全等三角形中动点问题例题精讲

合集下载

全等三角形之动点问题

全等三角形之动点问题

全等三角形之动点问题(一)1、已知:如图,在△ABC中,AB=AC=18,BC=12,点D为AB的中点.点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时点Q在线段CA上由C点向A点以每秒a个单位的速度匀速运动.设运动时间为t秒,若某一时刻△BPD与△CQP全等,求t的值与相应的点Q的运动速度a2、如图,在等边ABC∆的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问(1)在爬行过程中,CD和BE始终相等吗?(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:︒CQE=∠60(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确3、在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证BA O DC E图84. 如下图,已知正方形ABCD 中,边长为10厘米,点E 在AB 边上,BE=6厘米.(1)如果点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPE 与△CQP 是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPE 与△CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正方形ABCD 四边运动,求经过多长时间点P 与点Q 第一次在正方形ABCD 边上的何处相遇?5、如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;6、ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.C B OD图7AE全等构造角平分线类1如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A2如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.DC B A3如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC4如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证: 0180=∠+∠C A5已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、 CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBA6如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别平分BAC ∠、BCA ∠,且AD 与CE 的交点为F .求证:FE FD =.CDBACBAFBEDCA7如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

2022中考数学技巧《全等三角形中的动态问题》专题讲解附练习及答案

2022中考数学技巧《全等三角形中的动态问题》专题讲解附练习及答案

难点探究专题:全等三角形中的动态问题◆类型一全等三角形中的动点问题1.如图,在△MAB中,MA=MB,过M点作直线MN交AB于N点.P是直线MN 上的一个动点,在点P移动的过程中,假设NA=NB,那么∠PAM与∠PBM是否相等?说明理由.2.如图①,在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°),点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想:如图①,当点D在线段BC上时,①BC与CF的位置关系为________;②线段BC,CD,CF之间的数量关系为______________ (将结论直接写在横线上);(2)数学思考:如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?假设成立,请给予证明;假设不成立,请你写出正确结论再给予证明.◆类型二全等三角形中的动图问题3.等边三角形的三条边相等、三个角都等于60°.如图,△ABC与△CDE都是等边三角形,连接AD,BE.(1)如果点B,C,D在同一条直线上,如图①所示,试说明:AD=BE;(2)如果△ABC绕C点转过一个角度,如图②所示,(1)中的结论还能否成立?请说明理由.◆类型三 全等三角形中的翻折问题4.如图,将Rt △ABC 沿斜边翻折得到△ADC ,E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并说明理由.参考答案与解析1.解:∠P AM =∠PBM .理由如下:∵NA =NB ,MA =MB ,MN 是公共边,∴△AMN ≌△BMN (SSS),∴∠MAN =∠MBN ,∠MNA =∠MNB .又∵NA =NB ,PN 是公共边,∴△P AN ≌△PBN (SAS),∴∠P AN =∠PBN .∴∠P AM =∠PBM .2.解:(1)①垂直 ②BC =CD +CF(2)CF ⊥BC 成立;BC =CD +CF 不成立,正确结论:CD =CF +BC .证明如下:∵正方形ADEF 中,AD =AF ,∠DAF =∠BAC =90°,∴∠BAD =∠CAF .在△DAB 与△F AC 中,⎩⎪⎨⎪⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△F AC (SAS),∴∠ABD =∠ACF ,DB =CF .∵∠ACB =∠ABC =45°,∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =∠ABD -∠ACB =90°,∴CF ⊥BC .∵CD =DB +BC ,DB =CF ,∴CD =CF +BC .3.解:(1)∵△ABC ,△CDE 都是等边三角形,∴AC =BC ,CD =DE ,∠ACB =∠DCE =60°.∵点B ,C ,D 在同一条直线上,∴∠ACE =60°,∴∠BCE =∠ACD =120°.在△ACD与△BCE 中,∵⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE .(2)成立.理由如下:∵∠ACB =∠DCE =60°,∴∠ACB +∠ACE =∠DCE +∠ACE ,即∠BCE =∠ACD .又∵AC =BC ,CD =CE ,∴△ACD ≌△BCE ,∴AD =BE .4.解:DE +BF =EF .理由如下:延长CB 至G ,作∠5=∠1,如以下列图.∵将Rt △ABC沿斜边翻折得到△ADC ,∠EAF =12∠DAB ,∴AB =AD ,∠ABC =∠ADE =90°,∠2+∠3=∠1+∠4,∴∠ABG =90°=ADE .∵∠5=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠EAF .在△AGB 和△AED 中,⎩⎪⎨⎪⎧∠GAB =∠EAD ,AB =AD ,∠ABG =∠ADE ,∴△AGB ≌△AED (ASA),∴AG =AE ,BG =DE .在△AGF 和△AEF 中,⎩⎪⎨⎪⎧AG =AE ,∠GAF =∠EAF ,AF =AF ,∴△AGF ≌△AEF (SAS),∴GF =EF ,∴BG +BF=EF ,∴DE +BF =EF .。

