,所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程ˆ20.5y x =-中,当解释变量x 增加一个单位时,预报变量ˆy平均减少0.5个单位,所以是正确的. 故选:B.2.(2021·全国高三专题练习)对两个变量x 、y 进行线性相关检验,得线性相关系数10.7859r =,对两个变量u 、v 进行线性相关检验,得线性相关系数20.9568r =-,则下列判断正确的是( ) A .变量x 与y 正相关,变量u 与v 负相关,变量x 与y 的线性相关性较强 B .变量x 与y 负相关,变量u 与v 正相关,变量x 与y 的线性相关性较强 C .变量x 与y 正相关,变量u 与v 负相关,变量u 与v的线性相关性较强D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强 【答案】C【解析】由线性相关系数10.78590r =>知x 与y 正相关, 由线性相关系数20.95680r =-<知u 与v 负相关,又12r r <,所以,变量u 与v 的线性相关性比x 与y 的线性相关性强, 故选:C.3.(2021·河南新乡市·高三一模)2020年的“金九银十”变成“铜九铁十”,全国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区2019年11月至2020年11月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月份代码113分别对应2019年11月2020年11月)根据散点图选择y a =+ln y c d x =+两个模型进行拟合,经过数据处理得到的两个回归方程分别为0.9369y =+0.95540.0306ln y x =+,并得到以下一些统计量的值:注:x 是样本数据中x 的平均数,y 是样本数据中y 的平均数,则下列说法不一定成立的是( ) A .当月在售二手房均价y 与月份代码x 呈正相关关系B .根据0.9369y =+2021年2月在售二手房均价约为1.0509万元/平方米C .曲线0.9369y =+0.95540.0306ln y x =+的图形经过点(),x yD .0.95540.0306ln y x =+回归曲线的拟合效果好于0.9369y =+ 【答案】C【解析】对于A ,散点从左下到右上分布,所以当月在售二手房均价y 与月份代码x 呈正相关关系,故A 正确;对于B ,令16x =,由0.9369 1.0509y =+=,所以可以预测2021年2月在售二手房均价约为1.0509万元/平方米,故B 正确; 对于C ,非线性回归曲线不一定经过(),x y ,故C 错误; 对于D ,2R 越大,拟合效果越好,故D 正确.故选:C.4.(2021·全国高三专题练习)对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .24310r r r r <<<<B .42130r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<< 【答案】A【解析】由给出的四组数据的散点图可以看出,题图1和题图3是正相关,相关系数大于0, 题图2和题图4是负相关,相关系数小于0,题图1和题图2的点相对更加集中,所以相关性更强,所以1r 接近于1,2r 接近于1-, 由此可得24310r r r r <<<<. 故选:A .5.(2021·邵阳市第二中学高三其他模拟(文))某种产品的广告费支出x 与销售额y (单位:万元)。
(整理)两个变量间的线性相关及回归方程的求法专题.

两个变量间的线性相关及回归方程的求法专题一、如何认识两个变量间的相关关系相关关系我们可以从以下三个方面加以认识:(1)相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S与边长x之间的关系2xS 就是函数关系.即对于边长x的每一个确定的值,都有面积S的惟一确定的值与之对应.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如人的身高与年龄;商品的销售额与广告费等等都是相关关系.(2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系.然而学会新词并不能使儿童马上长高,而是涉及到第三个因素——年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大身高也会高些.(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化.例如正方形面积S与其边长x间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可使我们对函数关系的认识上升到一个新的高度.二、如何判断两个变量线性相关关系1、利用变量相关关系的概念利用变量相关关系的概念判断时,一般是看当一个变量的值一定时,另一个变量是否带有确定性,两个变量之间的关系具有确定关系--函数关系;两个变量之间的关系具有随机性,不确定性--相关关系。
例1、在下列各个量与量的关系中:①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的收入与支出之间的关系;⑤某户家庭用电量与水费之间的关系。
高中数学知识点:线性回归方程

高中数学知识点:线性回归方程
线性回归方程是高中数学中的一个重要知识点。
其中,回归直线是指通过散点图中心的一条直线,表示两个变量之间的线性相关关系。
回归直线方程可以通过最小二乘法求得。
具体地,可以设与n个观测点(xi,yi)最接近的直线方程为
y=bx+a,其中a、b是待定系数。
然后,通过计算n个偏差的平方和来求出使Q为最小值时的a、b的值。
最终得到的直线方程即为回归直线方程。
需要注意的是,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义。
因此,在进行线性回归分析时,应先看其散点图是否成线性。
另外,求回归直线方程时,需要仔细谨慎地进行计算,避免因计算产生失误。
回归直线方程在现实生活与生产中有广泛的应用。
这种方程可以将非确定性问题转化为确定性问题,从而使“无序”变得“有序”,并对情况进行估测和补充。
因此,研究回归直线方程后,学生应更加重视其在解决相关实际问题中的应用。
注:原文已经没有格式错误和明显有问题的段落。
第十六章 Logistic回归

(二)病例与对照匹配---条件logistic回归 匹配或称配比(matching),即要求对照在某些因素或特
