数学北师大版九年级上册一元二次方程的解法

合集下载

北师大版九年级上册数学《用因式分解法解一元二次方程》一元二次方程说课教学课件复习

北师大版九年级上册数学《用因式分解法解一元二次方程》一元二次方程说课教学课件复习

小颖是这样解的 :
小明是这样解的 :
解 : x2 3x 0. x 3 9. 2
这个数是0或3.
解 : 方程x2 3x两 边都同时约去x, 得.
x 3. 这个数是3.
小颖做得对吗?
小明做得对吗?
心动 不如行动 你能解决这个问题吗
一个数的平方与这个数的3倍有可能相等吗?如果相 等,这个数是几?你是怎样求出来的?
x2 6x 9 (x 3)2; x2 5x 6 (x 2)(x 3);
但对于一般的二次三项式ax2+bx+c(a≠o),怎么把它分解因式呢?
4x2 12x 9 ?. 3x2 7x 4 ?.
观察下列各式,也许你能发现些什么
解方程 : x2 7x 6 0得x1 1, x2 6; 而x2 7x 6 (x 1)(x 6);
树状图
第一枚硬币 第二枚硬币
所有可能出 现的结果


(正,正)
开始

(正,反)
先分组进行试验,然后累计各组的试验数据,分别 计算这三个事件发生的频数与频率,并由此估计这 三个事件发生的概率.
课时1 用树状图或表格求概率
思考
你认为这个游戏公平吗? 连续掷两枚质地均匀的硬币,“两枚正面朝上”,“两枚 “一枚正面朝上、一枚反面朝上”,这三个事件发生的概
通过大量重复试验我们发现, 在一般情况下,“一枚正面朝上、一枚反面朝上”发生的 两个事件发生的概率. 所以,这个游戏不公平. 它对小凡比较有利.
课时1 用树状图或表格求概率 新课引入 问题 2. 如何计算等可能概型的概率?
一般的,如果一个试验有 n 种等可能的结果,事件 A 种结果,那么事件 A 发生的概率为:
P A =m. n

北师大版初三数学上册《一元二次方程的解法(三)公式法,因式分解法》知识讲解及例题演练

北师大版初三数学上册《一元二次方程的解法(三)公式法,因式分解法》知识讲解及例题演练

北师大版初三数学上册《一元二次方程的解法(三)公式法,因式分解法》知识讲解及例题演练一元二次方程的解法(三)--公式法,因式分解法—知识讲解【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x的方程2++-+-=.m n x m n x n m()(42)50【答案与解析】(1)当m+n=0且m≠0,n≠0时,原方程可化为+--=.m m x m m(42)50∵m≠0,解得x=1.(2)当m+n≠0时,【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【变式】解关于x的方程22x mx mx x m++=+≠;23(1)【答案】原方程可化为2m x m x-+-+=(1)(3)20,2.用公式法解下列方程:(m-7)(m+3)+(m-1)(m+5)=4m;【答案与解析】方程整理为22--++--=,4214540m m m m m∴22130--=,∴a=1,b=-2,c=-13,m m【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【变式】用公式法解下列方程:【答案】∵2==-=a b m c m1,3,2,类型二、因式分解法解一元二次方程3.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7 B.10 C.11 D.10或11【思路点拨】把x=3代入已知方程求得m的值;然后通过因式分解法解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【答案】D【解析】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为x2﹣7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选:D.【总结升华】本题考查了一元二次方程的解,考查了解方程,也考查了三角形三边的关系.举一反三:【变式】解方程(1)x2-2x-3=0;(2)(x-1)2+2x(x-1)=0.【答案】解:(1)分解因式得:(x-3)(x+1)=0∴x-3=0,x+1=0∴x1=3,x2=-1.(2)分解因式得:(x-1)(x-1+2x)=0∴x-1=0,3x-1=0.∴x1=1,x2=134.如果2222x y+的值.x y x y++-=,请你求出22()(2)3【答案与解析】设22x y z+=,∴z(z-2)=3.整理得:2230--=,∴(z-3)(z+1)=0.z z∴z1=3,z2=-1.∵220=+>,∴z=-1(不合题意,舍去)z x y∴ z =3. 即22x y +的值为3.【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。

