《圆锥的体积1》导学案

合集下载

2024年人教版数学六年级下册圆锥的体积导学案推荐3篇

2024年人教版数学六年级下册圆锥的体积导学案推荐3篇

人教版数学六年级下册圆锥的体积导学案推荐3篇〖人教版数学六年级下册圆锥的体积导学案第【1】篇〗一、回顾旧知识1、回顾长方体、正方体和圆柱的体积计算公式。

2、你能说出圆锥各部分的名称吗?设计意图:通过对旧知的自主整理,回忆起与本课学习的有关知识,为本课的学习做好铺垫。

二、创设情景,激发兴趣师:笑笑过生日请同学吃,看!(课件出示大小不一样两种冰淇淋)这些冰淇淋的形状近似于我们已学过的哪种图形(圆锥)。

如果它们的价钱相同,你认为应该买哪种最划?为什么?师:这个问题要考虑的就是圆锥的体积。

今天,我们就一起来学习“圆锥的体积”。

(板书:圆锥的体积。

)设计意图:以生活中的数学的形式进行设置情景,从生活中引入数学,引疑激趣,激发学生好奇心和求知欲。

三、大胆猜想,实验探究活动一:圆锥的体积与什么有关系?1、猜想:圆锥的体积与底面大小和高有关系。

2、简单验证:课件出示几组圆锥,一组等底不等高,另一组等高不等底。

3、集体小结:圆锥体积的大小与它的底面大小和高有关系。

4、再次提出问题:圆锥体积的大小与它的底面大小和高有什么关系?设计意图:活动一要求学生结合生活经验和已有的知识经验去判断,通过活动一,点出本节课要探究的问题,先让生发现影响圆锥的体积的因素,接着再研究具体的关系。

活动一为活动二的探究活动的开展作好铺垫。

活动二:圆锥体积的大小与它的底面大小和高有什么关系?1、大胆猜想:计算公式:V=Sh图片师:通过上面的猜想发现圆锥的体积计算公式与圆柱一样,那实际真的一样吗?那我们就一起来研究一下。

师:要研究圆锥体积的大小与它的底面大小和高之间的关系,直接研究方便吗?要借助什么物体?预设:借助与圆锥等底等高的圆柱。

(学生得出:底面积相等,高也相等。

)?师:底面积相等,高也相等,在数学上就叫"等底等高"。

?师:选择与圆锥等底等高的圆柱使得控制变量较少,实验好操作。

其他变量不变,就只要看两个变量之间的关系,便于观察得出结论。

2023年人教版数学六年级下册第13课圆锥的体积导学案(精选3篇)

2023年人教版数学六年级下册第13课圆锥的体积导学案(精选3篇)

人教版数学六年级下册第13课圆锥的体积导学案(精选3篇)〖人教版数学六年级下册第13课圆锥的体积导学案第【1】篇〗设计意图:本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。

这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。

教学目标:1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。

2、会应用公式计算圆锥的体积并解决一些实际问题。

3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。

教学重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题教学难点:圆锥体积计算方法和推导过程。

教学过程:一、复习铺垫:1、揭示课题:今天我们一起来探究如何计算圆锥的体积。

2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。

如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?二、实验操作:1、请看接下来的2个实验:2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。

3、播放视频:实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。

实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。

4、通过实验你们发现了什么?三、公式推导:1、通过两次的实验我们可以得出结论:圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。

