2021年湖南省中考数学复习题及答案 (49)
2021年湖南省湘西州中考数学试卷及其答案

2021年湖南省湘西州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分,请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1.(4分)2021的相反数是()A.1202B.﹣2021C.D.﹣2.(4分)计算﹣1+3的结果是()A.2B.﹣2C.4D.﹣43.(4分)据悉,在2021年湘西州“三独”比赛中,某校11名参赛同学的成绩各不相同,按照成绩,取前5名进入决赛.如果小红知道了自己的比赛成绩,要判断自己能否进入决赛,小红还需知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差4.(4分)下列计算结果正确的是()A.(a3)2=a5B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.a÷b•=D.1+=5.(4分)工厂某零件如图所示,以下哪个图形是它的俯视图()A.B.C.D.6.(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.447.(4分)如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC=12.4,则CD的长是()A.14B.12.4C.10.5D.9.38.(4分)如图,面积为18的正方形ABCD内接于⊙O,则的长度为()A.9πB.πC.πD.π9.(4分)如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为y=的函数图象.根据这个函数的图象,下列说法正确的是()A.图象与x轴没有交点B.当x>0时,y>0C.图象与y轴的交点是(0,﹣)D.y随x的增大而减小10.(4分)已知点M(x,y)在第一象限,且x+y=12,点A(10,0)在x轴上,当△OMA为直角三角形时,点M的坐标为()A.(10,2),(8,4)或(6,6)B.(8,4),(9,3)或(5,7)C.(8,4),(9,3)或(10,2)D.(10,2),(9,3)或(7,5)二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.(4分)(﹣)2=.12.(4分)北京时间2021年2月10日19时52分,中国首次火星探测任务“天问一号”探测器实施近火捕获制动,顺利进入近火点,高度约400000m,成为我国第一颗人造火星卫星.其中,400000用科学记数法可以表示为.13.(4分)因式分解:a2﹣2a=.14.(4分)若二次根式在实数范围内有意义,则x的取值范围是.15.(4分)实数m,n是一元二次方程x2﹣3x+2=0的两个根,则多项式mn﹣m﹣n的值为.16.(4分)若式子+1的值为零,则y=.17.(4分)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=20°,则∠2的度数是.18.(4分)古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为a1=1,第二个图形表示的三角形数记为a2=3,…,则第n个图形表示的三角形数an=.(用含n的式子表达)三、解答题(本大题共8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.(6分)计算:(﹣2)0﹣﹣|﹣5|+4sin45°.20.(8分)解不等式组:,并在数轴上表示它的解集.21.(8分)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C旋转到CE的位置,使得∠ECA=∠DCB,连接DE与AC交于点F,且∠B=70°,∠A=10°.(1)求证:AB=ED;(2)求∠AFE的度数.22.(8分)为庆祝中国共产党成立100周年,光明中学筹划举行朗诵、合唱等一系列校园主题庆祝活动(活动代号如下表),要求每位学生自主选择参加其中一个活动项目.为此,学校从全体学生中随机抽取了部分学生进行问卷调查.根据统计的数据,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).(1)该校此次调查共抽取了名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有2000名学生,请根据此次调查结果,估计该校有多少名学生参加舞蹈活动.活动名称朗诵合唱舞蹈绘画征文活动代号A B C D E23.(10分)有诗云:东山雨霁画屏开,风卷松声入耳来.一座楼阁镇四方,团结一心建家乡.1987年为庆祝湘西自治州成立三十周年,湘西州政府在花果山公园内修建了一座三层楼高的“一心阁”民族团结楼阁.芙蓉学校数学实践活动小组为测量“一心阁”CH的高度,在楼前的平地上A处,观测到楼顶C处的仰角为30°,在平地上B处观测到楼顶C处的仰角为45°,并测得A、B两处相距20m,求“一心阁”CH的高度.(结果保留小数点后一位,参考数据:≈1.41,≈1.73)24.(10分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若AD=8,tan∠CAB=,求:边AC及AB的长.25.(12分)2020年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本,制作5个A类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站,每个A类微课售价1500元,每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课,且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课,其中制作A类微课a天,制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式,并写出a的取值范围;(3)每月制作A类微课多少个时,该团队月利润w最大,最大利润是多少元?26.(16分)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)连接BC,求直线BC的解析式;(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.2021年湖南省湘西州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,请将每个小题所给四个选项中唯一正确选项的代号填涂在答题卡相应的位置上)1.(4分)2021的相反数是()A.1202B.﹣2021C.D.﹣【解答】解:绝对值相等,符号相反的两个数互为相反数.根据相反数的定义,则2021的相反数为﹣2021.故选:B.2.(4分)计算﹣1+3的结果是()A.2B.﹣2C.4D.﹣4【解答】解:﹣1+3=+(3﹣1)=2,故选:A.3.(4分)据悉,在2021年湘西州“三独”比赛中,某校11名参赛同学的成绩各不相同,按照成绩,取前5名进入决赛.如果小红知道了自己的比赛成绩,要判断自己能否进入决赛,小红还需知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差【解答】解:11个不同的成绩按从小到大排序后,中位数及中位数之后共有6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.4.(4分)下列计算结果正确的是()A.(a3)2=a5B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.a÷b•=D.1+=【解答】解:A、(a3)2=a6,故此选项不符合题意;B、(﹣bc)4÷(﹣bc)2=(﹣bc)2=b2c2,故此选项不符合题意;C、a÷b•,正确,故此选项符合题意;D、1+,故此选项不符合题意;故选:C.5.(4分)工厂某零件如图所示,以下哪个图形是它的俯视图()A.B.C.D.【解答】解:从上面看该几何体,是两个同心圆.故选:B.6.(4分)如图,在菱形ABCD中,E是AC的中点,EF∥CD,交AD于点F,如果EF=5.5,那么菱形ABCD的周长是()A.11B.22C.33D.44【解答】解:∵点E是AC的中点,∴AE=EC=AC,∵EF∥CD,∴△AEF∽△ACD,∴,∴CD=2EF=11,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴菱形ABCD的周长=4×11=44,故选:D.7.(4分)如图,在△ECD中,∠C=90°,AB⊥EC于点B,AB=1.2,EB=1.6,BC=12.4,则CD的长是()A.14B.12.4C.10.5D.9.3【解答】解:∵EB=1.6,BC=12.4,∴EC=EB+BC=14,∵AB⊥EC,∴∠ABE=90°,∵∠C=90°,∴∠ABE=∠C,又∵∠E=∠E,∴△ABE∽△DCE,∴=,即=,解得:CD=10.5,故选:C.8.(4分)如图,面积为18的正方形ABCD内接于⊙O,则的长度为()A.9πB.πC.πD.π【解答】解:如图连接OA,OB,则OA=OB,∵四边形ABCD是正方形,∴∠AOB=90°,∴△OAB是等腰直角三角形,∵正方形ABCD的面积是18,∴AB==3,∴OA=OB=3,∴弧AB的长L===,故选:C.9.(4分)如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为y=的函数图象.根据这个函数的图象,下列说法正确的是()A.图象与x轴没有交点B.当x>0时,y>0C.图象与y轴的交点是(0,﹣)D.y随x的增大而减小【解答】解:A.由图象可知,图象与x轴没有交点,故说法正确;B.由图象可知,当0<x<1时,y<0,当x>1时,y>0,故说法错误;C.当x=0时,函数值为﹣2,故图象与y轴的交点是(0,﹣2),故说法错误;D.当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小,故说法错误.故选:A.10.(4分)已知点M(x,y)在第一象限,且x+y=12,点A(10,0)在x轴上,当△OMA为直角三角形时,点M的坐标为()A.(10,2),(8,4)或(6,6)B.(8,4),(9,3)或(5,7)C.(8,4),(9,3)或(10,2)D.(10,2),(9,3)或(7,5)【解答】解:分情况讨论:①若O为直角顶点,则点M在y轴上,不合题意舍去;②若A为直角顶点,则MA⊥x轴,∴点M的横坐标为10,把x=10代入y=﹣x+12中,得y=2,∴点M坐标为(10,2);③若M为直角顶点,如图,作MB⊥x轴,则∠OBM=∠MBA=90°,∠OMB+∠AMB=90°,∵∠AMB+∠MAB=90°,∴∠OMB=∠MAB,∴△OMB∽△MAB,∴=,∴MB2=OB•AB,∴(﹣x+12)2=x(10﹣x),解得x=8或9,∴点M坐标为(8,4)或(9,3),综上所述,当△OMA为直角三角形时,点M的坐标为(10,2)、(8,4)、(9,3),故选:C.二、填空题(本大题共8小题,每小题4分,共32分,请将正确答案填写在答题卡相应的横线上)11.(4分)(﹣)2=.【解答】解:(﹣)2=.故答案为:.12.(4分)北京时间2021年2月10日19时52分,中国首次火星探测任务“天问一号”探测器实施近火捕获制动,顺利进入近火点,高度约400000m,成为我国第一颗人造火星卫星.其中,400000用科学记数法可以表示为4×105.【解答】解:400000=4×105.故答案为:4×105.13.(4分)因式分解:a2﹣2a=a(a﹣2).【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).14.(4分)若二次根式在实数范围内有意义,则x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,∴x≥.故答案为:x≥.15.(4分)实数m,n是一元二次方程x2﹣3x+2=0的两个根,则多项式mn﹣m﹣n的值为﹣1.【解答】解:∵实数m,n是一元二次方程x2﹣3x+2=0的两个根,a=1,b=﹣3,c=2,∴m+n=﹣=3,mn==2,∴mn﹣m﹣n=mn﹣(m+n)=2﹣3=﹣1.故答案为:﹣1.16.(4分)若式子+1的值为零,则y=0.【解答】解:由题意得:+1=0.∴=﹣1.∴y﹣2=﹣2.∴y=0.当y=0时,y﹣2≠0.∴该分式方程的解为y=0.17.(4分)如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD∥BE,∠1=20°,则∠2的度数是40°.【解答】解:如图分别延长EB 、DB 到F ,G ,由于纸带对边平行,∴∠1=∠4=20°,∵纸带翻折,∴∠3=∠4=20°,∴∠DBF =∠3+∠4=40°,∵CD ∥BE ,∴∠2=∠DBF =40°.故答案为:40°.18.(4分)古希腊数学家把1,3,6,10,15,21,…这样的数叫做三角形数,因为它的规律性可以用如图表示.根据图形,若把第一个图形表示的三角形数记为a 1=1,第二个图形表示的三角形数记为a 2=3,…,则第n 个图形表示的三角形数a n =.(用含n 的式子表达)【解答】解:第1个图形表示的三角形数为1,第2个图形表示的三角形数为1+2=3,第3个图形表示的三角形数为1+2+3=6,第4个图形表示的三角形数为1+2+3+4=10,.....第n 个图形表示的三角形数为1+2+3+4+......+(n ﹣1)+n =.故答案为:.三、解答题(本大题共8小题,共78分,每个题目都要求在答题卡的相应位置写出计算、解答或证明的主要步骤)19.(6分)计算:(﹣2)0﹣﹣|﹣5|+4sin45°.【解答】解:原式=1﹣2﹣5+4×=1﹣2﹣5+2=﹣4.20.(8分)解不等式组:,并在数轴上表示它的解集.【解答】解:解不等式①,得x>,解不等式②,得x≤1,在数轴上表示不等式的解集为:,所以不等式组无解.21.(8分)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C旋转到CE的位置,使得∠ECA=∠DCB,连接DE与AC交于点F,且∠B=70°,∠A=10°.(1)求证:AB=ED;(2)求∠AFE的度数.【解答】解:(1)证明:∵∠ECA=∠DCB,∴∠ECA+∠ACD=∠DCB+∠ACD,即∠ECD=∠BCA,由旋转可得CA=CE,在△BCA和△DCE中,,∴△BCA≌△DCE(SAS).∴AB=ED.(2)由(1)中结论可得∠CDE=∠B=70°,又CB=CD,∴∠B=∠CDB=70°,∴∠EDA=180°﹣∠BDE=180°﹣70°×2=40°,∴∠AFE=∠EDA+∠A=40°+10°=50°.22.(8分)为庆祝中国共产党成立100周年,光明中学筹划举行朗诵、合唱等一系列校园主题庆祝活动(活动代号如下表),要求每位学生自主选择参加其中一个活动项目.为此,学校从全体学生中随机抽取了部分学生进行问卷调查.根据统计的数据,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).(1)该校此次调查共抽取了50名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有2000名学生,请根据此次调查结果,估计该校有多少名学生参加舞蹈活动.活动名称朗诵合唱舞蹈绘画征文活动代号A B C D E【解答】解:(1)该校此次调查共抽取的学生数为:10÷20%=50(名),故答案为:50;(2)选择C舞蹈的人数为:50﹣8﹣10﹣12﹣14=6(名),补全条形统计图如下:(3)2000×=240(名),答:估计该校有240名学生参加舞蹈活动.23.