北师大版数学九年级上册2.2用配方法解一元二次方程说课稿

北师大版数学九年级上册2.2用配方法解一元二次方程说课稿
(五)作业布置
课后作业的目的是让学生巩固所学知识,提升应用能力。我会布置一些与本节课内容相关的题目,如运用配方法解决实际问题、总结配方法的步骤等。同时,我还会鼓励学生进行自主学习,查阅相关资料,加深对配方法的理解。作业的布置将根据学生的实际情况进行调整,确保每个学生都能在作业中得到锻炼和提高。
五、板书设计与教学反思
(二)教学目标
1.知识与技能目标:学生能够理解配方法的概念,掌握配方法的步骤,能够运用配方法解一元二次方程。
2.过程与方法目标:通过自主探究、合作交流的方式,学生能够发现配方法解一元二次方程的规律,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够体验到数学的乐趣,增强对数学学习的兴趣,培养积极的学习态度。
(四)总结反馈
在总结反馈阶段,我会引导学生自我评价,并提供有效的反馈和建议。首先,我会让学生回顾本节课所学的知识点,让他们自己总结配方法的概念和步骤。然后,我会邀请学生分享自己在解决问题过程中的心得和体会,让其他同学进行评价和借鉴。最后,我会根据学生的表现,给予他们个性化的反馈和建议,帮助他们进一步提高。
(一)板书设计
我的板书设计将注重布局的合理性、内容的精炼性和风格的简洁性。布局上,我会将板书分为几个部分,包括配方法的概念、步骤和示例等。内容上,我会突出配方法的关键步骤和注意事项,以及如何运用配方法解一元二次方程。风格上,我会采用清晰的字体和简洁的图形,以突出重点,便于学生理解和记忆。板书在教学过程中的作用是引导学生思考、概括和总结,确保学生能够把握知识结构,提高学习效果。
(二)新知讲授
在新知讲授阶段,我会逐步呈现配方法的知识点,引导学生深入理解。首先,我会介绍配方法的基本步骤,包括将方程写成标准形式、找到方程的根与系数的关系、添加适当的常数使得方程变为完全平方等。接着,我会通过具体的例子,演示配方法的操作过程,让学生跟随步骤一起操作,从而加深他们对配方法的理解。同时,我会引导学生思考配方法背后的数学原理,让他们明白配方法的本质。

北师大版初三数学上册一元二次方程的解法----公式法

北师大版初三数学上册一元二次方程的解法----公式法

求根公式解一元二次方程 (1)四川省天全县思经初级中学 杨锐学习目标1.使学生理解一元二次方程的求根公式的推导过程。

2.引导学生熟记求根公式aac b b x 242-±-=并理解公式中的条件042≥-ac b 3.使学生能熟练地运用求根公式解一元二次方程。

学习重点: 1.掌握一元二次方程的求根公式。

2.熟练地运用求根公式解一元二次方程。

学习难点: 求根公式的推导 教学过程(一)复习引入 我们学过了配方法解一元二次方程的解法(提问步骤)练习:用配方法解下列方程: 2x 2-9x+8=0(二)探索新知1.学生尝试用配方法推导一元二次方程的求根公式:用配方法解形如一般形式(教师演示)ax 2+bx+c=0(a ≠0)的一元二次方程:解:把方程两边都除以 a,得移项,得配方,得( x + )即 2 =∵2a ≠0,24a >0,∴当b 2-4ac ≥0时, x + =±解得x= -± 即:a ac b b x 242-±-= 这就是一元二次方程2ax +bx+c=0 (a ≠0,2b -4ac ≥0)的求根公式。

2.强调公式注意要点:● 公式含有a 、b 、c 三个字母的式子,分母是 分子是 ● 被开方数b 2-4ac 叫做△,即△=b 2-4ac 公式中b 2-4ac ≥0 如果b 2-4a c<0则此方程无解。

例题学习:用求根公式法解下列方程:(教师讲解)(1)2x 2+5x-3=0 (2) *分析两道例题解题过程,归纳用公式法解一元二次方程的一般步骤:1、把方程化成一般形式,并写出a ,b ,c 的值2、求出 b 2-4ac 的值,判断方程是否有解3、求解:带入求根公式: 练习:用公式法解方程:(学生练习后一起判定正误,强调解题步骤) 第一轮练习:x 2+2x -5 =0 6x 2 -5 =13x第二轮练习:2x 2+x -6=0 x 2+4x =2 5x 2-4x =12小结:(1)求根公式的概念及其推导过程;(2)求根公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程的根的情况作业:课本43页:习题1,2 xx 3232=+2b x a-±∴=。