全等三角形之动点问题

全等三角形之动点问题

全等三角形之动点问题(一)1.已知:如图,线段AB的长为18厘米,动点P从点A动身,沿AB以2厘米/秒的速度向点B运动,动点Q从点B动身,沿BA以1厘米/秒的速度向点A运动.P,Q两点同时动身,当点P抵达点B时,点P,Q同时停止运动.设点P运动的时刻为t秒,用t表示线段PQ的长度为_____;假设P,Q两点相距6厘米,那么通过的时刻t=______.二、已知:如图,在等边△ABC中,AB=8,D为边BC上一点,且BD=6.动点P从点C动身沿CA边以每秒2个单位的速度向点A运动,连接AD,BP,设点P运动的时刻为t秒.假设△BPA≌△ADB,那么t的值为3、已知:如图,在长方形ABCD中,AB=DC=6,AD=BC=12,点E为边AD上一点,且AE=10.动点P从点B动身,沿BC边向终点C以每秒2个单位的速度运动,连接AP,DP,设点P运动的时刻为t秒.假设运动到某一时刻,△DCP≌△CDE,那么t的值为4、已知:如图,在△ABC中,AB=AC=18,BC=12,点D为AB的中点.点P在线段BC上以每秒3个单位的速度由B点向C点运动,同时点Q在线段CA上由C点向A点以每秒a个单位的速度匀速运动.设运动时刻为t秒,假设某一时刻△BPD与△CQP全等,求t的值与相应的点Q的运动速度a五、如图,在等边ABC的极点A、C处各有一只蜗牛,它们同时动身,别离以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,通过t分钟后,它们别离爬行到D,E处,请问(1)在爬行进程中,CD和BE始终相等吗?(2)假设蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:︒CQE=∠60(3)若是将原题中“由C向A爬行”改成“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,那么爬行进程中,DF始终等于EF是不是正确六、在△ABC中,,∠ACB=90°,AC=BC,直线MN通过点C,且AD⊥MN于D,BE⊥MN于E(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有如何的等量关系?请写出那个等量关系,并加以证明7.如以下图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)若是点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.①假设点Q的运动速度与点P的运动速度相等,通过1秒后,△BPE与△CQP是不是全等,请说明理由;BA O D C E图8 ②假设点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPE 与△CQP 全等?(2)假设点Q 以②中的运动速度从点C 动身,点P 以原先的运动速度从点B 同时动身,都逆时针沿正方形ABCD 四边运动,求通过量长时刻点P 与点Q 第一次在正方形ABCD 边上的何处相遇?八、如图7,点O 是线段AD 的中点,别离以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;如图8,ΔOAB 固定不动,维持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.C B OD 图7A E。

2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1(含解析)

2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1(含解析)