(10分)有诗云:东山雨霁画屏开,风卷松声入耳来.一座楼阁镇四方,团结一心建家乡.1987年为庆祝湘西自治州成立三十周年,湘西州政府在花果山公园内修建了一座三层楼高的“一心阁”民族团结楼阁.芙蓉学校数学实践活动小组为测量“一心阁”CH的高度,在楼前的平地上A处,观测到楼顶C处的仰角为30°,在平地上B处观测到楼顶C处的仰角为45°,并测得A、B两处相距20m,求“一心阁”CH的高度.(结果保留小数点后一位,参考数据:≈1.41,≈1.73)【解答】解:设CH为xm,由题意得:∠AHC=90°,∠CBH=45°,∠A=30°,∴BH=CH=xm,AH=CH=xm,∵AH﹣BH=AB,∴x﹣x=20,解得:x=10(+1)≈27.3,答:“一心阁”CH的高度约为27.3m.24.(10分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若AD=8,tan∠CAB=,求:边AC及AB的长.【解答】(1)证明:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC平分∠DAB;(2)解:连接BC,如图,∵∠DAC=∠OAC,∴tan∠DAC=tan∠CAB=,在Rt△DAC中,∵tan∠DAC==,∴CD=×8=6,∴AC===10,∵AB为直径,∴∠ACB=90°,∴tan∠CAB==,∴BC=×10=,∴AB==.25.(12分)2020年以来,新冠肺炎的蔓延促使世界各国在线教育用户规模不断增大.网络教师小李抓住时机,开始组建团队,制作面向A、B两个不同需求学生群体的微课视频.已知制作3个A类微课和5个B类微课需要4600元成本,制作5个A类微课和10个B类微课需要8500元成本.李老师又把做好的微课出售给某视频播放网站,每个A类微课售价1500元,每个B类微课售价1000元.该团队每天可以制作1个A类微课或者1.5个B类微课,且团队每月制作的B类微课数不少于A类微课数的2倍(注:每月制作的A、B两类微课的个数均为整数).假设团队每月有22天制作微课,其中制作A类微课a天,制作A、B两类微课的月利润为w元.(1)求团队制作一个A类微课和一个B类微课的成本分别是多少元?(2)求w与a之间的函数关系式,并写出a的取值范围;(3)每月制作A类微课多少个时,该团队月利润w最大,最大利润是多少元?【解答】解:(1)设团队制作一个A类微课的成本为x元,制作一个B类微课的成本为y元,根据题意得:,解得,答:团队制作一个A类微课的成本为700元,制作一个B类微课的成本为500元;(2)由题意,得w=(1500﹣700)a+(1000﹣500)×1.5(22﹣a)=50a+16500;1.5(22﹣a)≥2a,解得a≤,又∵每月制作的A、B两类微课的个数均为整数,∴a的值为0,2,4,6,8.(3)由(2)得w=50a+16500,∵50>0,∴w随a的增大而增大,∴当a=8时,w有最大值,w=50×8+16500=16900(元).最大答:每月制作A类微课8个时,该团队月利润w最大,最大利润是16900元.26.(16分)如图,已知抛物线y=ax2+bx+4经过A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的解析式;(2)连接BC,求直线BC的解析式;(3)请在抛物线的对称轴上找一点P,使AP+PC的值最小,求点P的坐标,并求出此时AP+PC的最小值;(4)点M为x轴上一动点,在抛物线上是否存在一点N,使得以A、C、M、N四点为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣1,0),B(4,0)代入y=ax2+bx+4,得到,解得,∴y=﹣x2+3x+4;(2)在y=﹣x2+3x+4中,令x=0,则y=4,∴C(0,4),设BC的解析式为y=kx+b,∵B(4,0),C(0,4),∴,∴,∴直线BC的解析式为y=﹣x+4.(3)如图1中,由题意A,B关于抛物线的对称轴直线x=对称,连接BC交直线x=于点P,连接PA,此时PA+PC的值最小,最小值为线段BC的长==4,此时P(,).(4)如图2中,存在.观察图象可知,满足条件的点N的纵坐标为4或﹣4,对于抛物线y=﹣x2+3x+4,当y=4时,x2﹣3x=0,解得x=0或3,∴N1(3,4).当y=﹣4时,x2﹣3x﹣8=0,解得x=,∴N2(,﹣4),N3(,﹣4),综上所述,满足条件的点N的坐标为(3,4)或(,﹣4)或(,﹣4).。
2021年湖南省衡阳市中考数学试卷(附答案)

2021年湖南省衡阳市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)8的相反数是( )A .8-B .8C .18-D .8±2.(3分)2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为( )A .698.9910⨯B .79.89910⨯C .4989910⨯D .80.0989910⨯3.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .4.(3分)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .32()aD .321()2a 5.(3分)下列计算正确的是( )A .164=±B .0(2)1-=C .257+=D .393=6.(3分)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )A .众数是82B .中位数是84C .方差是84D .平均数是857.(3分)如图是由6个相同的正方体堆成的物体,它的左视图是( )A.B.C.D.8.(3分)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37︒,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为(sin370.6︒≈,cos370.8︒≈,tan370.75)(︒≈)A.7.5米B.8米C.9米D.10米9.(3分)下列命题是真命题的是()A.正六边形的外角和大于正五边形的外角和B.正六边形的每一个内角为120︒C.有一个角是60︒的三角形是等边三角形D.对角线相等的四边形是矩形10.(3分)不等式组1026xx+<⎧⎨-⎩的解集在数轴上可表示为()A.B.C.D.11.(3分)下列说法正确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是34D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人12.(3分)如图,矩形纸片ABCD ,4AB =,8BC =,点M 、N 分别在矩形的边AD 、BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①四边形CMPN 是菱形;②点P 与点A 重合时,5MN =;③PQM ∆的面积S 的取值范围是45S .其中所有正确结论的序号是( )A .①②③B .①②C .①③D .②③二、填空题(本大题共6小题,每小题3分,满分18分.)13.(33x -x 的取值范围是 .14.(3分)计算:11a a a-+= . 15.(3分)因式分解:239a ab -= .16.(3分)底面半径为3,母线长为4的圆锥的侧面积为 .(结果保留)π17.(3分)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 棵.18.(3分)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P在A D-段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或盐酸步骤.)19.(6分)计算:2(2)(2)(2)(4)++-++-.x y x y x y x x y20.(6分)如图,点A、B、D、E在同一条直线上,AB DE=,//BC EF.求AC DF,//证:ABC DEF∆≅∆.21.(8分)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.22.(8分)如图,点E为正方形ABCD外一点,90∆绕A点逆时针方AEB∠=︒,将Rt ABE向旋转90︒得到ADF∆,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知7BC=,求DH的长.BH=,1323.(8分)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为x cm,单层部分的长度为y cm.经测量,得到表中数据.双层部分长度()x cm281420单层部分长度()y cm148136124112(1)根据表中数据规律,求出y与x的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为L cm,求L的取值范围.24.(8分)如图,AB 是O 的直径,D 为O 上一点,E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求CD 的长.25.(10分)如图,OAB ∆的顶点坐标分别为(0,0)O ,(3,4)A ,(6,0)B ,动点P 、Q 同时从点O 出发,分别沿x 轴正方向和y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P 到达点B 时点P 、Q 同时停止运动.过点Q 作//MN OB 分别交AO 、AB 于点M 、N ,连接PM 、PN .设运动时间为t (秒).(1)求点M 的坐标(用含t 的式子表示);(2)求四边形MNBP 面积的最大值或最小值;(3)是否存在这样的直线l ,总能平分四边形MNBP 的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP ,当OAP BPN ∠=∠时,求点N 到OA 的距离.26.(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点” E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.2021年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)8的相反数是( )A .8-B .8C .18-D .8±【解答】解:相反数指的是只有符号不同的两个数,因此8的相反数是8-. 故选:A .2.(3分)2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为( )A .698.9910⨯B .79.89910⨯C .4989910⨯D .80.0989910⨯【解答】解:7989900009.89910=⨯,故选:B .3.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .【解答】解:A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .不是轴对称图形,故本选项不合题意.故选:A .4.(3分)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .32()aD .321()2a 【解答】解:A .235a a a ⋅=,故此选项不合题意;B .12210a a a ÷=,故此选项不合题意;C .326()a a =,故此选项符合题意;D .32611()24a a =,故此选项不合题意; 故选:C .5.(3分)下列计算正确的是( )A 4=±B .0(2)1-=CD 3=【解答】解:16的算术平方根为44,故A 不符合题意;根据公式01(0)a a =≠可得0(2)1-=,故B 符合题意;≠,故C 不符合题意;3,故D 不符合题意;故选:B .6.(3分)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )A .众数是82B .中位数是84C .方差是84D .平均数是85【解答】解:将数据重新排列为82,82,83,85,86,92,A 、数据的众数为82,此选项正确,不符合题意;B 、数据的中位数为8385842+=,此选项正确,不符合题意; C 、数据的平均数为828283858692856+++++=, 所以方差为222221[(8585)(8385)2(8285)(8685)(9285)]126⨯-+-+⨯-+-+-=,此选项错误,符合题意;D 、由C 选项知此选项正确;故选:C .7.(3分)如图是由6个相同的正方体堆成的物体,它的左视图是( )A .B .C .D .【解答】解:这个组合体的三视图如下:故选:A .8.(3分)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6︒≈,cos370.8︒≈,tan370.75)(︒≈ )A .7.5米B .8米C .9米D .10米【解答】解:在Rt ABC ∆中,90ACB ∠=︒,6BC =米,3sin sin370.65BC BAC AB ∠==︒≈=, 5561033AB BC ∴≈=⨯=(米), 故选:D .9.(3分)下列命题是真命题的是( )A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形【解答】解:A .每个多边形的外角和都是360︒,故错误,假命题;B .正六边形的内角和是720︒,每个内角是120︒,故正确,真命题;C .有一个角是60︒的等腰三角形是等边三角形,故错误,假命题;D .对角线相等的平行四边形是矩形,故错误,假命题.故选:B .10.(3分)不等式组1026x x +<⎧⎨-⎩的解集在数轴上可表示为( ) A .B .C .D .【解答】解:解不等式10x +<得,1x <-,解不等式26x -得,3x -, ∴不等式组的解集为:31x -<-,在数轴上表示为:故选:A .11.(3分)下列说法正确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是34D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人【解答】解:全国中学生人数很大,应采用抽样调查方式,A ∴选项错误,彩票的中奖机会是1%说的是可能性,和买的数量无关,B ∴选项错误,根据概率的计算公式,C 选项中摸出红球的概率为37, C ∴选项错误, 200名学生中有85名学生喜欢跳绳,∴跳绳的占比为85100%42.5%200⨯=, 320042.5%1360∴⨯=(人),D ∴选项正确,故选:D .12.(3分)如图,矩形纸片ABCD ,4AB =,8BC =,点M 、N 分别在矩形的边AD 、BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①四边形CMPN 是菱形;②点P 与点A 重合时,5MN =;③PQM ∆的面积S 的取值范围是45S .其中所有正确结论的序号是( )A .①②③B .①②C .①③D .