征上与病例保持一致,目的是对两组比较时排除混杂因素的干 扰。匹配分为成组匹配和个体匹配。
(二)病例与对照匹配---条件logistic回归
的logistic回归方程。
资料:1.应变量为反映某现象发生与不发生的二值变量;多项分
类的资料或有序分类 2.自变量宜全部或大部分为分类变量,可有少数数值变量。
分类变量要数量化。
logistic回归的分类
根据研究设计的类型分为: (1)非条件logistic回归 (2)条件logistic回归
根据应变量的类型分为: (1)二分类资料logistic回归:可用非条件logistic回归和条件
logistic回归分析概述
Logistic回归的定义:
属于概率型非线性回归,是研究二分类或多分类
观察结果与一些影响因素之间关系的一种多变量分析 方法。
它是以疾病发生概率为应变量,影响疾病发生的 因子为自变量,分析疾病与致病因子之间联系的一种 回归分析法。
logistic回归分析概述
目的:作出以多个自变量(危险因素)估计应变量(结果因素)
a/c b/d
ad bc
d /(b d )
队列研究资料
暴露
疾病 . 病例 非病例 合计
+
a
b
a+b=n1
-
c
d
c+d=n0
合计 a+c=m1 b+d=m0
t
RR a /(a b) c /(c d )
病例对照研究的类型
计量经济学复习笔记(二):一元线性回归(下)

计量经济学复习笔记(⼆):⼀元线性回归(下)回顾上⽂,我们通过OLS推导出了⼀元线性回归的两个参数估计,得到了以下重要结论:ˆβ1=∑x i y i∑x2i,ˆβ0=¯Y−ˆβ1¯X.注意总体回归模型是Y=β0+β1X+µ,同时我们还假定了µ∼N(0,σ2),这使得整个模型都具有正态性。
这种正态性意味着许多,我们能⽤数理统计的知识得到点估计的优良性质,完成区间估计、假设检验等,本⽂就来详细讨论上述内容。
1、BLUE我们选择OLS估计量作为⼀元线性回归的参数估计量,最主要的原因就是它是最⼩⽅差线性⽆偏估计(Best Linear Unbiased Estimator),这意味着它们是:线性的。
⽆偏的。
最⼩⽅差的。
不过,光给你这三个词,你可能会对定义有所困扰——⽐如,关于什么线性?⼜关于什么是⽆偏的?我们接下来就对OLS估计量的BLUE性详细讨论,包括简单证明。
原本我认为,证明在后⾯再给出会更合适,引⼊也更顺畅,但是我们接下来要讨论的许多,都有赖于OLS估计量的BLUE性,因此我还是决定将这部分内容放在这⾥。
⾸先是线性性,它指的是关于观测值Y i线性,这有什么意义呢?注意到,在之前的讨论中,我们总讨论在给定X的取值状况下的其他信息,如µ的条件期望、⽅差协⽅差等,因此我们往往会在这部分的讨论中将X视为常数(⽽不是随机变量)看待,这会带来⼀些好处。
⽽因为µ∼N(0,σ2)且µi是从µ中抽取的简单随机样本,且µi与X i⽆关,所以由正态分布的性质,有Y i|X i∼N(β0+β1X i,σ2).实际上,由于参数真值β1,β1是常数,所以每⼀个Y i在给定了X i的⽔平下,都独⽴地由µi完全决定,⽽µi序列不相关(在正态分布的情况下独⽴),所以Y i之间也相互独⽴。
这样,如果有⼀个统计量是Y i的线性组合,那么由正态分布的可加性,这个统计量就⾃然服从正态分布,从⽽我们可以很⽅便地对其进⾏参数估计、假设检验等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455
1、定义: 自变量取值一定时,因变量的取值带有一
定随机性的两个变量之间的关系叫做相关关系。
注 1):相关关系是一种不确定性关系; 2):对具有相关关系的两个变量进行 统计分析的方法叫回归分析。
虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它 所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的 回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用 于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。
回归分析的内容与步骤: 回归分析通过一个变量或一些变量的变化解释另一变量的变化。
其主要内容和步骤是,
首先根据理论和对问题的分析判断,将变量分为自变量和因变量; 其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系; 由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;
小结:求回归直线方程的步骤
(1)作散点图,通过图看出样本点是否呈条状分 布,进而判断两个量是否具有线性相关关系。
(2)所求直线方程 yˆ = bˆ x +叫aˆ做回归直线方程;
其中
n
n
y bˆ =
(xi - x)(yi - y)
i=1 n
=
(xi - x)2
xi
- nxy
i
i=1
n xi2 - nx2
根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。 虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此, X和Y之间存在一种相关关系。
一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身 高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈 的身高有向中心回归的特点。“回归”一词即源于此。
,
i=1
i=1
aˆ = y - bˆ x
(3)根据回归方程,并按要求进行预测说明。
第一章 统计案例
1.1回归分析的基本思想及其初步应用
(第二课时)
a. 比《数学3》中“回归”增加的内容
数学3——统计
1. 画散点图 2. 了解最小二乘法
的思想 3. 求回归直线方程
y=bx+a
4. 用回归直线方程 解决应用问题
2.2
3.8
5.5
6.5
7.0
若由此资料所知y对x呈线性相关关系,试求: 1.回归直线方程 2.估计使用年限为10年时,维修费用是多少? 解题步骤:
1.作散点图
2.把数据列表,计算相应的值,求出回归系数 3.写出回归方程,并按要求进行预测说明。
例2 (2007年广东)下表提供了某厂节能降耗技术改造后生产 甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准 煤)的几组对应数据。
xi2 - nx2
,
i=1
aˆ =y-bˆx.