2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1一、单选题1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2B.3C.4D.52.如图,已知Rt△ABC,∠C=90°,点D在AC上,CD=3,BD平分∠ABC,点P是AB 上一个动点,则下列结论正确的是()A.PD>3B.PD≥3C.PD≤3D.PD=33.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AD=3,若P是BC上的动点,则线段DP的最小值是()A.3B.2.4C.4D.54.如图所示,在△ABC中,∠ABC=68°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.118°B.125°C.136°D.124°5.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC→CD→DA向终点A运动,设点P的运动时间为t秒,当以A、B、P为顶点的三角形和△DCE全等时,t的值为( )A.1B.7C.1或2D.1或76.如图,在△ABC中,∠ACB>90°,△ABC的面积为18,AB=9,BD平分∠ABC,E,F分别是BD,BC上的动点,则CE+EF的最小值为( )A.4B.6C.7D.97.如图,四边形ABCD中,∠A=90°,AD=5,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.2B.3C.4D.5二、填空题10.如图,在正方形ABCD中,∠A=∠B=∠C=∠D=90°,动点动点Q以3cm/s的速度从点B止移动.设移动的时间为t(与△PAB全等.12.如图,CA⊥AB,垂足为点B,一动点E从A点出发,以随着E点运动而运动,且始终保持三角形与点A、B、C组成的三角形全等.13.如图,OP平分∠AOB,PC⊥OA值为.14.如图,∠ACB=90°,AC=/秒的速度沿射线AC运动,点Q秒时,△ABC与以点P,Q,C为顶点的三角形全等.三、解答题15.在平面直角坐标系中,A(−5,0),B(0,5).点C为x轴正半轴上一动点,过点A作AD⊥BC交y轴于点E.(1)如图①,若C(4,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OC<5.其它条件不变,连接DO,求证:DO 平分∠ADC.16.已知:△ABC中,AC=CB,∠ACB=90°,D 为直线BC上一动点,连接AD,在直线AC右侧作AE⊥AD,且AE=AD.(1)如图,当点D在线段BC上时,过点E 作EH⊥AC于H,连接DE,求证:EH=AC;(2)如图,当点D在线段BC的延长线上时,连接BE交CA的延长线于点M.求证:BM=EM.17.如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ 全等时,求t的值.18.定理:三角形任意两边之和大于第三边.(1)如图1,线段AD,BC交于点E,连接AB,CD,判断AD+BC与AB+CD的大小关系,并说明理由;(2)如图2,OC平分∠AOB,P为OC上任意一点,在OA,OB上截取OE=OF,连接PE,PF.求证:PE=PF;(3)如图3,在△ABC中,AB>AC,P为角平分线AD上异于端点的一动点,求证:PB−PC>BD−CD.19.如图,在△ABC中,D为AB的中点,AB=AC=10cm,BC=8cm,动点P从点B出发,沿BC方向以每秒3cm的速度向点C运动;同时动点Q从点C出发,沿CA方向以每秒3 cm的速度向点A运动,运动时间是t秒.(1)在运动过程中,当点C位于线段PQ的垂直平分线上时,求出t的值;(2)在运动过程中,是否存在某一时刻t,使△BPD和△CQP全等,若存在,求出t的值.若不存在,请说明理由.20.在△ABC中,AC=BC,∠ACB=90°,D是射线BA上一动点,连接CD,以CD为边作∠DCE=45°,CE在CD右侧,CE与过点A且垂直于AB的直线交于点E,连接DE.(1)当CD,CE都在AC的左侧时,如图①,线段BD,AE,DE之间的数量关系是_________;(2)当CD,CE在AC的两侧时,如图②,线段BD,AE,DE之间有怎样的数量关系?写出你的猜想,并给予证明;(3)当CD,CE都在AC的右侧时,如图③,线段BD,AE,DE之间有怎样的数量关系?直接写出你的猜想,不必证明.参考答案:1.B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,根据角平分线性质得出PQ=PA,求出即可.【详解】解:当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,PA=3,∴PQ=PA=3,故选:B.【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出使PQ最小时Q 的位置.2.B【分析】连接DP,根据角平分线的性质及垂线段最短解答即可.【详解】解:连接DP,如图所示:∵∠C=90°,BD平分∠ABC,∴当DP⊥AB时,DP=CD=3那么当DP不垂直AB时,DP>CD=3,∵垂线段最短,∴PD≥3,故选:B.【点睛】本题考查的是角平分线的性质及垂线段最短,熟知角的平分线上的点到角的两边的距离相等是解题的关键.3.A【分析】由垂线段最短可知当DP⊥BC时,DP最短,根据角平分线的性质即可得出结论.【详解】解:当DP⊥BC时,DP的值最小,∵BD平分∠ABC,∠A=90°,∵BD平分∠ABC,∠ABC=∠ABC ∴∠ABD=∠CBD=12∵BP=BP,∴△PBQ≌△PBE(SAS),∵∠AEB=90°,∠CBD=34°∴∠APB=∠AEB+∠CBD=∵BD平分∠ABC,PE⊥AB,EF⊥∴PE=EF,∴CP=CE+PE=CE+EF的最小值.即CE+EF的最小值为4,故选:A.【点睛】本题考查了轴对称-最短路线问题,关键是将CE+EF的最小值为转化为CP,题目具有一定的代表性,是一道比较好的题目.7.D【分析】根据等角的余角相等求出∠ABD=∠CBD,再根据垂线段最短可知DP⊥BC时DP最小,然后根据角平分线上的点到角的两边距离相等可得DP=AD.【详解】解:∵BD⊥CD,∠A=90°.∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=5.故选:D.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并判断出DP最小时的位置是解题的关键.8.D【分析】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP②当AP=BP,AE=BQ时,△AEP≅△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP,∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP,AE=BQ时,△AEP≅△BQP,∵AB=10cm,AE=6cm,∵BD平分∠ABC,∴∠N′BM=∠NBM,在△MBN′与△MBN中,{BN′=BN∠N′BM=∠NBM,BM=BM×AB×CN′,此时S△ABC=12×4×CN′,可得6=12可得CN′=3,∴CM+MN的最小值为3,故答案为:3.