②③【解答】解://PM CN ,PMN MNC ∴∠=∠,MNC PNM ∠=∠,PMN PNM ∴∠=∠,PM PN ∴=,NC NP =,PM CN ∴=,//MP CN ,∴四边形CNPM 是平行四边形,CN NP =,∴四边形CNPM 是菱形,故①正确;如图1,当点P 与A 重合时,设BN x =,则8AN NC x ==-,在Rt ABN ∆中,222AB BN AN +=,即422(8)2x x +=-,解得3x =,835CN ∴=-=,4AB =,8BC =, 2245AC AB BC ∴=+=,1252CQ AC ∴==, 225QN CN CQ ∴=-=,225MN QN ∴==,故②不正确;由题知,当MN 过点D 时,CN 最短,如图2,四边形CMPN 的面积最小,此时1144444CMPN S S ==⨯⨯=菱形, 当P 点与A 点重合时,CN 最长,如图1,四边形CMPN 的面积最大,此时15454S =⨯⨯=, 45S ∴正确,故选:C .二、填空题(本大题共6小题,每小题3分,满分18分.)13.(33x -x 的取值范围是 3x .【解答】解:根据题意,得30x -,解得,3x ;故答案为:3x .14.(3分)计算:11a a a-+= 1 . 【解答】解:原式111a a -+==. 故答案为:1.15.(3分)因式分解:239a ab -= 3(3)a a b - .【解答】解:239a ab -3(3)a a b =-,故答案为:3(3)a a b -.16.(3分)底面半径为3,母线长为4的圆锥的侧面积为 12π .(结果保留)π【解答】解:圆锥的侧面积234212ππ=⨯⨯÷=.故答案为:12π.17.(3分)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 500 棵.【解答】解:设原计划每天植树x 棵,则实际每天植树(125%)x +棵, 依题意得:600060003(125%)x x-=+,解得:400x =,经检验,400x =是原方程的解,且符合题意,(125%)500x ∴+=.故答案为:500.18.(3分)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为 (233)+ 厘米.【解答】解:由图分析易知:当点P 从O A →运动时,点Q 从O C →运动时,y 不断增大, 当点P 运动到A 点,点Q 运动到C 点时,由图象知此时3y PQ cm ==,23AC cm ∴=,四边形ABCD 为菱形,AC BD ∴⊥,132OA OC AC cm ===, 当点P 运动到D 点,Q 运动到B 点,结合图象,易知此时,2y BD cm ==,112OD OB BD cm ∴===, 在Rt ADO ∆中,2222(3)12()AD OA OD cm ++,2AD AB BC DC cm ∴====,如图,当点P 在A D -段上运动,点P 运动到点E 处,点Q 在C B -段上运动,点Q 运动到点F 处时,P 、Q 两点的最短,此时,31322OA OD OE OF AD ⋅⨯====, 2233342AE AF OA OE ==-=-=, ∴当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为:3(3)2233()2cm +⨯=+ 故答案为:(233)+.三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或盐酸步骤.)19.(6分)计算:2(2)(2)(2)(4)x y x y x y x x y ++-++-.【解答】解:原式22222(44)(4)(4)x xy y x y x xy =+++-+-222224444x xy y x y x xy =+++-+-23x =.20.(6分)如图,点A 、B 、D 、E 在同一条直线上,AB DE =,//AC DF ,//BC EF .求证:ABC DEF ∆≅∆.【解答】证明://AC DF ,CAB FDE ∴∠=∠ (两直线平行,同位角相等),又//BC EF ,CBA FED ∴∠=∠ (两直线平行,同位角相等),在ABC ∆和DEF ∆中,CAB FDE AB DECBA FED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC DEF ASA ∴∆≅∆.21.(8分)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是 64.8 度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.【解答】解:(1)由题意可知,其他垃圾所占的百分比为:120%7%55%18%---=, ∴其他垃圾所在的扇形的圆心角度数是:36018%64.8︒⨯=︒,故答案为:64.8;(2)50020%100⨯=(吨),1000.220⨯=(万元), 答:该天可回收物所创造的经济总价值是20万元;(3)由题意可列树状图:()82 123P∴==一男一女.22.(8分)如图,点E为正方形ABCD外一点,90AEB∠=︒,将Rt ABE∆绕A点逆时针方向旋转90︒得到ADF∆,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知7BH=,13BC=,求DH的长.【解答】解:(1)四边形AFHE是正方形,理由如下:Rt ABE∆绕A点逆时针方向旋转90︒得到ADF∆,Rt ABE Rt ADF∴∆≅∆,90AEB AFD∴∠=∠=︒,90AFH∴∠=︒,Rt ABE Rt ADF∆≅∆,DAF BAE∴∠=∠,又90DAF FAB∠+∠=︒,90BAE FAB∴∠+∠=︒,90FAE∴∠=︒,在四边形AFHE中,90FAE∠=︒,90AEB∠=︒,90AFH∠=︒,∴四边形AFHE是矩形,又AE AF =,∴矩形AFHE 是正方形;(2)设AE x =.则由(1)以及题意可知:AE EH FH AF x ====,7BH =,13BC AB ==, 在Rt AEB ∆中,222AB AE BE =+,即22213(7)x x =++,解得:5x =,5712BE BH EH ∴=+=+=,12DF BE ∴==,又DH DF FH =+,12517DH ∴=+=.23.(8分)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为x cm ,单层部分的长度为y cm .经测量,得到表中数据. 双层部分长度()x cm2 8 14 20 单层部分长度()y cm 148 136 124 112(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为L cm ,求L 的取值范围.【解答】解:(1)设y 与x 的函数关系式为y kx b =+,由题知14821368k b k b=+⎧⎨=+⎩,解得2152k b =-⎧⎨=⎩, y ∴与x 的函数关系式为2152y x =-+;(2)根据题意知1302152x y y x +=⎧⎨=-+⎩, 解得22108x y =⎧⎨=⎩, ∴双层部分的长度为22cm ;(3)由题知,当0x =时,152y =, 当0y =时,76x =, 76152L ∴.24.(8分)如图,AB 是O 的直径,D 为O 上一点,E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求CD 的长.【解答】(1)证明:连结OD ,如图所示:AB 是直径,90BDA ∴∠=︒,90BDO ADO ∴∠+∠=︒, 又OB OD =,CDA B ∠=∠, B BDO CDA ∴∠=∠=∠,90CDA ADO ∴∠+∠=︒,OD CD ∴⊥,且OD 为O 半径,CD ∴是O 的切线;(2)解:连结OE ,如图所示:30BDE ∠=︒,260BOE BDE ∴∠=∠=︒,又E 为BD 的中点,60EOD ∴∠=︒,EOD ∴∆为等边三角形,2ED EO OD ∴===,又120BOD BOE EOD ∠=∠+∠=︒,180********DOC BOD ∴∠=︒-∠=︒-︒=︒,在Rt DOC ∆中,60DOC ∠=︒,2OD =,tan tan6032CD CD DOC OD ∴∠=︒== 23CD ∴= 25.(10分)如图,OAB ∆的顶点坐标分别为(0,0)O ,(3,4)A ,(6,0)B ,动点P 、Q 同时从点O 出发,分别沿x 轴正方向和y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P 到达点B 时点P 、Q 同时停止运动.过点Q 作//MN OB 分别交AO 、AB 于点M 、N ,连接PM 、PN .设运动时间为t (秒).(1)求点M 的坐标(用含t 的式子表示);(2)求四边形MNBP 面积的最大值或最小值;(3)是否存在这样的直线l ,总能平分四边形MNBP 的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP ,当OAP BPN ∠=∠时,求点N 到OA 的距离.【解答】解:(1)过点A 作x 轴的垂线,交MN 于点E ,交OB 于点F ,由题意得:2OQ t =,3OP t =,63PB t =-,(0,0)O ,(3,4)A ,(6,0)B ,3OF FB ∴==,4AF =,22345OA AB ==+,//MN OB ,OQM OFA ∴∠=∠,OMQ AOF ∠=∠,OQM AFO ∴∆∆∽, ∴OQ QM AF OF =, ∴243t QM =, 32QM t ∴=, ∴点M 的坐标是3(,2)2t t . (2)//MN OB ,∴四边形QEFO 是矩形,QE OF ∴=,332ME OF QM t ∴=-=-, OA AB =,ME NE ∴=,263MN ME t ∴==-,MNP BNP MNBP S S S ∆∆∴=+四边形1122MN OQ BP OQ =⋅+⋅⋅11(63)2(63)222t t t t =-⋅+⋅-⋅ 2612t t =-+26(1)6t =--+,点P 到达点B 时,P 、Q 同时停止,02t ∴,1t ∴=时,四边形MNBP 的最大面积为6.(3)63MN t =-,63BP t =-,MN BP ∴=,//MN BP ,∴四边形MNBP 是平行四边形,∴平分四边形MNBP 面积的直线经过四边形的中心,即MB 的中点,设中点为(,)H x y , 3(,2)2M t t ,(6,0)B , 133(6)3224x t t ∴=⋅+=+, 202t y t +==. 334x y ∴=+, 化简得:443y x =-, ∴直线l 的解析式为:443y x =-. (4)OA AB =,AOB PBN ∴∠=∠,又OAP BPN ∠=∠, AOP PBN ∴∆∆∽,∴OA OP BP BN=, ∴535632t t t =-, 解得:1118t =.63MN t =-,AE AF OQ =-,332ME t =-, 112563186MN ∴=-⨯=, 112542189AE =-⨯=, 31125321812ME =-⨯=, 22222525125()()12936AM ME AE ∴=+=+=. 设点N 到OA 得距离为h ,1122AMN S MN AE AM h ∆=⋅⋅=⋅⋅, ∴125251125269236h ⋅⋅=⋅⋅, 解得:103h =. ∴点N 到OA 得距离为103.26.(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点” E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得:4x x=,解得2x =±, 当2x =±时,42y x ==±, 故“雁点”坐标为(2,2)或(2,2)--;(2)① “雁点”的横坐标与纵坐标相等, 故“雁点”的函数表达式为y x =,物线25y ax x c =++上有且只有一个“雁点” E , 则25ax x c x ++=,则△2540ac =-=,即4ac =,1a >,故4c <;②4ac =,则250ax x c ++=为2450ax x a++=, 解得4x a =-或1a -,即点M 的坐标为4(a-,0),由25ax x c x ++=,4ac =, 解得2x a =-,即点E 的坐标为2(a -,2)a-, 故点E 作EH x ⊥轴于点H ,则2HE a =,242()E M MH x x HE a a a =-=---==, 故EMN ∠的度数为45︒;(3)存在,理由:由题意知,点C 在直线y x =上,故设点C 的坐标为(,)t t , 过点P 作x 轴的平行线交过点C 与y 轴的平行线于点M ,交过点B 与y 轴的平行线于点N ,设点P 的坐标为2(,23)m m m -++,则223BN m m =-++,3PN m =-,PM m t =-,223CM m m t =-++-, 90NPB MPC ∠+∠=︒,90MPC CPM ∠+∠=︒, NPB CPM ∴∠=∠,90CMP PNB ∠=∠=︒,PC PB =,()CMP PNB AAS ∴∆≅∆,PM BN ∴=,CM PN =,即2|23|m t m m -=-++,223|3|m m t m -++-=-,解得1m =1-或32,故点P 的坐标为,3)2或3(2,15)4或(1+,3)2.。
2021年湖南省长沙市中考数学试卷(附答案详解)

2021年湖南省长沙市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·湖南省长沙市·历年真题)下列四个实数中,最大的数是()A. −3B. −1C. πD. 42.(2021·湖南省长沙市·历年真题)2021年5月11日,第七次全国人口普查结果发布,长沙市人口总数首次突破千万,约为10040000人,将数据10040000用科学记数法表示为()A. 1.004×106B. 1.004×107C. 0.1004×108D. 10.04×1063.(2021·湖南省长沙市·历年真题)下列几何图形中,是中心对称图形的是()A. B. C. D.4.(2021·湖南省长沙市·历年真题)下列计算正确的是()A. a3⋅a2=a5B. 2a+3a=6aC. a8÷a2=a4D. (a2)3=a55.(2021·湖南省长沙市·历年真题)如图,AB//CD,EF分别与AB,CD交于点G,H,∠AGE=100°,则∠DHF的度数为()A. 100°B. 80°C. 50°D. 40°6.(2021·湖南省长沙市·历年真题)如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为()A. 27°B. 108°C. 116°D. 128°7.(2021·湖南省长沙市·历年真题)下列函数图象中,表示直线y=2x+1的是()A. B. C. D.8.(2021·湖南省长沙市·历年真题)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是()A. 24,25B. 23,23C. 23,24D. 24,249.(2021·湖南省长沙市·历年真题)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是()A. 19B. 16C. 14D. 1310.(2021·湖南省长沙市·历年真题)在一次数学活动课上,某数学老师将1∼10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A. 戊同学手里拿的两张卡片上的数字是8和9B. 丙同学手里拿的两张卡片上的数字是9和7C. 丁同学手里拿的两张卡片上的数字是3和4D. 甲同学手里拿的两张卡片上的数字是2和9二、填空题(本大题共6小题,共18.0分)11.(2021·湖南省长沙市·历年真题)分解因式:x2−2021x=______ .12.(2021·湖南省长沙市·历年真题)如图,在⊙O中,弦AB的长为4,圆心到弦AB的距离为2,则∠AOC的度数为______ .13.