2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。

最新人教版六年级数学下《圆锥的体积》导学案

最新人教版六年级数学下《圆锥的体积》导学案

最新人教版六年级数学下《圆锥的体积》导学案一、导语本导学案是针对最新人教版六年级数学下的《圆锥的体积》一节的研究内容编写的。

通过本导学案,学生将了解圆锥的概念、体积的计算公式以及解决与圆锥体积有关的问题的方法。

同时,学生也将通过实际例题和练题的解答,锻炼自己的数学运算能力。

二、研究目标- 了解圆锥的定义和特点;- 掌握计算圆锥体积的公式;- 练解决与圆锥体积有关的问题。

三、研究内容本节课的研究内容包括以下几个方面:1. 圆锥的定义和特点;2. 圆锥体积的计算公式;3. 与圆锥体积有关的例题和练题。

四、研究步骤步骤一:圆锥的定义和特点1. 请阅读教材中关于圆锥定义和特点的内容;2. 理解圆锥的形状特点,记下关键信息。

步骤二:圆锥体积的计算公式1. 请仔细研究圆锥体积的计算公式及其推导过程;2. 将公式记忆并理解其意义。

步骤三:例题解析1. 阅读教材中的例题,仔细观察题目中给出的信息;2. 运用圆锥体积的计算公式,解答例题。

步骤四:练题训练1. 完成教材中相关的练题;2. 针对解答错误或不熟悉的题目,及时纠正和讨论。

步骤五:总结和拓展1. 总结本节课研究的重点内容和关键知识点;2. 通过讨论和思考,进一步拓展与圆锥体积相关的问题。

五、研究反思通过本节课的研究,我对圆锥的体积计算有了更深入的理解。

同时,在解答例题和练题的过程中,我对数学运算能力也有了一定的提高。

在以后的研究中,我会继续努力,巩固和拓展所学知识。

六、延伸阅读如果你对圆锥的体积计算感兴趣,可以进一步阅读以下参考资料:1. 《小学数学教材辅助教学手册》;2. 《圆锥的体积计算方法详解》。

这些资料将帮助你更全面地了解和掌握圆锥的体积计算方法。

祝你学习进步!。

2024年人教版数学六年级下册圆锥的体积导学案3篇

2024年人教版数学六年级下册圆锥的体积导学案3篇

人教版数学六年级下册圆锥的体积导学案3篇〖人教版数学六年级下册圆锥的体积导学案第【1】篇〗一、教案背景1.面向学生:小学2.学科:数学人教六年级下学期3.课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。

本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。

圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。

圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。

通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:1.理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2.经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3.培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。

鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

四、学情分析:学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。

人教版数学六年级下册圆锥的体积导学案3篇2024

人教版数学六年级下册圆锥的体积导学案3篇2024

人教版数学六年级下册圆锥的体积导学案3篇2024〖人教版数学六年级下册圆锥的体积导学案第【1】篇〗教学目标1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

、2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。

3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法、教学重难点教学重点:圆锥的体积计算。

教学难点:圆锥的体积计算公式的推导。

教学工具ppt课件。

教学过程一、导入新课1、出示铅锤师:同学们,我们刚认识了圆锥,在学习“圆锥的认识”时认识了这个物体—铅锤。

铅锤的外形是圆锥形的,这个铅锤所占空间的大小叫做这个铅锤的体积。

问:你们有没有办法来测量这个铅锤的体积?生:排水法师:同学们回答很积极,想到了之前学过的排水法,那咱们对这个方法进行一下评价(学生想到了,并不是所有的圆锥都可以用排水法来测量体积。

比如一些庞大的圆锥形物体)2、PPT出示圆锥形麦堆和圆锥形的高大的建筑物像这种比较大的圆锥形的物体就不适合用排水法测量体积,所以我们需要找到一个解决此类问题的普遍的方法。

出示课题圆锥的体积二、探究新知1、回忆师:我们学过那些形状的物体的体积的计算方法生:长方体正方体圆柱体(学生边说,师边PPT出示图片)师:我们在推导圆柱体体积的计算方法的时候是将圆柱体转化长方体或者正方体,转化前后体积不变,你觉得圆锥体和哪种形状的物体有关系呢?生:圆柱体师:为什么?生:圆锥体和圆柱体都有圆形的底面2、猜测师:既然大家都认为圆锥体和圆柱体由一定的关系,你能大胆猜测一下,圆锥体和圆柱体的体积之间有怎样的关系么?(学生猜测,找学生说说猜测的结果)3、验证师:有了猜测我们就通过实验来验证咱们的猜测(利用学具进行验证,一边实验,一边填写实验记录单)(找学生读一读表格中需要填写的内容,并提问,比较圆柱和圆锥的时候,是比较的什么?为学生的实验操作做一个引领。

圆锥的体积导学案1

圆锥的体积导学案1

《圆锥的体积》教学设计教学目标:1.通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。

2.培养观察—猜测—操作—逻辑思维能力和初步的空间观念。

3.通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

4.渗透知识间可以相互转化的辩证唯物主义思想,学习将新知识转化为原有知识的方法。

教学重点:圆锥体积计算公式的推导过程和运用公式解决问题。

教学难点:圆锥体积计算公式的推导过程。

教法:引导、讲解。

学法:自主、合作、交流。

教具学具:课件、等底等高的圆柱和圆锥体的容器、水。

教学过程一、情境导入:教师:同学们,随着社会经济的发展,许多高楼大厦在我们中牟大地拔地而起。

建造高楼离不了水泥、沙子、沙土等。

瞧,今天我就带来一些沙土,我把它倒到桌子上,看它形成了一个什么形状?学生:圆锥。

师:要求这些沙土占有多大的空间,是求它的什么?学生:体积。

师:你有什么办法知道它的体积?生1:把它装到圆柱形的杯子里。

然后求杯子的容积。

生2:也可以把它装到长方体或正方体的杯子里,然后求体积。

师:同学们想到了这么多切实可行的好方法,真好。

可是如果这是一大堆沙土,或是圆锥形的屋顶,圆锥形的铅锤等,再用这样的方法,你认为怎么样?生:不可行了。

师:看来我们还要寻求圆锥体积的计算方法,今天这节课,我们就来学习“圆锥的体积”。

二、交流展示,检测预习。

课前大家都做了预习,下边我们就结合预习检测题来交流一下。

1、回顾旧知识:(1)圆锥有什么特征?(2)我们会计算哪些图形的体积?2、过渡新知识:(1)猜一猜:我猜测圆锥的体积和它的()和()有关。

(2)想一想:要解决圆锥的体积这个新问题,我想到可以通过()体来研究,因为()。

3、研究新问题:书中第25页试验用的圆锥和圆柱的底面积和高有什么关系?为什么不用任意的圆柱和圆锥试验?三、实验探究,获取新知。

1、激起兴趣,明确要求师:真的像书中所说的那样吗?想不想亲自验证一下?生:想。

人教版数学六年级下册圆锥的体积导学案(推荐3篇)