∵AB=AD,∠ABP=∴BP=AQ,∵AQ=AB−BQ=8−3t,BP=t,∴8−3t=t,∴t=2s,当点Q在边AD时,不能构成△QAD,当点Q在边CD上时,如图2,AB+AD+DQ=3t,BP=t,∴DQ=3t−16.要使△PAB和△QAD全等,只能是△PAB≌△QAD,∴BP=DQ,∴t=3t−16,∴t=8s,故答案为:2s或8s.【点睛】此题主要考查了正方形的性质,全等三角形的性质解本题的关键是分类讨论,用方程的思想解决问题.11.5【分析】由平行线的性质可得∠EBF=∠A,由ASA证明△BEF≌△AED,得到AD=BF,最后由BF+CD=AD+CD=AC即可得到答案.【详解】解:∵BF∥AC,∴∠EBF=∠A,∵E为AB中点,∴BE=AE,在△BEF和△AED中,{∠EBF=∠ABE=AE∠BEF=∠AED,∴△BEF≌△AED(ASA),∴AD=BF,∴BF+CD=AD+CD=AC=5,故答案为:5.【点睛】本题主要考查了平行线的性质、三角形全等的判定与性质,熟练掌握平行线的性质、三角形全等的判定与性质是解题的关键.12.0或2或6或8【分析】首先分两种情况:当E在线段AB上和当E在BN上,然后再分成两种情况AC=BE和AB=EB,分别进行计算,即可得出结果.【详解】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB−BE=4cm,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB+BE=12cm,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,∵AB=8cm,∴BE=8cm,∴AE=AB+BE=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E经过0秒或2秒或6秒或8秒时,由点D、E、B组成的三角形与点A、B、C 组成的三角形全等,故答案为:0或2或6或8.【点睛】本题考查了全等三角形的性质,解题的关键是注意分类讨论思想的运用.13.3【分析】过P作PE⊥OB交OB于E,当D于E重合时,PD=PE最小,即可求解.【详解】解:如图,过P作PE⊥OB交OB于E,∴当D于E重合时,PD=PE最小,∵OP平分∠AOB,PC⊥OA,∴PE=PC=3,∴PD的最小值为3,故答案:3.【点睛】本题考查了角平分线的性质定理,垂线段定理,掌握定理是解题的关键.14.1或3或4【分析】设点P运动时间为t秒,根据已知条件分△ABC≌△PQC,△ABC≌△QPC,两种情况,根据AC=PC=4和BC=PC=2列方程求出t值即可.【详解】解:∵AC=2BC=4,∴BC=2,设点P运动时间为t秒,∵∠ACB=∠PCQ=90°,PQ=AB,∴当△ABC≌△PQC时,AC=PC=4,∴|4−2t|=4,解得:t=0(舍)或t=4;当△ABC≌△QPC时,BC=PC=2,∴|4−2t|=2,解得:t=1或t=3;综上:1秒或3秒或4秒时,△ABC与以点P,Q,C为顶点的三角形全等,故答案为:1或3或4.【点睛】本题考查直角三角形全等的判定,关键是找到所有符合题意的情况.15.(1)点E 的坐标为(0,4);(2)见解析【分析】(1)可证明△AOE≌△BOC(ASA),从而得出OE =OC ,进而求得;(2)过O 作OM ⊥DA 于M ,ON ⊥DC 于N ,根据△AOE≌△BOC ,得S ΔAOE =S ΔBOC ,从而得出OM =ON ,进而得证.【详解】(1)解:如图,∵AD ⊥BC ,AO ⊥BO ,∴∠AOE =∠BDE =∠BOC =90°,∴∠OAE +∠ACD =90°,∠OBC +∠ACD =90°,∴∠OAE =∠OBC ,∵A (−5,0),B (0,5),∴OA =OB =5.在△AOE 和△BOC 中,{∠OAE =∠OBC OA =OB ∠AOE =∠BOC,∴△AOE≌△BOC(ASA),∴OE =OC ,∴点C 坐标为(4,0),∴OE =OC =4,∴E (0,4);(2)证明:如图,过O作OM⊥DA于M,ON⊥DC于由(1)知,△AOE≌△BOC,∴SΔAOE=SΔBOC,AE=BC,∴1 2×AE×OM=12×BC×ON,∴OM=ON,{∠AHE =∠C ∠AEH =∠DAC AE =DA,∴△AEH≌△DAC(AAS),∴EH =AC .(2)如图,作EF ⊥CM 交CM 的延长线于点F ,∵∠F =90°,∠ACD =180°−∠ACB =90°,∠DAE =90°,∴∠F =∠ACD =∠MCB ,∵∠FAE +∠CAD =90°,∠CDA +∠CAD =90°,∴∠FAE =∠CDA ,在△FAE 和△CDA 中,{∠F =∠ACD ∠FAE =∠CDA AE =DA,∴△FAE≌△CDA(AAS),∴EF =AC ,∵AC =CB ,∴EF =AC =BC ,在△BMC 和△EMF 中,{∠MCB =∠F ∠BMC =∠EMF BC =EF,∴△BMC≌△EMF(AAS),∵BM =EM .【点睛】此题考查了同角的余角相等、全等三角形的判定与性质等知识,难度较大,正确地作出辅助线是解题的关键.17.(1)6∵∠BOD=∠ACD,∴∠AOP=∠ACF,∵AO=CF,∴当OP=CQ时,△AOP≌△FCQ∵∠BOD=∠ACD,∴∠AOP=∠FCQ,∵AO=CF,∴当OP=CQ时,△AOP≌∴t=4t−6,∵AD是∠BAC的角平分线,∴∠EAP=∠CAP,在△APE和△APC中,{AE=AC(3)过点C作CF⊥CE,交AB于点F,如图,先证明△CBF≌△CAE,得到BF=AE,CF=CE,然后证明△DCE≌△DCF解题即可;【详解】(1)过点C作CF⊥CE,交AB延长线于点F,如图.∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=135°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD+BF=DF,∴BD+AE=DE.故答案为:BD+AE=DE.(2)图②的猜想:BD−AE=DE.证明:过点C作CF⊥CE,交AB于点F,如图②.∴∠ECF=∠ACB=90°.∴∠CBF=∠CAE.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.(3)过点C作CF⊥CE,交AB于点F,如图∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.故答案为:BD−AE=DE.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键.。