(2021·湖南省长沙市·历年真题)如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为______ .14.(2021·湖南省长沙市·历年真题)若关于x的方程x2−kx−12=0的一个根为3,则k的值为______ .15.(2021·湖南省长沙市·历年真题)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为______ .16.(2021·湖南省长沙市·历年真题)某学校组织了主题为“保护湘江,爱护家园”的手抄报作品征集活动.先从中随机抽取了部分作品,按A,B,C,D四个等级进行评价,然后根据统计结果绘制了如图两幅不完整的统计图.那么,此次抽取的作品中,等级为B等的作品份数为______ .三、解答题(本大题共9小题,共72.0分)17.(2021·湖南省长沙市·历年真题)计算:|−√2|−2sin45°+(1−√3)0+√2×√8.18.(2021·湖南省长沙市·历年真题)先化简,再求值:(x−3)2+(x+3)(x−3)+2x(2−x),其中x=−1.219. (2021·湖南省长沙市·历年真题)人教版初中数学教科书八年级上册第35−36页告诉我们作一个三角形与已知三角形全等的方法: 已知:△ABC .求作:△A′B′C′,使得△A′B′C′≌△ABC .作法:如图.(1)画B′C′=BC ;(2)分别以点B′,C′为圆心,线段AB ,AC 长为半径画弧,两弧相交于点A′;(3)连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的空上):证明:由作图可知,在△A′B′C′和△ABC 中,{B′C′=BCA′B′=( )A′C′=( )∴△A′B′C′≌ ______ .(2)这种作一个三角形与已知三角形全等的方法的依据是______ .(填序号)①AAS②ASA③SAS④SSS20.(2021·湖南省长沙市·历年真题)“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?21.(2021·湖南省长沙市·历年真题)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.(2021·湖南省长沙市·历年真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?23.(2021·湖南省长沙市·历年真题)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.24.(2021·湖南省长沙市·历年真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y={−4x(x<0)tx2(x≥0,t≠0,t是常数)的图象上的一对“T点”,则r=______ ,s=______ ,t=______ (将正确答案填在相应的横线上);(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1−x1)−1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.25.(2021·湖南省长沙市·历年真题)如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在AB⏜上,四边形MNPQ为正方形,点C在QP⏜上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.(1)求sin∠AOQ的值;(2)求AMMN的值;(3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.答案和解析1.【答案】D【知识点】实数大小比较【解析】解:∵−3<−1<π<4,∴最大的数是4,故选:D.先根据实数的大小比较法则比较数的大小,再求出最大的数即可.本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.2.【答案】B【知识点】科学记数法-绝对值较大的数【解析】解:10040000=1.004×107.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,确定a与n的值是解题的关键.3.【答案】C【知识点】中心对称图形【解析】解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意;D.不是中心对称图形,故本选项不合题意;故选:C.根据中心对称图形的概念求解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【答案】A【知识点】同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方、合并同类项【解析】解:A.a3⋅a2=a5,故此选项符合题意;B.2a+3a=5a,故此选项不合题意;C.a8÷a2=a6,故此选项不合题意;D.(a2)3=a6,故此选项不合题意;故选:A.直接利用同底数幂的乘除运算法则以及合并同类项法则、幂的乘方运算法则分别判断得出答案.此题主要考查了同底数幂的乘除运算以及合并同类项、幂的乘方运算,正确掌握相关运算法则是解题关键.5.【答案】A【知识点】平行线的性质【解析】解:∵AB//CD,∴∠CHG=∠AGE=100°,∴∠DHF=∠CHG=100°.故选:A.先根据平行线的性质,得出∠CHG的度数,再根据对顶角相等,即可得出∠DHF的度数.本题主要考查了平行线的性质的运用,解题时关键是注意:两直线平行,同位角相等.6.【答案】B【知识点】圆周角定理、圆心角、弧、弦的关系【解析】解:∵∠A=54°,∴∠BOC=2∠A=108°,故选:B.直接由圆周角定理求解即可.本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.7.【答案】B【知识点】一次函数的性质【解析】解:∵k=2>0,b=1>0时,∴直线经过一、二、三象限.故选:B.根据一次函数的性质判断即可.本题考查了一次函数的性质,当k>0,b>0时,函数y=kx+b的图象经过一、二、三象限.8.【答案】C【知识点】中位数、众数【解析】解:将这组数据从小到大重新排列为22,23,23,23,24,24,25,25,26,∴这组数据的众数为23cm,中位数为24cm,故选:C.将这组数据从小到大重新排列,再根据众数和中位数的定义求解即可.本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.【答案】A【知识点】用列举法求概率(列表法与树状图法)【解析】解:列表如下:由表可知共有36种等可能的情况,两次掷得骰子朝上一面的点数之和为5的情况有4种,∴两次掷得骰子朝上一面的点数之和为5的概率为436=19,故选:A.列表可知共有36种等可能的情况,两次掷得骰子朝上一面的点数之和为5的情况有4种,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】A【知识点】有理数的加法【解析】解:由题意可知,一共十张卡片十个数,五个人每人两张卡片,∴每人手里的数字不重复.由甲:11,可知甲手中的数字可能是1和10,2和9,3和8,4和7,5和6;由乙:4,可知乙手中的数字只有1和3;由丙:16,可知丙手中的数字可能是6和10,7和9;由丁:7,可知丁手中的数字可能是1和6,2和5,3和4;由戊:17,可知戊手中的数字可能是7和10,8和9;∴丁只能是2和5,甲只能是4和7,丙只能是6和10,戊只能是8和9.∴各选项中,只有A是正确的,故选:A.根据两数之和结果确定,对两个加数的不同情况进行分类讨论,列举出所有可能的结果后,再逐一根据条件进行推理判断,最后确定出正确结果即可.本题考查的是有理数加法的应用,关键是把所有可能的结果列举出来,再进行推理.11.【答案】x(x−2021)【知识点】因式分解-提公因式法【解析】解:x2−2021x=x(x−2021).故答案为:x(x−2021).直接提取公因式x,即可分解因式.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】45°【知识点】垂径定理、圆周角定理、圆心角、弧、弦的关系【解析】解:∵OC⊥AB,∴AC=BC=12AB=12×4=2,∵OC=2,∴△AOC为等腰直角三角形,∴∠AOC=45°,故答案为:45°.利用垂径定理可得AC=BC=12AB=12×4=2,由OC=2可得△AOC为等腰直角三角形,易得结果.本题主要考查了垂径定理和等腰直角三角形的性质,熟练掌握垂径定理是解答此题的关键.13.【答案】12【知识点】菱形的性质、三角形的中位线定理、直角三角形斜边上的中线【解析】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,且BD⊥AC,又∵点E是边AB的中点,∴OE=AE=EB=12AB,∴BC=AB=2OE=6×2=12,故答案为:12.根据四边形ABCD是菱形可知对角线相互垂直,得出OE=12AB,AB=BC,即可求出BC.本题主要考查菱形和直角三角形的性质,熟练应用直角三角形斜边上的中线等于斜边的一半是解题的关键.14.【答案】−1【知识点】一元二次方程的解【解析】解:把x=3代入方程x2−kx−12=0得:9−3k−12=0,解得:k=−1,故答案为:−1.把x=3代入方程得出9−3k−12=0,求出方程的解即可.本题考查了一元二次方程的解和解一元一次方程,能理解方程的解的定义是解此题的关键.15.【答案】2.4【知识点】角平分线的性质【解析】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE,∵DE=1.6,∴CD=1.6,∴BD=BC−CD=4−1.6=2.4.故答案为:2.4由角平分线的性质可知CD=DE=1.6,得出BD=BC−CD=4−1.6=2.4.本题主要考查了角平分线的性质,熟记角平分线上的点到角两边的距离相等是解题的关键.16.【答案】50【知识点】扇形统计图、条形统计图【解析】解:∵30÷25%=120(份),∴一共抽取了120份作品,∴此次抽取的作品中,等级为B等的作品份数为:120−30−28−12=50(份),故答案为:50.利用共抽取作品数=A等级数÷对应的百分比求解,即可一共抽取的作品份数,进而得到抽取的作品中等级为B的作品数.本题主要考查了条形统计图,扇形统计图及用样本估计总体,解题的关键是读懂统计图,能从统计图中获得准确的信息.17.【答案】解:原式=√2−2×√2+1+√162=√2−√2+1+4=5.【知识点】特殊角的三角函数值、二次根式的混合运算、零指数幂【解析】直接利用特殊角的三角函数值以及二次根式的混合运算法则、零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了特殊角的三角函数值以及二次根式的混合运算、零指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.18.【答案】解:原式=x2−6x+9+x2−9+4x−2x2=−2x,当x=−12时,原式=−2×(−12)=1.【知识点】整式的混合运算【解析】直接利用乘法公式结合整式的混合运算法则化简,再把已知数据代入得出答案.此题主要考查了整式的混合运算—化简求值,正确运用乘法公式是解题关键.19.【答案】△ABC(SSS)④【知识点】尺规作图与一般作图、全等三角形的判定与性质【解析】解:(1)由作图可知,在△A′B′C′和△ABC中,{B′C′=BC A′B′=AB A′C′=AC,∴△A′B′C′≌△ABC(SSS).故答案为:△ABC(SSS).(2)这种作一个三角形与已知三角形全等的方法的依据是SSS,故答案为:④.(1)根据SSS证明三角形全等即可.(2)根据SSS证明三角形全等.本题考查作图−应用与设计作图,全等三角形的判定和性质等知识,解题的关键是读懂图像信息,属于中考常考题型.20.【答案】解:(1)参与该游戏可免费得到景点吉祥物的频率为1500060000=0.25;(2)设袋子中白球的数量为x,则1212+x=0.25,解得x=36,经检验x=36是分式方程的解且符合实际,所以估计纸箱中白球的数量接近36.【知识点】利用频率估计概率、用样本估计总体【解析】(1)用发放景点吉祥物的数量除以游客的总数量即可;(2)设袋子中白球的数量为x,用袋子中红球的数量除以球的总个数=0.25列出方程求解即可.本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.21.【答案】(1)证明:∵△AOB为等边三角形,∴∠BAO=∠AOB=60°,OA=OB,∵四边形ABCD是平行四边形∴OB=OD=12BD,OA=OC=12AC,∴BD=AC,∴▱ABCD是矩形;(2)解:∵▱ABCD是矩形,∴∠BAD=90°,∵∠ABO=60°,∴∠ADB=90°−60°=30°,∴AD=√3AB=4√3.【知识点】平行四边形的性质、等边三角形的性质、矩形的判定与性质【解析】(1)由等边三角形的性质得OA=OB,再由平行四边形的性质得OB=OD=1 2BD,OA=OC=12AC,则BD=AC,即可得出结论;(2)由矩形的性质得∠BAD=90°,则∠ADB=30°,再由含30°角的直角三角形的性质求解即可.本题考查了矩形的判定与性质,平行四边形的性质以及等边三角形的性质等知识;熟练掌握矩形的判定与性质是解题的关键.22.【答案】解:(1)设该参赛同学一共答对了x道题,则答错了(25−1−x)道题,依题意得:4x−(25−1−x)=86,解得:x=22.答:该参赛同学一共答对了22道题.(2)设参赛者需答对y道题才能被评为“学党史小达人”,则答错了(25−y)道题,依题意得:4y−(25−y)≥90,解得:y≥23.答:参赛者至少需答对23道题才能被评为“学党史小达人”.【知识点】一元一次不等式的应用、一元一次方程的应用【解析】(1)设该参赛同学一共答对了x道题,则答错了(25−1−x)道题,根据总得分=4×答对题目数−1×答错题目数,即可得出关于x的一元一次方程,解之即可得出结论;(2)设参赛者需答对y道题才能被评为“学党史小达人”,则答错了(25−y)道题,根据总得分=4×答对题目数−1×答错题目数,结合总得分大于或等于90分,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.【答案】解:(1)证明:在△ADB和△ADC中:{AD=AD∠ADB=∠ADC BD=CD,∴△ADB≌△ADC(SAS),∴∠B=∠ACB;(2)在Rt△ADB中,BD=√AB2−AD2=√52−42=3,∴BD=CD=3,AC=AB=CE=5,∴BE=2BD+CE=2×3+5=11,在Rt△ADE中,AE=√AD2+DE2=√42+82=4√5,∴C△ABE=AB+BE+AE=5+11+4√5=16+4√5,S△ABE=12×BE×AD=12×11×4=22.【知识点】线段垂直平分线的概念及其性质、三角形的面积【解析】(1)通过SAS求证△ADB≌△ADC即可证明∠B=∠ACB;(2)利用勾股定理分别计算出BD和AE即可求出△ABE的周长和面积.本题考查全等三角形的判定与性质,勾股定理,三角形面积的计算等知识,熟练掌握全等三角形的判定和基本性质以及勾股定理的应用是解题的关键.24.