其中x
=
1 n
n xi,y i=1
=
1 n
n yi. i=1
(x,y) 称为样本点的中心。
2、回归直线方程:
(1)所求直线方程 yˆ = bˆ x +叫aˆ做回归直线方程;
其中
n
ny bˆ =ຫໍສະໝຸດ (xi - x)(yi - y)
i=1 n
=
(xi - x)2
2、现实生活中存在着大量的相关关系。
如:人的身高与年龄; 产品的成本与生产数量; 商品的销售额与广告费; 家庭的支出与收入。等等
探索:水稻产量y与施肥量x之间大致有何 规律?
施化肥量x 15 20 25 30 35 40 45 水稻产量y 330 345 365 405 445 450 455
y
xi
- nxy
i
i=1
n xi2 - nx2
,
i=1
i=1
aˆ = y - bˆ x
(2)相应的直线叫做回归直线。 (3)对两个变量进行的线性分析叫做线性回归分析。
(注意回归直线一定经过样本点的中心)
例1 假设关于某设备的使用年限x和所有支出的维修费用y(万 元)有如下的统计数据:
x
2
3
4
5
6
Y
必修3(第二章 统计)知识结构
收集数据
(随机抽样)
整理、分析数据估 计、推断
用样本估计总体 变量间的相关关系
简 分 系 用样本的 用样本数
线
单层 统 随抽 抽 机样 样 抽
频率分 布估计 总体分
字特征 估计总 体数字
性 回 归 分
样
布
特征
析
统计的基本思想
实际
样本
抽样
y = f(x)
分 析
y = f(x)
500 水稻产量
450 400 350
··· ·
300 ···
散点图 施化肥量
10 20 30 40 50
x
探索2:在这些点附近可画直线不止一条,
哪条直线最能代表x与y之间的关系呢?
发现:图中各点,大致分布在某条直线附近。
y 水稻产量 500
450
· · 400
(xi ,yi )
·· 350 |yi - yi |
模 拟
y = f(x)
回顾变量之间的两种关系
问题1:正方形的面积y与正方形的边长x之间 的函数关系是
y = x2
确定性关系
问题2:某水田水稻产量y与施肥量x之间是否
-------有一个确定性的关系?
例如:在 7 块并排、形状大小相同的试验田 上 进行施肥量对水稻产量影响的试验,得到 如下所示的一组数据:
选修1-2——统计案例 5. 引入线性回归模型
y=bx+a+e 6. 了解模型中随机误差项e产
生的原因
7. 了解相关指数 R2 和模型拟
合的效果之间的关系 8. 了解残差图的作用
9. 利用线性回归模型解决一类 非线性回归问题
10.正确理解分析方法与结果
什么是回归分析:
“回归”一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。
X
3
4
y
2.5
3
5
6
4
4.5
(1)请画出上表数据的散点图
(2)请根据上表提供的数据,用最小二乘法求出y关于x的
性回归方程 y bˆx aˆ
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准 煤,试根据(2)求出的线性回归方程,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:32.5 43 54 64.5 66.5 )
··· 300
(xi ,yi )
怎样求回归直线? 施化肥量
10
20
30
40x
50
n
Q(a,b)= (yi - bxi - a)2 取最小值时,a,b的值.
i=1
最小二乘法:yˆ = bˆ x + aˆ
n
n
bˆ =i=1i(n=x1i(-xxi)-(xy)i2-y) =
xiyi - nxy
i=1 n