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点例题解析)

初中数学全等三角形中的动态问题(知识点+例题解析)初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

解决动点问题常见的答题思路是:1.注意分类讨论;2.仔细探究全等三角形对应边与对应角的变化;3.利用时间表示出相应线段或边的长度,列出方程求解.【典例解析】【例1-1】(2020·周口市月考)如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2厘米/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E离开点A后,运动______秒时,△DEB与△BCA全等.【例1-2】(2020·江阴市月考)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1B.1或3C.1或7D.3或7【变式1-1】(2020·无锡市月考)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=3cm,CD为AB边上的高.点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)试说明:∠A=∠BCD;(2)当点E运动多长时间时,CF=AB.请说明理由.【变式1-2】(2020·河北灵寿期末)如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(0,m)、B(n,0),且|m﹣n﹣0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P的运动时间为t秒.(1)求OA、OB的长;(2)连接PB,设△POB的面积为S,用t的式子表示S;(3)过点P作直线AB的垂线,垂足为D,直线PD与x轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.【例2】(2020·惠州市月考)如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC =5cm,CE=6cm,点P以2cm/s的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从E开始,在线段EC上往返运动(即沿E→C→E→C→…运动),当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【变式2-1】(2020·江阴市月考)如图,在四边形ABCD中,AD=BC=4,AB=CD,BD=6,点E从D 点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C 作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD∥BC.(2)在移动过程中,小芹发现当点G的运动速度取某个值时,有△DEG与△BFG全等的情况出现,请你探究当点G的运动速度取哪些值时,△DEG与△BFG全等.【变式2-2】(2020·重庆巴南月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在cm s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它线段AB上以1/们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的cm s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若运动速度为x/不存在,请说明理由.【变式2-3】(2020·江苏兴化月考)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.点P从点A出发,沿折线AC—CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC—CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):(1)当P、Q两点相遇时,求t的值;(2)在整个运动过程中,求CP的长(用含t的代数式表示);(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.【例3】(2020·惠州市月考)如图,在△ABC中,AB=AC=18cm,BC=10cm,∠B=∠C,AD=2BD.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【变式3-1】(2019·山西太原月考)如图1,在长方形ABCD中,AB=CD=5cm,BC=12cm,点P从点B 出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=___cm;(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻△ABP与以P,Q,C为顶点的直角三角形全等?若存在,请求出v的值;若不存在,请说明理由.【变式3-2】(2020·四川成都)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q 三点所构成的三角形全等.【习题精练】=,BC6=,线段PQ=AB,1.(2020·江苏东台月考)如图,有一个直角三角形ABC,∠C=90°,AC10点Q在过点A且垂直于AC的射线AX上来回运动,点P从C点出发,沿射线CA以2cm/s的速度运动,问>,才能使△ABC≌△QPA全等.P点运动___________秒时(t0)2.(2020·江苏泰州月考)如图,AB =12,CA ⊥AB 于A ,DB ⊥AB 于B ,且AC =4m ,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动_______分钟后△CAP 与△PQB 全等.3.(2020·常州市月考)如图, ADC 中.∠C =90°,AC =10cm ,BC =5cm .AD ⊥AC ,AB =PQ ,P 、Q 两点分别在AC 、AD 上运动,当AQ =_____时,△ABC 才能和△APQ 全等.4.(2020·江西新余期末)如图,ABC ∆中,90ACB ∠=︒,8cm AC =,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.5.(2020·武城县月考)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为多少时,能够使△BPE与以C、P、Q三点所构成的三角形全等?6.