用因式分解法求解一元二次方程 (6种题型)-2023年新九年级数学常见题型(北师大版)(解析版)

用因式分解法求解一元二次方程 (6种题型)-2023年新九年级数学常见题型(北师大版)(解析版)

用因式分解法求解一元二次方程 (6种题型)【知识梳理】一、用因式分解法解一元二次方程的步骤 ①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是原方程的解. 二、常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【考点剖析】题型1利用提公因式法例1.解关于x 的方程(因式分解方法):(1)230x =; (2)7(3)39x x x −=−.【答案】(1)120x x ==, (2)12337x x ==,.【解析】(1)(30x x = (2)7(3)3(3)x x x −=−①0x = ②30x 7(3)3(3)0x x x −−−=∴120x x ==, (3)(73)0x x −−= ① 30x −= ②730x −=∴12337x x ==,. 【总结】本题考查了因式分解法解一元二次方程.【变式】(2023春·北京房山·八年级统考期末)方程224x x −=的解为:___________. 【答案】10x =,22x =−【分析】先移项,然后用分解因式法解方程即可.【详解】解:224x x −=,移项得:2240x x +=,分解因式得:()220x x +=,∴20x =或20x +=, 解得:10x =,22x =−. 故答案为:10x =,22x =−.【点睛】本题主要考查了一元二次方程的解法:因式分解法,是基础知识比较简单,解题的关键是分解因式.题型2利用平方差公式例2.用因式分解法解下列方程:(2x+3)2-25=0. 【答案与解析】(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0,∴ x 1=1,x 2=-4.【变式】解关于x 的一元二次方程:22(2016)(2015)1x x −+−=. 【答案】1220162015x x ==,.【解析】移项,得:22(2016)1(2015)x x −=−−,2(2016)[1(2015)][1(2015)]x x x −=+−−−, 2(2016)(2014)(2016)x x x −=−−, 2(2016)(2014)(2016)0x x x −−−−=, (2016)(40302)0x x −−=,解得:1220162015x x ==,.【总结】本题考查了一元二次方程的解法,当系数比较大时,要注意寻找规律进行变型求解.题型3利用完全平方公式例3.解下列一元二次方程:(2x+1)2+4(2x+1)+4=0; 【答案与解析】(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0. 即, ∴ . 题型4十字相乘法因式分解例4.用合适的方法解下列关于x 的方程:(1)2(1(30x x −+=; (2)2(35)5(35)40x x +−++=;【答案】(1)121x x =, (2)124133x x =−=−,;【解析】(1)2(1(30x x −+=,[(11](0x x −=,解得:121x =−=, (2)2(35)5(35)40x x +−++=351354x x +−+−(351)(354)0x x +−+−=,解得:124133x x =−=−,;【总结】本题考查了一元二次方程的解法.题型5:选择合适的方法解一元二次方程例5.解关于x 的方程(合适的方法 ): (1)2110464x x −+=; (2)22((1x +=+. 【答案】(1)1218x x ==;(2)1211x x ==−−, 【解析】(1)因式分解法 (2)直接开方法2(23)0x +=1232x x ==−21()08x −= (1x +=±+108x −= ①1x + ②(1x =−∴1218x x ==; ∴1211x x ==−−, 【总结】本题考查了特殊一元二次方程的解法,注意重根的写法! 【变式1】解关于x 的方程(合适的方法):(1)236350x x +−=; (2)2(41)10(14)240x x −+−−=. 【答案】(1)1235136x x ==−,; (2)1213144x x ==−,. 【解析】(1)因式分解法 (2)把41x −看作一个整体,因式分解 (3635)(1)0x x −+= 2(41)10(14)240x x −−−−= ①36350x −= ②10x += (4112)(412)0x x −−−+= ∴1235136x x ==−,; (413)(41)0x x −+= ① 4130x −= ②410x +=∴1213144x x ==−,. 【变式2】用适当的方法解下列方程:(1)22((1x =; (2)2x x =;(3)(3)(1)5x x +−=; (4)2()()0()b a x a c x c b a b −+−+−=≠.【答案】(1)1211x x =−=−; (2)1201x x ==,; (3)1242x x =−=,; (4)121c bx x b a−==−,.