【答案】4 −1 4【知识点】二次函数综合【解析】解:(1)∵A,B关于y轴对称,∴s=−1,r=4,∴A的坐标为(1,4),把A(1,4)代入是关于x的“T函数”中,得:t=4,故答案为r=4,s=−1,t=4;(2)当k=0时,有y=p,此时存在关于y轴对称得点,∴y=kx+p是“T函数”,当k≠0时,不存在关于y轴对称的点,∴y=kx+p不是“T函数”;(3)∵y=ax2+bx+c过原点,∴c=0,∵y=ax2+bx+c是“T函数”,∴b=0,∴y=ax2,联立直线l和抛物线得:{y=ax 2y=mx+n,即:ax2−mx−n=0,x1+x2=ma ,x1x2=−na,又∵(1−x1)−1+x2=1,化简得:x1=x2,∴ma =−na,即m=−n,∴y=mx+n=mx−m,当x=1时,y=0,∴直线l必过定点(1,0).(1)由A,B关于y轴对称求出r,s,由“T函数”的定义求出t;(2)分k=0和k≠0两种情况考虑即可;(3)先根据过原点得出c=0,再由“T函数”得出b的值,确定二次函数解析式后,和直线联立求出交点的横坐标,写出l的解析式,确定经过的定点即可.本题主要考查和二次函数有关的新定义题型,关键在于读明白新定义的函数的特点,要理解本题中存在关于y轴对称的点是什么意思,过定点问题一般要先写出解析式,然后取x的值得出y.25.【答案】解:(1)如图,连接OP.∵四边形MNPQ是正方形,∴∠OMN=∠ONP=90°,MQ=PN,∵OQ=OP,∴△OMQ≌△ONP(HL),∴OM=ON,设OM=ON=m,则MQ=2m,OQ=√OM2+MQ2=√5m,∴sin∠AOQ=MQOQ =2m√5m=2√55.(2)由(1)可知OM=ON=m,OQ=OA=√5m,MN=2m,∴AM=OA−OM=√5m−m,∴AMMN =√5m−m2m=√5−12.(3)∵AB=2R,∴OA=OB=OQ=r,∵QM=2MO,∴OM=√5R5,MQ=2√5R5,∵AB是直径,∴∠ACB=∠DCE=90°,∵∠CED=∠AEM,∴∠A=∠D,∵∠AME=∠DMB=90°,∴△AME∽△DMB,∴AMDM =EMBM,∴R−√5R 5y+2√5R5=xR+√5R5,∴y=4R25x −2√5R5,当点C与P重合时,AMAN =EMPN,∴R−√5R 5R+√5R5=2√5R5,∴x=3√5−55R,∴3√5−55R<x<2√55R.【知识点】圆的综合【解析】(1)利用全等三角形的性质证明OM=ON,设OM=ON=m,则MQ=2m,求出OQ,可得结论.(2)利用(1)中结论,求出AM,MN(用m表示即可).(3)证明△AME∽△DMB,可得AMDM =EMBM,由此构建关系式,可得结论.本题属于圆综合题,考查了圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.。
2021年湖南省永州市中考数学试卷及答案(Word解析版)

2021年湖南省永州市中考数学试卷及答案(Word解析版)湖南省永州市2021年中考数学试卷一、多项选择题(每个子题3分,共24分)。
1.(3分)(2022?永州)A.B.的倒数是()2021c.d.2021考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵()×(2021)=1,∴的倒数为2021.故选d.点评:本题考查了倒数的定义,熟记概念是解题的关键.2.(3分)(2021?永州)运用湘教版初中数学教材上使用的某种电子计算器求键顺序正确的是()a.c..考点:计算器―数的开方分析:根据计算器上的键的功能,是先按最后按6,即可得出答案.解答:解:是先按,再按8,是先按2nd 键,再按则+的顺序先按,最后按6,,再按8,按+,按2nd键,按,最后按6,+的近似值b.,再按8,是先按2nd键,再按,故选a.点评:此题主要考查了计算器的使用方法,由于计算器的类型很多,可根据计算器的说明书使用.3.(3分)(2021?永州)下列几何体中,其主视图不是中心对称图形的是()a、 B.c.d.试验场地:中心对称图;简单几何的三视图分析:首先判断每个图形的主视图,然后结合中心对称性的定义进行判断;b、主视图是一个三角形,它不是一个中心对称的图形,所以这个选项是正确的;c、主视图是一个圆形,是一个中心对称的图形,所以这个选项是错误的;d、主视图是一个正方形,而正方形是一个中心对称的图形,所以这个选项是错误的;所以选择B.评论:这个问题考察了三个视图的知识和简单几何的中心对称性。
判断中心对称图形就是找到对称中心,旋转180度后与原始图形重合。
4.(3点)(2022?永州)如图所示,在以下条件下可以确定L1‖L2线为()∠1=∠2∠1+∠3=180°∠3=∠5a.c.d.考点:平行线的判定.分析:平行线的判定定理有①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,根据以上内容判断即可.解答:解:a、根据∠1=∠2不能推出l1∥l2,故本选项错误;b、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故本选项错误;c、∵∠1+∠3=180°,∴l1∥l2,故本选项正确;d、根据∠3=∠5不能推出l1∥l2,故本选项错误;故选c.点评:本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.5.(3分)(2021?永州)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()∠1=∠5b。
2021年中考数学专题复习 专题49 中考数式图规律型试题解法(教师版含解析)

专题49 中考数式图规律型试题解法给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.这类问题成为探索规律性问题。
主要采用归纳法解决。
1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.5.解题方法规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.【例题1】(2019安徽合肥)观察下列各组式子:①26115 13133⨯-+==⨯;②1262111 353515⨯-+==⨯;③1263117 (575735)⨯-+==⨯ (1)请根据上面的规律写出第 4个式子;(2)请写出第n 个式子,并证明你发现的规律.【答案】(1)1264123797963⨯-+==⨯;(2)()()126121212121n n n n n ⨯-+=-+-⨯+, 证明见解析.【解析】(1)1264123797963⨯-+==⨯ (2)()()126121212121n n n n n ⨯-+=-+-⨯+ 证明:等式左边122121n n =+-+, ()()()()()2212121?2121?21n n n n n n -+=+-+-+ ()()()2122121?21n n n n ++-=-+ ()()6121?21n n n ⨯-=-+ ∵等式右边为()()612121n n n ⨯--⨯+,与等式左边计算出的结果相等, ∴()()126121212121n n n n n ⨯-+=-+-⨯+成立. 【点拨】本题主要考查了分式运算的规律探讨问题,根据题意正确总结归纳出相应的规律是解题关键.【对点练习】(2019湖南益阳)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式.【答案】13﹣2=(﹣)2.【解析】第n个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n个等式右边的式子为(﹣)2(n≥1的整数).写出第6个等式为13﹣2=(﹣)2.【例题2】(2019湖北咸宁)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【答案】﹣384.【解析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384【对点练习】(2019湖南常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是( )A.0 B.1 C.7 D.8【答案】A【解析】首先得出尾数变化规律,进而得出70+71+72+…+72019的结果的个位数字.∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.【点拨】本题属于数字规律探究的问题。
2021年湖南省邵阳市中考数学试卷及答案解析

2021年湖南省邵阳市中考数学试卷一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣3的相反数是()A.﹣3B.0C.3D.π2.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.3.(3分)2021年我国首次发射探测器对火星进行探测.北京时间2月10日晚,“天问一号”探测器在距离地球约192000000km处成功实施制动捕获,随后进入火星轨道.用科学记数法将192000000表示为a×108的形式,则a的值是()A.0.192B.1.92C.19.2D.1924.(3分)如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2B.1C.﹣1D.﹣25.(3分)如图,在△AOB中,AO=1,BO=AB=32.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为()A .1B .√2C .32D .32√26.(3分)其社区针对5月30日前该社区居民接种新冠疫苗的情况开展了问卷调查,共收回6000份有效问卷.经统计,制成如下数据表格.接种疫苗针数0 1 2 3 人数 2100 2280 1320 300小杰同学选择扇形统计图分析接种不同针数的居民人数所占总人数的百分比.下面是制作扇形统计图的步骤(顺序打乱):①计算各部分扇形的圆心角分别为126°,136.8°,79.2°,18°.②计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%. ③在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.制作扇形统计图的步骤排序正确的是( )A .②①③B .①③②C .①②③D .③①②7.(3分)下列数值不是不等式组{5x −1>3x −4−13x ≤23−x 的整数解的是( ) A .﹣2 B .﹣1 C .0 D .18.(3分)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A .小明修车花了15minB .小明家距离学校1100mC .小明修好车后花了30min 到达学校D .小明修好车后骑行到学校的平均速度是3m /s9.(3分)如图,点A ,B ,C 是⊙O 上的三点.若∠AOC =90°,∠BAC =30°,则∠AOB的大小为( )A .25°B .30°C .35°D .40°10.(3分)在平面直角坐标系中,若直线y =﹣x +m 不经过第一象限,则关于x 的方程mx 2+x +1=0的实数根的个数为( )A .0个B .1个C .2个D .1或2个二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)16的算术平方根是 .12.(3分)因式分解:xy 2﹣x 3= .13.(3分)如图,点D ,E ,F 分别为△ABC 三边的中点.若△ABC 的周长为10,则△DEF的周长为 .14.(3分)已知点A (1,y 1),B (2,y 2)为反比例函数y =3x 图象上的两点,则y 1与y 2的大小关系是y 1 y 2.(填“>”“=”或“<”)15.(3分)如图,已知线段AB 长为4.现按照以下步骤作图:①分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧分别相交于点E ,F ; ②过E ,F 两点作直线,与线段AB 相交于点O .则AO的长为.16.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是.17.(3分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是钱.18.(3分)如图,在矩形ABCD中,DE⊥AC,垂足为点E.若sin∠ADE=45,AD=4,则AB的长为.三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:(2021﹣π)0﹣|√3−2|﹣tan60°.20.(8分)先化简,再从﹣1,0,1,2,√2+1中选择一个合适的x 的值代入求值.(1−x x+1)÷x 2−1x 2+2x+1. 21.(8分)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC上的两点,且AE =CF .连接DE ,DF ,BE ,BF .(1)证明:△ADE ≌△CBF .(2)若AB =4√2,AE =2,求四边形BEDF 的周长.22.(8分)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.23.(8分)为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位:h )进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.周学习时间频数频率0≤t<150.051≤t<2200.202≤t<3a0.353≤t<425m4≤t≤5150.15(1)求统计表中a,m的值.(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于3h的人数.24.(8分)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)25.(8分)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).(1)求抛物线C的对称轴.(2)当a=﹣1时,将抛物线C向左平移2个单位,再向下平移1个单位,得到抛物线C1.①求抛物线C1的解析式.②设抛物线C1与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,连接BC.点D为第一象限内抛物线C1上一动点,过点D作DE⊥OA于点E.设点D的横坐标为m.是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似,若存在,求出m的值;若不存在,请说明理由.26.(10分)如图,在Rt△ABC中,点P为斜边BC上一动点,将△ABP沿直线AP折叠,使得点B的对应点为B′,连接AB′,CB′,BB′,PB′.(1)如图①,若PB′⊥AC,证明:PB′=AB′.(2)如图②,若AB=AC,BP=3PC,求cos∠B′AC的值.(3)如图③,若∠ACB=30°,是否存在点P,使得AB=CB′.若存在,求此时PCBC的值;若不存在,请说明理由.2021年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣3的相反数是()A.﹣3B.0C.3D.π【分析】根据相反数的概念求解即可.解:相反数指的是只有符号不同的两个数,因此﹣3的相反数为3.故选:C.【点评】本题主要考查相反数的概念,熟练掌握相反数的概念并正确应用是解题的关键.2.(3分)下列四个图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.是中心对称图形,故本选项符合题意;D.不是中心对称图形,故本选项不合题意.故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)2021年我国首次发射探测器对火星进行探测.北京时间2月10日晚,“天问一号”探测器在距离地球约192000000km处成功实施制动捕获,随后进入火星轨道.