(2020·盐城市盐都区月考)如图,有一个直角△ABC,∠C=90°,AC=6,BC=3,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问:当AP=________时,才能使以点P、A、Q 为顶点的三角形与△ABC全等.7.(2020·四川青羊期中)如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4cm,BC=8cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.8.(2020·郑州市月考)如图,在平面直角坐标系中,O 为坐标原点A 、B 两点的坐标分别A (m ,0),B(0,n ),且|m -n -3|=0,点P 从A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 运动时间为t 秒.(1)求OA 、OB 的长;(2)连接PB ,若△POB 的面积不大于3且不等于0,求t 的范围;(3)过P 作直线AB 的垂线,垂足为D ,直线PD 与y 轴交于点E ,在点P 运动的过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.9.(2020·宜兴市月考)如图,在△ABC 中,∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,AF =10cm ,AC =14cm ,动点E 以2cm /s 的速度从A 点向F 点运动,动点G 以1cm /s 的速度从C 点向A 点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t .(1)求证:AF =AM ;(2)当t 取何值时,△DFE 与△DMG 全等;(3)求证:在运动过程中,不管t 取何值,都有2AED DGC S S =△△.10.(2020·江苏工业园区期末)如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC、EDF,其中AB=8cm,BC=6cm,AC=10cm.现将△ABC和△EDF按如图②的方式摆放(点A与点D、点B与点E 分别重合).动点P从点A出发,沿AC以2cm/s的速度向点C匀速移动;同时,动点Q从点E出发,沿射线ED以acm/s(0<a<3)的速度匀速移动,连接PQ、CQ、FQ,设移动时间为ts(0≤t≤5).=3S△BQC,则a=;(1)当t=2时,S△AQF(2)当以P、C、Q为顶点的三角形与△BQC全等时,求a的值;(3)如图③,在动点P、Q出发的同时,△ABC也以3cm/s的速度沿射线ED匀速移动,当以A、P、Q为顶点的三角形与△EFQ全等时,求a与t的值.11.(2019·江苏期末)如图①,在ABC ∆中,12AB =cm ,20BC =cm ,过点C 作射线//CD AB .点M 从点B 出发,以3cm /s 的速度沿BC 匀速移动;点N 从点C 出发,以a cm /s 的速度沿CD 匀速移动.点M 、N 同时出发,当点M 到达点C 时,点M 、N 同时停止移动.连接AM 、MN ,设移动时间为t (s ).(1)点M 、N 从移动开始到停止,所用时间为s ;(2)当ABM ∆与MCN ∆全等时,①若点M 、N 的移动速度相同,求t 的值;②若点M 、N 的移动速度不同,求a 的值;(3)如图②,当点M 、N 开始移动时,点P 同时从点A 出发,以2cm /s 的速度沿AB 向点B 匀速移动,到达点B 后立刻以原速度沿BA 返回.当点M 到达点C 时,点M 、N 、P 同时停止移动.在移动的过程中,是否存在PBM ∆与MCN ∆全等的情形?若存在,求出t 的值;若不存在,说明理由.图①图②12.如图,ABC 中,90ACB ∠=︒,8AC cm =,15BC cm =,点M 从A 点出发沿A →C →B 路径向终点运动,终点为B 点,点N 从B 点出发沿B →C →A 路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F 设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为________.13.(2019·湖北襄州)在平面直角坐标系中,点A(0,5),B(12,0),在y轴负半轴上取点E,使OA=EO,作∠CEF=∠AEB,直线CO交BA的延长线于点D.(1)根据题意,可求得OE=;(2)求证:△ADO≌△ECO;(3)动点P从E出发沿E﹣O﹣B路线运动速度为每秒1个单位,到B点处停止运动;动点Q从B出发沿B﹣O﹣E运动速度为每秒3个单位,到E点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM⊥CD于点M,QN⊥CD于点N.问两动点运动多长时间△OPM与△OQN全等?14.(2019·福建省惠安期中)如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,同时点E从点A出发沿线段AG以2cm/s的速度向终点G运动,当点E到达点G时,E、F两点同时停止运动,EF与AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0≤t≤2和2<t≤4时线段BF的长度(用含t的代数式表示);(2)当BF=AE时,求t的值;(3)若△ADE≌△CDF,求所有满足条件的t值.15.(2020·无锡市月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q 的运动速度为_____厘米/秒,△BPD与△CQP全等.16.(2020·广东龙岗期末)直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N 作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.17.(2020·青岛市黄岛区月考)如图1,直线AM AN ⊥,AB 平分MAN ∠,过点B 作BC BA ⊥交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2/m s 的速度沿射线AN 方向运动,动点D 以1/m s 的速度运动;已知6AC cm =,设动点D ,E 的运动时间为t .图1备用图(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足ADB S :2BEC S = :3,试求点D ,E 的运动时间t 的值;(3)当动点D 在直线AM 上运动,E 在射线AN 运动过程中,是否存在某个时间t ,使得ADB 与BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.参考答案及解析初中数学中,动点问题是学习的重、难点,在三角形、矩形等一些几何图形上,设计一个或多个动点,探究全等三角形存在性问题,该类题目具有较强的综合性。