【解析】(1)(1x =± (2)20x x −=① 1x +=− ②(1x =− , (1)0x x −=,解得:1211x x =−=−; 解得:1201x x ==,; (3)整理得:2235x x +−= (4)∵a b ≠原方程是一元二次方程,2280x x +−=, 2()()0()b a x a c x c b a b −+−+−=≠, (4)(2)0x x +−=,()()1b a xc b x −−−− 解得:1242x x =−=,; [()()](1)0b a x c b x −−−−=, 解得:121c bx x b a−==−,. 【总结】本题考查了一元二次方程的解法,注意方法的恰当选择.【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x −−=,求出x 的值即可;当0x <时,可得2250x x −−=求出x 的值即可.【详解】解:当0x >时,则0x x >>−, ∴{}2max ,35x x x x x −==−−,即2450x x −=,解得:125,1x x ==−(不符合题意,舍去),当0x <时,则0x x −>>,∴{}2max ,35x x x x x −=−=−−,即2250x x −−=,解得:11x =,21x =综上:x 的值是5或1 故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.【变式】在正数范围内定义运算“※”,其规则为2a b a b =+※,则方程()15x x +=※的解是( ) A .4x =或1x = B .2x =C .1x =或4x =−D .1x =【答案】D【分析】根据规则可得:()215x x ++=,再解此方程,即可求解.【详解】解:根据题意得:()()2115x x x x +=++=※,得2340x x +−=,得()()410x x +−=,故40x +=或10x −=,解得14x =−(舍去),21x =, 所以,原方程的解为1x =, 故选:D .【点睛】本题考查了新定义,一元二次方程的解法,理解题意,得到方程并求解是解决本题的关键.【答案】3【分析】先通过因式分解法解方程260x x −−=,求出12x x ,,根据新定义的运算规则,12x x ※的值为1x 和2x 中较大的那个数,由此可解.【详解】解:方程260x x −−=,分解因式得:()()320x x −+=,解得:3x =或=2x −, 则()12323x x =−=※※或()233−=※.故答案为:3.【点睛】本题考查新定义运算和解一元二次方程,读懂题意,理解新定义的运算规则是解题的关键. 题型7:因式分解综合应用(1)问梯子的长是多少?(2)若梯子的长度保持不变,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等吗?为什么?请你利用学过的知识解答上面的问题. 【答案】(1)2.69m (2)有可能,理由见解析【分析】(1)根据梯子长度不变进而得出等式求出即可;(2)设梯子顶端从A 处下滑y 米,点B 向外也移动y 米代入(1)中方程,求出y 的值符合题意. 【详解】(1)解:设A C '的长是m x ,根据题意得出:2222A C B C BC AC ''+=+,2222(0.41)1(0.2)x x ∴++=++,解得: 2.3x =,2.69m AB ∴≈,答:梯子的长是2.69m ; (2)有可能.设梯子顶端从A 处下滑y 米,点B 向外也移动y 米,则有22(1)(2.5)7.25y y ++−=,解得:1 1.5y =或20y =(舍)∴当梯子顶端从A 处下滑1.5米时,点B 向外也移动1.5米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.【点睛】本题考查的是勾股定理的应用,根据题意得出关于y 的一元二次方程是解答此题的关键. 【变式1】(2023·河北石家庄·统考二模)老师就式子39⨯+−,请同学们自己出问题并解答. (1)小磊的问题:若W 代表()22−,代表()31−,计算该式的值;(2)小敏的问题:若398⨯+−=□,W 代表某数的平方,代表该数与1的和的平方,求该数.【答案】(1)22 (2)0或1【分析】(1)根据代数式代入值进行计算即可; (2)设该数为a ,则()22391=8a a ⨯+−+,再进行求解即可.【详解】(1)解:由题意可得:原式()()233291=⨯−+−−()3491=⨯+−−22=;(2)解:设该数为a ,则()22391=8a a ⨯+−+,解得:10a =,21a =,∴求该数为0或1.【点睛】本题考查代数值求值、解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 【变式2】(2023·河北石家庄·校考一模)发现:存在三个连续整数使得这三个连续整数的和等于这三个连续整数的积;验证:连续整数1−,2−,3−______(填“满足”或“不满足”)这种关系; 连续整数2,3,4,______(填“满足”或“不满足”)这种关系; 延伸:设中间整数为n(1)列式表示出三个连续整数的和、积,并分别化简; (2)再写出一组符合“发现”要求的连续整数(直接写结果).