人教版数学六年级下册圆锥的体积导学案(推荐3篇)

人教版数学六年级下册圆锥的体积导学案(推荐3篇)人教版数学六年级下册圆锥的体积导学案【第1篇】学情分析美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。

本节课是学生在认识了圆锥特征的基础上进行学习的。

圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。

学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。

但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。

为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。

教学过程一、复习旧知,铺垫孕伏1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?2.复习高的概念。

(1)什么叫圆锥的高?(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。

(提供刀片、橡皮泥模型等,帮助学生进行操作)评析:圆锥特征的复习简明扼要。

圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

二、创设情境,引发猜想1.电脑呈现出动画情境(伴图配音)。

夏天,森林里闷热极了,小动物们都热得喘不过气来。

一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。

这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。

小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。

(图中圆柱形和圆锥形的雪糕是等底等高的。

)2.引导学生围绕问题展开讨论。

问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。

(小白兔这时和狐狸换雪糕,你觉得公平吗?)问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

人教版数学六年级下册圆锥的体积导学案(推荐3篇)

人教版数学六年级下册圆锥的体积导学案(推荐3篇)

人教版数学六年级下册圆锥的体积导学案(推荐3篇)人教版数学六年级下册圆锥的体积导学案【第1篇】一、学习内容:教师提供小学数学六年级下册14页----17页。

二、学生提供:等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。

三、学习目标:1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。

2、经历类比猜想---验证说明的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。

四、重点难点:重点:圆锥的体积计算。

难点圆锥的体积公式推导。

关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。

五、学习准备:等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。

看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?长方形的长等于三角形的底,长方形的宽等于三角形的高。

你的发现真了不起。

这种情况在数学中叫做等底等高。

在等底等高的条件时,它们的面积又有什么样的关系呢?三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。

六、布置课前预习点拨自学1、圆柱和圆锥有哪些相同的地方?2、圆柱和圆锥有哪些不同的地方?3、圆锥的体积和圆柱的体积有什么关系呢?请小组开始讨论。

注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟!按照预习中学生存在的问题,教师加以点拨。

七、交流解惑:它们的底面积相等,高也相等圆柱有无数条高,圆锥只有一条高。

圆锥体积比圆柱小动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。

通过实验操作,得出了正确的科学的结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一。

组内交流组际解疑老师点拨八、合作考试1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底面半径约3分米,高约2.7分米,求沙堆的体积。

(只列式不计算)3、在打谷场上,有一个近似于圆锥的小麦堆,测底面直径是4米,高是1.2米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥的体积1 教学目标:
通过操作,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积.
活动单
导学案 调整与改进 【活动方案】
活动一:提出猜想巧验证
下面的圆柱和圆锥的底面积相等,高也相
等。

1.估计一下:上图中圆锥的体积是圆柱的几分之几?
2.动手操作:用课前住备好的等底等高的圆柱和圆锥形空容器,先在圆锥形容器里装满水,再小心地倒入圆柱形容器里,看几次正好倒满? 3.交流各组实验结果。

4. 想一想:等底等高的圆锥和圆柱的体积
有什么关系?
5.因为 圆柱的体积=底面积×高, 所以 圆锥的体积= 用字母表示是: 活动二:运用方法巧解题
1.完成数学书第30页“试一试”。

1. 完成数学书第30页 “练一练”。

2. 组内校对答案,互相批阅。

一、复习铺垫、强化转化思想。

1.圆柱体的体积是什么?我们是如何推导的? 圆柱------(转化)------长方体 2.今天我们要学习圆锥体的体积,同学们觉得用什么方法比较好? 3.同学们觉得把圆锥体转化成什么比较好呢? 圆锥------(转化)------圆柱 二、正确选择、训练直觉思维。

1、教师拿出许多大小不等的圆柱体和圆锥
体容器展示给学生。

提问: (1)同学们打算如何转化圆柱体和圆锥体之间的关系? (2)如果让你在这么多的圆柱体和圆锥体
中选择两个来探究,你打算选择什么样的圆柱体和圆锥体,说说你选择的理由。

2、在学生讨论的基础上教师强调用等底等高的圆柱体和圆锥体进行讨论。

三、大胆猜想、培养想象能力 在确定用等底等高的圆柱体和圆锥体进行
讨论的基础上教师让学生猜想:等第等高的
圆柱体和圆锥体的体积之间到底有什么关系呢?
同学之间互相交流并说明想法。

四、实际操作、探究掌握新知。

1.学生分组,探究等第等高的圆柱体和圆锥体体积之间的倍数关系。

2.学生实验。

3.报实验结果。

学生的实验结果如下: (1) 用领取的底面积相等,高相等圆柱。

相关文档
最新文档