全等三角形动点问题

全等三角形动点问题

ABCDEF全等三角形动点问题一)、知识回顾动态几何题,是指以几何知识和几何图形为背景,渗透运动变化观点的一类试题;而通过对几何图形运动变化,使同学们经历由观察、想象、推理等发现、探索的过程,是中考数学试题中,考查创新意识、创新能力的重要题型;解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动.热身练习:1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点 (不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = . 二)、例题辨析例1、 如图,在等腰Rt △ABC 中,∠ACB=90°,AC=CB ,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD=CE ,连接DE 、DF 、EF. (1)、求证:△ADF ≌△CEF.(2)、试证明△DFE 是等腰直角三角形.(3)、在此运动变化的过程中,四边形CDFE 的面积是否保持不变?试说明理由.(4)、求△CDE 面积的最大值.例2如图,△ABC 的边BC 在直线 上,AC ⊥BC ,且AC =BC ,△EFP 的边FP 也在直线 上,边EF 与边AC 重合,且EF =FP 。

(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连结AP、BQ。

猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想。

练习:1、如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E 分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②DE长度的最小值为4;③四边形CDFE的面积保持不变;④△CDE 面积的最大值为8.其中正确的结论是( ) A .①②③ B .①③ C .①③④ D .②③④2、(2011随州,18,7分)在等腰三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.例2:在ABC ∆中,AB AC =,CG BA ⊥交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B . (1)在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE BA ⊥于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE DF +与CG 之间满足的数量关系,然后证明你的猜想; (3)当三角尺在⑵的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,且点F 与点C 不重合)时,⑵中的猜想是否仍然成立?(不用说明理由)例3、如图,在等边△ABC 中,AB=9cm ,点P 从点C 出发沿CB 边向点B 点以2cm/s 的速度移动,点Q 点从B 点出发沿BA 边向A 点以5cm/s 速度移动.P 、Q 两点同时出发,它们移动的时间为t 秒钟.(1)你能用t 表示BP 和BQ 的长度吗?请你表示出来. (2)请问几秒钟后,△PBQ 为等边三角形?ABE G图3BC GC G图1(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿△ABC三边运动,请问经过几秒钟后点P与点Q第一次在△ABC的哪条边上相遇?三)、归纳总结动点一般在中考都是压轴题,步骤不重要,重要的是思路。