用科学记数法将192000000表示为a×108的形式,则a的值是()A.0.192B.1.92C.19.2D.192【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数.解:192000000=1.92×108,故a=1.92,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,若数轴上两点M,N所对应的实数分别为m,n,则m+n的值可能是()A.2B.1C.﹣1D.﹣2【分析】根据在数轴上表示的两个数,右边的总比左边的大,可得:﹣3<m<﹣2<0<n <1,m+n的结果即可求得.解:∵M,N所对应的实数分别为m,n,∴﹣3<m<﹣2<0<n<1,∴m+n的值可能是﹣2.故选:D.【点评】本题考查了实数与数轴,利用数轴可以比较任意两个实数的大小,确定两个实数的范围是解决本题的关键.5.(3分)如图,在△AOB中,AO=1,BO=AB=32.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为()A .1B .√2C .32D .32√2【分析】由旋转性质可判定△AOA '为等腰直角三角形,再由勾股定理可求得AA '的长. 解:由旋转性质可知,OA =OA '=1,∠AOA '=90°, 则△AOA '为等腰直角三角形, ∴AA '=√OA 2+OA′2=√1+1=√2. 故选:B .【点评】本题考查了旋转的性质,直角三角形的判定和性质,勾股定理,熟悉以上性质是解题关键.6.(3分)其社区针对5月30日前该社区居民接种新冠疫苗的情况开展了问卷调查,共收回6000份有效问卷.经统计,制成如下数据表格. 接种疫苗针数0 1 2 3 人数210022801320300小杰同学选择扇形统计图分析接种不同针数的居民人数所占总人数的百分比.下面是制作扇形统计图的步骤(顺序打乱):①计算各部分扇形的圆心角分别为126°,136.8°,79.2°,18°.②计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%. ③在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.制作扇形统计图的步骤排序正确的是( )A .②①③B .①③②C .①②③D .③①②【分析】根据制作扇形图的步骤即可求解.解:由题意可知,小杰同学制作扇形统计图的步骤为:先计算出接种不同针数的居民人数占总人数的百分比分别为35%,38%,22%,5%; 再计算各部分扇形的圆心角分别为126°,136.8°,79.2°,18°;然后在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比. 故选:A .【点评】本题考查了扇形统计图,扇形图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.制作扇形图的步骤如下:①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°.②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来. 7.(3分)下列数值不是不等式组{5x −1>3x −4−13x ≤23−x的整数解的是( )A .﹣2B .﹣1C .0D .1【分析】先分别求每个不等式的解集,取其解集的公共部分作为不等式组的解集,然后再确定其整数解. 解:{5x −1>3x −4①−13x ≤23−x②, 解不等式①,得:x >−32, 解不等式②,得:x ≤1,∴不等式组的解集为:−32<x ≤1, ∴不等式组的整数解为﹣1,0,1, 故选:A .【点评】本题考查解一元一次不等式组,掌握解不等式组的步骤准确计算是解题关键.8.(3分)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是()A.小明修车花了15minB.小明家距离学校1100mC.小明修好车后花了30min到达学校D.小明修好车后骑行到学校的平均速度是3m/s【分析】根据横坐标,可得时间;根据函数图象的纵坐标,可得路程.解:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项符合题意;B.由纵坐标看出,小明家学校离家的距离为2100米,故本选项不合题意;C.由横坐标看出,小明修好车后花了30﹣20=10(min)到达学校,故本选项不合题意;D.小明修好车后骑行到学校的平均速度是:(2100﹣1100)÷10=100(米/分钟)=53(m/s),故本选项不合题意;故选:A.【点评】本题考查了函数图象,观察函数图象得出相应的时间,函数图象的纵坐标得出路程是解题关键.9.(3分)如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB 的大小为()A.25°B.30°C.35°D.40°【分析】由圆周角定理可得∠BOC=2∠BAC=60°,继而∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.̂,解:∵∠BAC与∠BOC所对弧为BC由圆周角定理可知:∠BOC=2∠BAC=60°,又∠AOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.故选:B.【点评】本题主要考查了圆周角定理,熟练运用圆周角定理是解题关键.10.(3分)在平面直角坐标系中,若直线y=﹣x+m不经过第一象限,则关于x的方程mx2+x+1=0的实数根的个数为()A.0个B.1个C.2个D.1或2个【分析】由直线解析式求得m≤0,然后确定△的符号即可.解:∵直线y=﹣x+m不经过第一象限,∴m≤0,当m=0时,方程mx2+x+1=0是一次方程,有一个根,当m<0时,∵关于x的方程mx2+x+1=0,∴△=12﹣4m>0,∴关于x的方程mx2+x+1=0有两个不相等的实数根,故选:D.【点评】本题考查了一次函数的性质,根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.解:∵42=16,∴√16=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.12.(3分)因式分解:xy2﹣x3=x(y+x)(y﹣x).【分析】首先提取公因式x,再利用平方差公式分解因式即可.解:xy2﹣x3=x(y2﹣x2)=x(y+x)(y﹣x).故答案为:x(y+x)(y﹣x).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.13.(3分)如图,点D,E,F分别为△ABC三边的中点.若△ABC的周长为10,则△DEF 的周长为5.【分析】根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:∵D、E、F分别是AB、AC、BC的中点,∴FD、FE、DE为△ABC中位线,∴DF=12AC,FE=12AB,DE=12BC;∴DF+FE+DE=12AC+12AB+12BC=12(AB+AC+CB)=12×10=5,故答案为:5.【点评】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.14.(3分)已知点A(1,y1),B(2,y2)为反比例函数y=3x图象上的两点,则y1与y2的大小关系是y1>y2.(填“>”“=”或“<”)【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限,进而可得出结论.解:∵反比例函数y=3x中,k=3>0,∴函数图象的两个分支分别位于第一、三象限,且在每一象限内y随x的增大而减小.∵A (1,y 1),B (2,y 2), ∴点A 、B 都在第一象限, 又1<2, ∴y 1>y 2, 故答案为:>.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.15.(3分)如图,已知线段AB 长为4.现按照以下步骤作图:①分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧分别相交于点E ,F ;②过E ,F 两点作直线,与线段AB 相交于点O . 则AO 的长为 2 .【分析】直接利用基本作图方法得出EF 垂直平分AB ,即可得出答案. 解:由基本作图方法可得:EF 垂直平分AB , ∵AB =4, ∴AO =12AB =2. 故答案为:2.【点评】此题主要考查了基本作图,正确掌握基本作图方法是解题关键.16.(3分)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机选择其中一条路径,则它遇到食物的概率是13.【分析】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径, ∴它有6种路径, ∵获得食物的有2种路径, ∴它遇到食物的概率是:26=13.故答案为:13.【点评】此题考查了列表法或树状图法求概率.熟练掌握概率=所求情况数与总情况数之比是解题的关键.17.(3分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下: 今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少? 该问题中物品的价值是 53 钱.【分析】设有x 人,物品的价值为y 钱,由题意:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.列出方程组,解方程组即可. 解:设有x 人,物品的价值为y 钱, 依题意,得:{y =8x −3y =7x +4,解得:{x =7y =53,即该问题中物品的价值是53钱, 故答案为:53.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.(3分)如图,在矩形ABCD 中,DE ⊥AC ,垂足为点E .若sin ∠ADE =45,AD =4,则AB 的长为 3 .【分析】易证∠ACD =∠ADE ,由矩形的性质得出∠BAC =∠ACD ,则BC AC=45,由此得到AC =BC45=445=5,最后由勾股定理得出结果.解:∵DE ⊥AC , ∴∠ADE +∠CAD =90°, ∵∠ACD +∠CAD =90°, ∴∠ACD =∠ADE ,∵矩形ABCD 的对边AB ∥CD , ∴∠BAC =∠ACD , ∵sin ∠ADE =45, ∴BC AC=45,∴AC =BC45=445=5,由勾股定理得,AB =√AC 2−BC 2=√52−42=3, 故答案为:3.【点评】本题考查了矩形的性质、勾股定理、平行线的性质、解直角三角形等知识;熟练掌握勾股定理与解直角三角形是解题的关键.三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:(2021﹣π)0﹣|√3−2|﹣tan60°.【分析】结合零指数幂,绝对值的化简和60°角的正切值可以求出结果. 解:原式=1﹣(2−√3)−√3 =1﹣2+√3−√3 =﹣1.【点评】本题虽是一个简单的计算题,在平时的考试中也属解答题中的简单题型,但主要是想通过这种题型,考查学生对于零指数幂、绝对值的化简和特殊角的三角函数值的掌握情况.解题的时候需要注意绝对值化简时符号的确定,这是学生失分最多的点. 20.(8分)先化简,再从﹣1,0,1,2,√2+1中选择一个合适的x 的值代入求值.(1−x x+1)÷x 2−1x 2+2x+1.【分析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x 的取值,代入求值即可.解:原式=x+1−x x+1⋅(x+1)2(x+1)(x−1)=1x−1, 又∵x ≠±1,∴x 可以取0,此时原式=﹣1; x 可以取2,此时原式=1; x 可以取√2+1,此时原式=1√2+1−1=√22. 【点评】本题考查分式的混合运算,分式成立的条件及二次根式的运算,掌握运算顺序和计算法则准确计算是解题关键.21.(8分)如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 是对角线AC 上的两点,且AE =CF .连接DE ,DF ,BE ,BF . (1)证明:△ADE ≌△CBF .(2)若AB =4√2,AE =2,求四边形BEDF 的周长.【分析】(1)由正方形对角线性质可得∠DAE =∠BCF =45°,再由SAS 可证△ADE ≌△CBF ;(2)由正方形性质及勾股定理可求得BD =AC =8,DO =BO =4.再证明四边形BEDF 为菱形,因为AE =CF =2,所以可得OE =2,在Rt △DOE 中用勾股定理求得DE =2√5,进而四边形BEDF 的周长为4DE ,即可求得答案.解;(1)证明:由正方形对角线平分每一组对角可知:∠DAE =∠BCF =45°, 在△ADE 和△CBF 中, {AD =BC∠DAE =∠BCF AE =CF, ∴△ADE ≌△CBF (SAS ). (2)∵AB =AD =4√2,∴BD =√AB 2+AD 2=√(4√2)2+(4√2)2=8,由正方形对角线相等且互相垂直平分可得:AC =BD =8,DO =BO =4,OA =OC =4, 又AE =CF =2, ∴OA ﹣AE =OC ﹣CF , 即OE =OF =4﹣2=2, 故四边形BEDF 为菱形. ∵∠DOE =90°,∴DE =√DO 2+EO 2=√42+22=2√5. ∴4DE =8√5故四边形BEDF 的周长为8√5.【点评】本题考查了全等三角形的判定,菱形的判定与性质,勾股定理,正方形的性质,熟悉以上几何图形的性质和判定是解题关键.22.(8分)为庆祝中国共产党成立100周年,某校计划举行“学党史•感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.【分析】设钢笔购买了x 支,笔记本购买了y 本,篮球个数+钢笔支数+笔记本本数=56,篮球总价+钢笔总价+笔记本总价=1000,利用这两个相等关系列出二元一次方程组,解出即得钢笔和笔记本的数量,乘以各自单价即得各自总价. 解:设钢笔购买了x 支,笔记本购买了y 本. 由题意得:{x +y +6=5615x +5y +600=1000,解得:{x =15y =35,∴15×15=225(元),35×5=175(元),答:钢笔购买了15支共225元,笔记本购买了35本共175元.【点评】仔细观察发票中的数据,理解合计中的数量即为所购买的篮球、钢笔、笔记本的总数,合计中的金额即为所购买的篮球、钢笔、笔记本的总价和,这是找到相等关系,列出方程组解决问题的关键.23.(8分)为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位:h )进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.周学习时间频数频率0≤t<150.051≤t<2200.202≤t<3a0.353≤t<425m4≤t≤5150.15(1)求统计表中a,m的值.(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于3h的人数.【分析】(1)由周学习时间在0≤t<1的频数及频率求出样本容量,再由频率=频数÷样本容量求解即可得出答案;(2)根据中位数的定义可得答案;(3)用总人数乘以样本中3≤t<4、4≤t≤5的频率和.