全等三角形动点问题典型题目

全等三角形动点问题典型题目

全等三角形动点问题解析全等三角形动点问题是数学中的一个常见题型,主要涉及到全等三角形的特性和动点的运动规律。

在这类问题中,我们需要根据给定的条件,寻找满足条件的动点位置。

本文将对该问题的一般解法进行详细解析。

题目背景我们先来看一个典型的全等三角形动点问题的例子。

例题:已知一直角三角形ABC,其中∠ABC=90°,AC=5。

D为BC的中点,以D为圆心作一条半径为AD的圆交于E点,连接CE。

若点P在AC上,且满足∠BPC=∠CPA,求满足上述条件的点P的位置。

解题思路要解决这个问题,我们可以采用以下步骤:步骤1:根据题目给出的条件,通过画图并标记已知条件,包括所给的角度、边长、中点等。

在这个例子中,我们可以画出直角三角形ABC,并在BC边上标记中点D。

然后以点D为圆心,将半径调整为AD,并在圆上标记点E。

步骤2:观察题目中所问的点P在AC上,并满足∠BPC=∠CPA,即点P满足圆上的某个性质。

由于已知点C和点E在圆上,我们可以利用圆的性质来解决这个问题。

步骤3:观察点P在三角形ABC中的位置,我们可以发现点P处在直角三角形ABC所在的圆外。

我们进一步观察可以发现,点P与点C的连线延长后与圆交于C的另外一个点Q。

因此,我们可以将问题转化为求点Q的位置。

步骤4:通过观察几何图形,我们可以发现点Q与点E在直角三角形ABC上具有相同的高。

根据全等三角形的性质,我们可以断言,在两个全等三角形中,所有对应的边和角都是相等的。

因此,我们可以得出∠CQD=∠EPD,进一步得出∠BPC=∠QDC。

步骤5:根据步骤4的结论,我们可以在图上得出∠BPC与∠QDC的关系。

通过分析可得,在圆上任意一点M与半径所形成的角,等于角所对应的圆心角的一∠CQD,根据已知条件∠BPC=∠QDC,我们可以得出半。

因此,我们有∠QDC=12∠CQD。

∠BPC=12步骤6:通过步骤5的推导,我们将问题转化为求点CQD的位置。

通过观察我们可以发现,点Q与点D相连并延长后,与直角三角形ABC所在的圆交于另外一个点R。

全等三角形(培优2动点问题)

全等三角形(培优2动点问题)

培优部分(一)与全等相关的动点问题例1如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t分钟后,它们分别爬行到D、E处,请问(1)在爬行过程中,CD和BE始终相等吗?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中∠CQE的大小保持不变.请利用图(2)情形,求证:∠ CQE =60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图(3),则爬行过程中,DF始终等于EF是否正确.练习、如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由点B 向C 点运动,同时,点Q 在线段CA 上由点C 向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由.(2)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?如图,等边△ABC 中,点D 、E 、F 分别同时从点A 、B 、C 出发,以相同的速度在AB 、BC 、CA 上运动,连结DE 、EF 、DF .(1)证明:△DEF 是等边三角形;(2)在运动过程中,当△CEF 是直角三角形时,试求DEF ABCS S △△的值.例2已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE 是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、点E分别在直线BC的异侧,其他条件不变,直接写出BC、DC、CE之间存在的数量关系已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由..在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠DCE=β.(1)如图(1),点D在线段BC上移动时,角α与β之间的数量关系是;证明你的结论;(2)如图(2),点D在线段BC的延长线上移动时,角α与β之间的数量关系是,请说明理由;(3)当点D在线段BC的反向延长线上移动时,请在图(3)中画出完整图形并猜想角α与β之间的数量关系是(1)学完全等三角形以后,老师布置了这样一道题:如图1,点M、N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q.试说明:∠BQM=60°.(2)小丽做完后,进行了反思,提出了许多问题,如图2:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②如图2若将题中的点M、N分别移动到BC、CA的延长线上,是否仍能得到∠BQM=60°?如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C
D E F 三角形与动点问题
1、如图,在等腰△ACB 中,AC =BC =5,AB =8,D 为底边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,则DE +DF = .
2、如图,在等边ABC ∆的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1个单位的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D,E 处,请问(1)在爬行过程中,CD 和BE 始终相等吗?
(2)若蜗牛沿着AB 和CA 的延长线爬行,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中CQE ∠ 的大小不变,求证:︒=∠60CQE
(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,则爬行过程中,DF 始终等于EF 是否正确
x
O
E B
A
y
C
F
x
O
E B
A
y
C
F
x
O E
B
A
y
C
F
3、如图1,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.
(1)当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;
(2)当△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形,为什么?
4、如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点(不包括端点),作∠AEF = 90 ,使EF 交矩形的外角平分线BF 于点F ,设C (m ,n ). (1)若m = n 时,如图,求证:EF = AE ;
(2)若m ≠n 时,如图,试问边OB 上是否还存在点E ,使得EF = AE ?若存在,请求出点E 的坐标;若不存在,请说明理由.
图1 图2 图3。

相关文档
最新文档