解:(1)∵样本容量为5÷0.05=100,∴a=100×0.35=35,m=25÷100=0.25;(2)∵一共有100个数据,其中位数是第50、51个数据的平均数,而这2个数据均落在2≤t<3范围内,∴甲同学的周学习时间在2≤t<3范围内;(3)估计该校学生每周参加“青年大学习”的时间不少于3h的人数为2000×(0.25+0.15)=800(人).【点评】本题考查的是频数(率)分布表、中位数及样本估计总体的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.24.(8分)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【分析】(1)设∠BAC=n°.根据弧EF的两种求法,构建方程,可得结论.(2)根据S阴=12•BC•AD﹣S扇形AEF求解即可.解:(1)设∠BAC=n°.由题意得π•DE=nπ⋅AD180,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=12•BC•AD﹣S扇形AEF=12×10×20−90π⋅102360=(100﹣25π)cm2.【点评】本题考查圆锥的计算,等腰三角形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.25.(8分)如图,在平面直角坐标系中,抛物线C:y=ax2+bx+c(a≠0)经过点(1,1)和(4,1).(1)求抛物线C的对称轴.(2)当a =﹣1时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线C 1.①求抛物线C 1的解析式.②设抛物线C 1与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线C 1上一动点,过点D 作DE ⊥OA 于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与△BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【分析】(1)点(1,1)和(4,1)的纵坐标相同,故上述两点关于抛物线对称轴对称,即可求解;(2)①用待定系数法即可求解;②当以点O ,D ,E 为顶点的三角形与△BOC 相似时,则tan ∠DOE =2或12,即tan ∠DOE =DE OE =−m 2+m+2m =2或12,即可求解. 解:(1)∵点(1,1)和(4,1)的纵坐标相同, 故上述两点关于抛物线对称轴对称, 故抛物线的对称轴为直线x =12(1+4)=52;(2)①由题意得:{−1+b +c =0−16+4b +c =0,解得{b =5c =−3,故原抛物线的表达式为y =﹣x 2+5x ﹣3;由平移的性质得,平移后的抛物线表达式为y =﹣(x +2)2+5(x +2)﹣3﹣1=﹣x 2+x +2;②存在,理由:令y =﹣x 2+x +2=0,解得x =﹣1或2,令x =0,则y =2, 故点B 、A 的坐标分别为(﹣1,0)、(2,0),点C (0,2); ∵tan ∠BCO =OBCO =12, 同理可得:tan ∠CBO =2,当以点O ,D ,E 为顶点的三角形与△BOC 相似时, 则tan ∠DOE =2或12,设点D 的坐标为(m ,﹣m 2+m +2), 则tan ∠DOE =DE OE =−m 2+m+2m =2或12, 解得:m =﹣2(舍去)或1或1−√332(舍去)或1+√332,故m =1或1+√332.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.26.(10分)如图,在Rt △ABC 中,点P 为斜边BC 上一动点,将△ABP 沿直线AP 折叠,使得点B 的对应点为B ′,连接AB ′,CB ′,BB ′,PB ′. (1)如图①,若PB ′⊥AC ,证明:PB ′=AB ′.(2)如图②,若AB =AC ,BP =3PC ,求cos ∠B ′AC 的值.(3)如图③,若∠ACB =30°,是否存在点P ,使得AB =CB ′.若存在,求此时PC BC的值;若不存在,请说明理由.【分析】(1)易证PB '∥AB .所以∠B 'P A =∠BAP ,又由折叠可知∠BAP =∠B 'AP ,所以。
湖南省岳阳市2021年中考数学试卷 (Word版,含答案与解析)

湖南省岳阳市2021年中考数学试卷一、单选题1.(2021·岳阳)在实数 √3 ,-1,0,2中,为负数的是( )A. √3B. -1C. 0D. 2 【答案】 B 【考点】正数和负数的认识及应用【解析】【解答】解:A 、 √3 是正数;B 、1是正数,在正数的前面加上“-”的数是负数,所以,-1是负数;C 、0既不是正数,也不是负数;D 、2是正数.故答案为:B【分析】负数小于0,据此判断即可.2.(2021·岳阳)下列品牌的标识中,是轴对称图形的是( )A. B. C. D.【答案】 A【考点】轴对称图形【解析】【解答】A. 是轴对称图形,符合题意;B. 不是轴对称图形,不符合题意;C. 不是轴对称图形,不符合题意;D. 不是轴对称图形,不符合题意;故答案为:A.【分析】轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此逐一判断即可.3.(2021·岳阳)下列运算结果正确的是( )A. 3a −a =2B. a 2⋅a 4=a 8C. (a +2)(a −2)=a 2−4D. (−a)2=−a 2【答案】 C【考点】同底数幂的乘法,平方差公式及应用,有理数的乘方,合并同类项法则及应用【解析】【解答】解:A 、3a −a =2a ,因此错误;B 、 a 2·a 4=a 6 ,因此错误;C 、 (a +2)(a −2)=a 2−4 ,因此正确;D 、 (−a)2=a 2 ,因此错误;故答案为:C.【分析】根据合并同类项、同底数幂的乘法、平方差公式及幂的乘方分别计算,然后判断即可.4.(2021·岳阳)已知不等式组 {x −1<02x ≥−4,其解集在数轴上表示正确的是( )A. B.C. D.【答案】 D【考点】在数轴上表示不等式组的解集,解一元一次不等式组【解析】【解答】解: {x −1<02x ≥−4①② ,解不等式①得: x <1 ,解不等式②得: x ≥−2 ,∴不等式组的解集为: −2≤x <1 ,在数轴上表示为:故答案为:D.【分析】先求出不等式组的解集,再在数轴上表示,然后判断即可.5.(2021·岳阳)将一副直角三角板按如图方式摆放,若直线 a//b ,则 ∠1 的大小为()A. 45°B. 60°C. 75°D. 105°【答案】 C【考点】平行线的性质【解析】【解答】∵a ∥b∴ ∠1+(45°+60°)=180° (两直线平行,同旁内角互补)∴ ∠1=75° .故答案为:C.【分析】根据两直线平行,同旁内角互补进行解答即可.6.(2021·岳阳)下列命题是真命题的是( )A. 五边形的内角和是 720°B. 三角形的任意两边之和大于第三边C. 内错角相等D. 三角形的重心是这个三角形的三条角平分线的交点【答案】 B【考点】平行线的性质,三角形三边关系,多边形内角与外角,三角形的重心及应用【解析】【解答】A 、五边形的内角和是 540° ,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故答案为:B.【分析】根据多边形的内角和公式、三角形三边关系、平行线的性质及三角形重心的性质分别进行判断即可.7.(2021·岳阳)在学校举行“庆祝百周年,赞歌献给党”的合唱比赛中,七位评委给某班的评分去掉一个最高分、一个最低分后得到五个有效评分,分别为:9.0,9.2,9.0,8.8,9.0(单位:分),这五个有效评分的平均数和众数分别是()A. 9.0,8.9B. 8.9,8.9C. 9.0,9.0D. 8.9,9.0【答案】C【考点】平均数及其计算,众数【解析】【解答】解:该班最后得分为(9.0+9.2+9.0+8.8+9.0)÷5=9.0(分).故最后平均得分为9.0分.在五个有效评分中,9.0出现的次数最多,因此众数为:9.0故答案为:C.【分析】根据平均数的定义、众数的定义分别求解即可判断.8.(2021·岳阳)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A(0,2),点C(2,0),则互异二次函数y=(x−m)2−m与正方形OABC有交点时m的最大值和最小值分别是()A. 4,-1B. 5−√172,-1 C. 4,0 D. 5+√172,-1【答案】 D【考点】二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的图象,二次函数y=ax^2+bx+c的性质【解析】【解答】解:由正方形的性质可知:B(2,2);若二次函数y=(x−m)2−m与正方形OABC有交点,则共有以下四种情况:当m≤0时,则当A点在抛物线上或上方时,它们有交点,此时有{m≤0m2−m≤2,解得:−1≤m<0;当0<m≤1时,则当C点在抛物线上或下方时,它们有交点,此时有{0<m≤1(2−m)2−m≥0,解得:0<m≤1;当1<m≤2时,则当O点位于抛物线上或下方时,它们有交点,此时有{1<m≤2m2−m>0,解得:1<m≤2;当m>2时,则当O点在抛物线上或下方且B点在抛物线上或上方时,它们才有交点,此时有{m>2m2−m≥0(2−m)2−m≤2,解得:2<m≤5+√172;综上可得:m的最大值和最小值分别是5+√172,−1.故答案为:D.【分析】先求出点B(2,2),分四种情况:①当m≤0时,则当A点在抛物线上或上方时,它们有交点;②当0<m≤1时,则当C点在抛物线上或下方时,它们有交点;③当1<m≤2时,则当O 点位于抛物线上或下方时,它们有交点;④当m>2时,则当O点在抛物线上或下方且B点在抛物线上或上方时,它们才有交点,据此分别列出不等式组,求解即可.二、填空题9.(2021·岳阳)因式分解:x2+2x+1=________.【答案】(x+1)2【考点】因式分解﹣运用公式法【解析】【解答】解:x2+2x+1=(x+1)2.故答案为:(x+1)2.【分析】利用完全平方公式分解即可.10.(2021·岳阳)2021年5月15日,“天问一号”探测器成功着陆火星,在火星上首次留下了中国印迹.据公开资料显示,地球到火星的最近距离约为55000000公里,数据55000000用科学记数法表示为________. 【答案】5.5×107【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:55000000=5.5×107.故答案为:5.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,据此解答即可.11.(2021·岳阳)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为________.【答案】35【考点】概率公式【解析】【解答】解:袋子中一共有5个球,从袋子中随机摸出一个小球,总的结果数是5个,其中,摸出的小球是白球的结果数为3个,因此,摸出的小球是白球的概率为35;故答案为:35.【分析】利用概率公式计算即可.12.(2021·岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等的实数根,则实数k的值为________.【答案】9【考点】一元二次方程根的判别式及应用【解析】【解答】解:由题可知:“△=0”,即62−4k=0;∴k=9;故答案为:9.【分析】由关于x的一元二次方程x2+6x+k=0有两个相等的实数根,可得△=0,据此解答即可.13.(2021·燕山模拟)要使分式5x−1有意义,则x的取值范围为________.【答案】x≠1【考点】分式有意义的条件【解析】【解答】解:由题意得x-1≠0,∴x≠1.故答案为x≠1.【分析】先求出x-1≠0,再求取值范围即可。
2021年湖南省株洲市中考数学真题 解析版

2021年湖南省株洲市中考数学试卷(解析版)一、选择题(本大题共10小题,每小题有且只有一个正确答案,每小题4分,共40分)1.若a的倒数为2,则a=()A.B.2C.﹣D.﹣2【分析】根据倒数的定义:乘积是1的两数互为倒数,即可得出答案.【解答】解:∵a的倒数为2,∴a=.故选:A.2.方程﹣1=2的解是()A.x=2B.x=3C.x=5D.x=6【分析】移项,合并同类项,系数化成1即可.【解答】解:﹣1=2,移项,得=2+1,合并同类项,得=3,系数化成1,得x=6,故选:D.3.如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.【解答】解:∵∠DCE=132°,∴∠DCB=180°﹣∠DCE=180°﹣132°=48°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=48°,故选:B.4.某月1日﹣10日,甲、乙两人的手机“微信运动”的步数统计图如图所示,则下列错误的结论是()A.1日﹣10日,甲的步数逐天增加B.1日﹣6日,乙的步数逐天减少C.第9日,甲、乙两人的步数正好相等D.第11日,甲的步数不一定比乙的步数多【分析】根据图中给出的甲乙两人这10天的数据,依次判断A,B,C,D选项即可.【解答】解:A.1日﹣10日,甲的步数逐天增加;故A正确,不符合题意;B.1日﹣5日,乙的步数逐天减少;6日步数的比5日的步数多,故B错误,符合题意;C.第9日,甲、乙两人的步数正好相等;故C正确,不符合题意;D.第11日,甲的步数不一定比乙的步数多;故D正确,不符合题意;故选:B.5.计算:=()A.﹣2B.﹣2C.﹣D.2【分析】直接利用二次根式的性质化简得出答案.【解答】解:﹣4×=﹣4×=﹣2.故选:A.6.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为()A.1.8升B.16升C.18升D.50升【分析】先将单位换成升,根据:“50单位的粟,可换得30单位的粝米…”列式可得结论.【解答】解:根据题意得:3斗=30升,设可以换得的粝米为x升,则=,解得:x==18(升),答:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为18升.故选:C.7.不等式组的解集为()A.x<1B.x≤2C.1<x≤2D.无解【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣2≤0,得:x≤2,解不等式﹣x+1>0,得:x<1,则不等式组的解集为x<1.故选:A.8.如图所示,在正六边形ABCDEF内,以AB为边作正五边形ABGHI,则∠F AI=()A.10°B.12°C.14°D.15°【分析】分别求出正六边形,正五边形的内角可得结论.【解答】解:在正六边形ABCDEF内,正五边形ABGHI中,∠F AB=120°,∠IAB=108°,∴∠F AI=∠F AB﹣∠IAB=120°﹣108°=12°,故选:B.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,点P在x轴的正半轴上,且OP=1,设M=ac(a+b+c),则M的取值范围为()A.M<﹣1B.﹣1<M<0C.M<0D.M>0【分析】由图象得x=1时,y<0即a+b+c<0,当y=0时,得与x轴两个交点,x1x2=<0,即可判断M的范围.【解答】解:∵OP=1,P不在抛物线上,∴当抛物线y=ax2+bx+c(a≠0),x=1时,y=a+b+c<0,当抛物线y=0时,得ax2+bx+c=0,由图象知x1x2=<0,∴ac<0,∴ac(a+b+c)>0,即M>0,故选:D.10.某限高曲臂道路闸口如图所示,AB垂直地面l1于点A,BE与水平线l2的夹角为α(0°≤α≤90°),EF∥l1∥l2,若AB=1.4米,BE=2米,车辆的高度为h(单位:米),不考虑闸口与车辆的宽度:①当α=90°时,h小于3.3米的车辆均可以通过该闸口;②当α=45°时,h等于2.9米的车辆不可以通过该闸口;③当α=60°时,h等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为()A.0个B.1个C.2个D.3个【分析】根据题意列出h和角度之间的关系式即可判断.【解答】解:由题知,限高曲臂道路闸口高度为:1.4+2×sinα,①当α=90°时,h<(1.4+2)米,即h<3.4米即可通过该闸口,故①正确;②当α=45°时,h<(1.4+2×)米,即h<2.814米即可通过该闸口,故②正确;③当α=60°时,h<(1.4+2×)米,即h<3.132米即可通过该闸口,故③不正确;故选:C.二、填空题(本大题共8小题,每小题4分,共32分)11.计算:(2a)2•a3=4a5.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:(2a)2•a3=4a2•a3=(4×1)(a2•a3)=4a5.故答案为4a5.12.因式分解:6x2﹣4xy=2x(3x﹣2y).【分析】直接提取公因式2x,即可分解因式得出答案.【解答】解:6x2﹣4xy=2x(3x﹣2y).故答案为:2x(3x﹣2y).13.据报道,2021年全国高考报名人数为1078万,将1078万用科学记数法表示为1.078×10n,则n=7.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1078万=10780000=1.078×107,则n=7.故答案为:7.14.抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是.【分析】画树状图展示所有4种等可能的结果数,再找出两次都是“正面朝上”的结果数,然后根据概率公式求解.【解答】解:画树状图如下:共有4种等可能的结果数,其中两次都是“正面朝上”的结果有1种,∴两次都是“正面朝上”的概率=.故答案为:.15.如图所示,线段BC为等腰△ABC的底边,矩形ADBE的对角线AB与DE交于点O,若OD=2,则AC=4.【分析】由矩形的性质可得AB=2OD=4,由等腰三角形的性质可求解.【解答】解:∵四边形ADBE是矩形,∴AB=DE,AO=BO,DO=OE,∴AB=DE=2OD=4,∵AB=AC,∴AC=4,故答案为4.16.中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如表:中药黄芪焦山楂当归806090销售单价(单位:元/千克)销售额(单位:元)120120360则在这个时间段,该中药房的这三种中药的平均销售量为 2.5千克.【分析】利用销售数量=销售额÷销售单价,可分别求出黄芪、焦山楂、当归三种中药的销售数量,再求出三者的算术平均数即可得出结论.【解答】解:黄芪的销售量为120÷80=1.5(千克),焦山楂的销售量为120÷60=2(千克),当归的销售量为360÷90=4(千克).该中药房的这三种中药的平均销售量为=2.5(千克).故答案为:2.5.17.点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,满足:当x1>0时,均有y1<y2,则k的取值范围是k<0.【分析】根据反比例函数的性质,即可解决问题.【解答】解:∵点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,又∵0<x1<x1+1时,y1<y2,∴函数图象在二四象限,∴k<0,故答案为k<0.18.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(“”为“蜨”,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“樣”和“隻”为“样”和“只”).图②为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(“一樣二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=24°,则∠DCP=21度.【分析】由点P与点A关于直线DQ对称求出∠PDQ,再由△ABD和△CBD求出∠DDB 和∠ADB,进而计算出∠CDP,最后利用三角形内角和即可求解.【解答】解:∵点P与点A关于直线DQ对称,∠ADQ=24°,∴∠PDQ=∠ADQ=24°,AD=DP,∵△ABD和△CBD为两个全等的等腰直角三角形,∴∠DDB=∠ADB=45°,CD=AD,∴∠CDP=∠DDB+∠ADB+∠PDQ+∠ADQ=138°,∵AD=DP,CD=AD,∴CD=DP,即△DCP是等腰三角形,∴∠DCP=(180°﹣∠CDP)=21°.故答案为:21.三、解答题(本大题共8小题,共78分)19.(6分)计算:|﹣2|+sin60°﹣2﹣1.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=2+×﹣=2+﹣=3.20.(8分)先化简,再求值:,其中x=﹣2.【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【解答】解:原式=•﹣=﹣=﹣,当x=﹣2时,原式=﹣=﹣=﹣.21.(8分)如图所示,在矩形ABCD中,点E在线段CD上,点F在线段AB的延长线上,连接EF交线段BC于点G,连接BD,若DE=BF=2.(1)求证:四边形BFED是平行四边形;(2)若tan∠ABD=,求线段BG的长度.【分析】(1)由矩形的性质可得DC∥AB,可得结论;(2)由平行四边形的性质可得DB∥EF,可证∠ABD=∠F,由锐角三角函数可求解.【解答】证明:(1)∵四边形ABCD是矩形,∴DC∥AB,又∵DE=BF,∴四边形DEFB是平行四边形;(2)∵四边形DEFB是平行四边形,∴DB∥EF,∴∠ABD=∠F,∴tan∠ABD=tan F=,∴,又∵BF=2,∴BG=.22.(10分)将一物体(视为边长为米的正方形ABCD)从地面PQ上挪到货车车厢内.如图所示,刚开始点B与斜面EF上的点E重合,先将该物体绕点B(E)按逆时针方向旋转至正方形A1BC1D1的位置,再将其沿EF方向平移至正方形A2B2C2D2的位置(此时点B2与点G重合),最后将物体移到车厢平台面MG上.已知MG∥PQ,∠FBP=30°,过点F作FH⊥MG于点H,FH=米,EF=4米.(1)求线段FG的长度;(2)求在此过程中点A运动至点A2所经过的路程.【分析】(1)在Rt△FGH中,由FG=2FH,可得结论.(2)求出GE,利用弧长公式求解即可.【解答】解:(1)∵GM∥P A,∴∠FGH=∠FBP=30°,∵FH⊥GM,∴∠FHG=90°,∴FG=2FH=(米).(2)∵EF=4米,FG=米.∴EG=EF﹣FG=4﹣=(米),∵∠ABA1=180°﹣90°﹣30°=60°,BA=米,∴点A运动至点A2所经过的路程=+=4(米).23.(10分)目前,国际上常用身体质量指数“BMI”作为衡量人体健康状况的一个指标,其计算公式:BMI=(G表示体重,单位:千克;h表示身高,单位:米).已知某区域成人的BMI数值标准为:BMI<16为瘦弱(不健康);16≤BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖(不健康).某研究人员从该区域的一体检中心随机抽取55名成人的体重、身高数据组成一个样本,计算每名成人的BMI数值后统计:(男性身体属性与人数统计表)身体属性人数瘦弱2偏瘦2正常1偏胖9肥胖m(1)求这个样本中身体属性为“正常”的人数;(2)某女性的体重为51.2千克,身高为1.6米,求该女性的BMI数值;(3)当m≥3且n≥2(m、n为正整数)时,求这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值.【分析】(1)样本中身体属性为“正常”的女性人数加上样本中身体属性为“正常”的男性人数即可;(2)根据计算公式求出该女性的BMI数值即可;(3)当m≥3且n≥2(m、n为正整数)时,根据抽取人数为55计算出m的值,即可求解.【解答】解:(1)9+1=10(人),答:这个样本中身体属性为“正常”的人数是10;(2)BMI===20,答:该女性的BMI数值为20;(3)当m≥3且n≥2(m、n为正整数)时,这个样本中身体属性为“不健康”的男性人数:≥17,这个样本中身体属性为“不健康”的女性人数:n+4+9+8+4≥27,∵2+2+1+9+m+n+4+9+8+4=55,∴m+n=16,由条形统计图得n<4,,m=13时,n=3,这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值为=;m=14时,n=2,这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值为=.答:这个样本中身体属性为“不健康”的男性人数与身体属性为“不健康”的女性人数的比值为或.24.(10分)如图所示,在平面直角坐标系xOy中,一次函数y=2x的图象l与函数y=(k >0,x>0)的图象(记为Г)交于点A,过点A作AB⊥y轴于点B,且AB=1,点C在线段OB上(不含端点),且OC=t,过点C作直线l1∥x轴,交l于点D,交图象Г于点E.(1)求k的值,并且用含t的式子表示点D的横坐标;(2)连接OE、BE、AE,记△OBE、△ADE的面积分别为S1、S2,设U=S1﹣S2,求U 的最大值.【分析】(1)先求出点A的横坐标,再代入直线y=2x中求出点A的坐标,再将点A坐标代入反比例函数解析式中求出k;先求出点C的纵坐标,代入直线y=2x中求出点D 的横坐标,即可得出结论;(2)根据点C的纵坐标求出点E的坐标,进而求出CE=,进而得出S1=,由(1)知,A(1,2),D(t,t),求出DE=﹣t,进而得出S2=S△ADE=t2﹣t+﹣1,进而得出U=S1﹣S2=﹣(t﹣1)2+,即可得出结论.【解答】解:(1)∵AB⊥y轴,且AB=1,∴点A的横坐标为1,∵点A在直线y=2x上,∴y=2×1=2,∴点A(1,2),∴B(0,2),∵点A在函数y=上,∴k=1×2=2,∵OC=t,∴C(0,t),∵CE∥x轴,∴点D的纵坐标为t,∵点D在直线y=2x上,t=2x,∴x=t,∴点D的横坐标为t;(2)由(1)知,k=2,∴反比例函数的解析式为y=,由(1)知,CE∥x轴,∴C(0,t),∴点E的纵坐标为t,∵点E在反比例函数y=的图象上,∴x=,∴E(,t),∴CE=,∵B(0,2),∴OB=2.∴S1=S△OBE=OB•CE=×2×=由(1)知,A(1,2),D(t,t),∴DE=﹣t,∵CE∥x轴,∴S2=S△ADE=DE(y A﹣y D)=(﹣t)(2﹣t)=t2﹣t+﹣1,∴U=S1﹣S2=﹣(t2﹣t+﹣1)=﹣t2+t+1=﹣(t﹣1)2+,∵点C在线段OB上(不含端点),∴0<t<2,∴当t=1时,U最大=.25.(13分)如图所示,AB是⊙O的直径,点C、D是⊙O上不同的两点,直线BD交线段OC于点E、交过点C的直线CF于点F,若OC=3CE,且9(EF2﹣CF2)=OC2.(1)求证:直线CF是⊙O的切线;(2)连接OD、AD、AC、DC,若∠COD=2∠BOC.①求证:△ACD∽△OBE;②过点E作EG∥AB,交线段AC于点G,点M为线段AC的中点,若AD=4,求线段MG的长度.【分析】(1)利用勾股定理的逆定理证明∠ECF=90°,可得结论.(2)①证明∠DAC=∠EOB,∠DCA=∠EBO,可得结论.②利用相似三角形的性质求出AC,再求出CM,CG,可得结论.【解答】(1)证明:∵9(EF2﹣CF2)=OC2,OC=3OE,∴9(EF2﹣CF2)=9EC2,∴EF2=EC2+CF2,∴∠ECF=90°,∴OC⊥CF,∴直线CF是⊙O的切线.(2)①证明:∵∠COD=2∠DAC,∠COD=2∠BOC,∴∠DAC=∠EOB,∵∠DCA=∠EBO,∴△ACD∽△OBE.②解:∵OB=OC,OC=3EC,∴OB:OE=3:2,∵△ACD∽△OBE,∴=,∴==,∵AD=4,∴AC=6,∵M是AC的中点,∴CM=MA=3,∵EG∥OA,∴==,∴CG=2,∴MG=CM﹣CG=3﹣2=1.26.(13分)已知二次函数y=ax2+bx+c(a>0).(1)若a=,b=c=﹣2,求方程ax2+bx+c=0的根的判别式的值;(2)如图所示,该二次函数的图象与x轴交于点A(x1,0)、B(x2,0),且x1<0<x2,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足∠ACO=∠ABD,﹣+c=x1.①求证:△AOC≌△DOB;②连接BC,过点D作DE⊥BC于点E,点F(0,x1﹣x2)在y轴的负半轴上,连接AF,且∠ACO=∠CAF+∠CBD,求的值.【分析】(1)△=b2﹣4ac=(﹣2)2﹣4××(﹣2)=8;(2)①由x1+x2=﹣得到x2=﹣c=OC,进而求解;②证明∠CBD=∠AFO,而tan∠CBD===,tan∠AFO====tan∠CBD=,即可求解.【解答】解:(1)当若a=,b=c=﹣2时,△=b2﹣4ac=(﹣2)2﹣4××(﹣2)=8;(2)①设ax2+bx+c=0,则x1+x2=﹣,x1x2=,则+x1=﹣x2=c,即x2=﹣c=OC,x1=÷x2=﹣,∵OB=x2=CO,∠ACO=∠ABD,∠COA=∠BOD=90°,∴△AOC≌△DOB(AAS);②∵∠OCA=∠CAF+∠CF A,∠ACO=∠CAF+∠CBD,∴∠CBD=∠AFO,∵OB=OC,故∠OCD=45°,∵CD=OC﹣OD=OC﹣OA=﹣c﹣,则DE=CD=﹣(c+)=CE,则BE=BC﹣CE=OB﹣CE=﹣c+(﹣c+),则tan∠CBD===,而tan∠AFO====tan∠CBD=,解得ca=﹣2,而==﹣ac=2,故的值为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学复习题
22.(7分)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是±√57的整数部分,求a+2b+c的算术平方根.
【解答】解:由题意得,2a﹣1=9,得a=5;3a+b﹣9=8,得b=2,
∵√49<√57<√64,﹣8<−√57<−7,
∴c=7或﹣8,
∴a+2b+c=16或1,
16的算术平方根为4;1的算术平方根是1.
23.(10分)已知,在△ABC中,∠ACB=30°
(1)如图1,当AB=AC=2,求BC的值;
(2)如图2,当AB=AC,点P是△ABC内一点,且P A=2,PB=√21,PC=3,求∠APC的度数;
(3)如图3,当AC=4,AB=√7(CB>CA),点P是△ABC内一动点,则P A+PB+PC 的最小值为√43.
【解答】解:(1)如图1中,作AP⊥BC于P.
∵AB=AC,AP⊥BC,
∴BP=PC,
在Rt△ACP中,∵AC=2,∠C=30°,
∴PC=AC•cos30°=√3,
∴BC=2PC=2√3.
(2)如图2中,将△APB绕点A逆时针旋转120°得到△QAC.
∵AB=AC,∠C=30°,
∴∠BAC=120°,
∴P A=AQ=2,PB=QC=√21,
∵∠P AQ=120°,
∴PQ=2√3,
∴PQ2+PC2=QC2,
∴∠QPC=90°,
∵∠APQ=30°,
∴∠APC=30°+90°=120°.
(3)如图3中,将△BCP绕点C逆时针旋转60°得到△CB′P′,连接PP′,AB′,则∠ACB′=90°.
∵P A+PB+PC=P A+PP′+P′B′,
∴当A,P,P′,B′共线时,P A+PB+PC的值最小,最小值=AB′的长,
由AB=√7,AC=4,∠C=30°,可得BC=CB′=3√3,
∴AB′=√AC2+CB′2=√43.
故答案为√43.。