【答案】验证:满足;不满足;(1)和为3n ,积为3n n −;(2)1−,0,1(答案不唯一)【分析】先分别计算123−−−和()()()123−⨯−⨯−的值,比较两组值是否相等;再分别计算234++和234⨯⨯的值,比较两组值是否相等即可;(1)设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +,将n 1−,n ,1n +三数相加得其和;将n 1−,n ,1n +三数相乘得其积;(2)令(1)中的和等于积,解方程,求得n 的值,从而可得符合要求的连续整数.【详解】验证:解:1236−−−=−,()()()1236−⨯−⨯−=− ()()()123123∴−−−=−⨯−⨯−1∴−,2−,3−满足这种关系;2349++=,23424⨯⨯=,924≠, 234234∴++≠⨯⨯,∴2,3,4不满足这种关系.延伸:设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +, (1)三个连续整数的和可表示为:()()113−+++=n n n n ,三个连续整数的积可表示为:()()311−⋅⋅+=−n n n n n ,(2)当33=−n n n 时,340−=n n ()()220∴+−=n n n解得:0n =,2n =−或2n =,∴符合要求的一组连续整数为:1−,0,1.【点睛】本题考查了探究某类数的规律性问题,其中涉及到了因式分解方法的运用,按照要求写出相关数或式子,按照规则计算,是解答本题的关键.【过关检测】一、单选题【答案】D【分析】变形后利用因式分解法解一元二次方程即可. 【详解】解:()()2131x x x −=−移项,得2(1)3(1)0x x x −−−=, 因式分解,得()()2310x x −−=,则10x −=或230x −=,解得2131,2x x ==.故选:D【点睛】此题考查了一元二次方程的解法,熟练掌握因式分解法是解题的关键. 2.(2023·全国·九年级假期作业)已知20x ax b +−=的解是11x =,24x =−,则方程()()223230x a x b +++−=的解是( )A .11x =−,2 3.5x =−B .11x =,2 3.5x =−C .11x =−,2 3.5x =D .11x =,2 3.5x =【答案】A【分析】由这两个方程结合整体思想,可得231x +=,234x +=−,解这两个一元一次方程即得方程()()223230x a x b +++−=的解.【详解】解:令23x y +=,∵方程20x ax b +−=的解是11x =,24x =−,∴方程20y ay b +−=的解是11y =,24y =−,∴对于方程方程()()223230x a x b +++−=而言,231x +=或234x +=−,解得=1x −或 3.5x =−,故选A .【点睛】本题考查了一元二次方程的解,整体思想解一元二次方程,关键是把方程()()22332340m x x +++−=中的23x +当作一个整体,则此方程与²340mx x +−=毫无二致.3.(2023·全国·九年级假期作业)方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形是周长是( ) A .12 B .15 C .12或15 D .9或15或18【答案】B【分析】利用因式分解法求出方程的解得到x 的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.【详解】解:29180x x −+=,(3)(6)0x x −−=,30x −=,60x −=,13x =,26x =,有两种情况:①三角形的三边为3,3,6,此时不符合三角形三边关系定理,②三角形的三边为3,6,6,此时符合三角形三边关系定理,此时三角形的周长为36615++=, 故选:B .【点睛】此题考查了因式分解法解一元二次方程,等腰三角形的定义,熟练掌握分解因式的方法是解本题的关键.【答案】C【分析】利用换元法求解即可.【详解】解:设33x m y +=,∵()()3333130x y x y +−++=,∴()()130m m −+=,∴10m −=或30m +=, 解得1m =或3m =−,∴331x y +=或333x y +=−,故选C .【点睛】本题主要考查了换元法解一元二次方程,熟知换元法是解题的关键.【答案】D【分析】利用因式分解法求出两个根,再从中找出较小的根即可.【详解】解:提公因式,得:331()()0442x x x −−+−=, 整理得:35()(2)044x x −−=,∴123548x x ==,, ∵3548>,∴较小的根是58,故选:D .【点睛】本题考查了因式分解法解一元二次方程,解题的关键是通过提取公因式将等号左边的式子进行因式分解.【答案】B【分析】由2212m m +=可得42210m m −+=,则有21m =,即1m =,然后问题可求解.【详解】解:∵2212m m +=,∴42210m m −+=,解得:21m =,∵0m >, ∴1m =,∴2251254m m −+=−+=;故选B .【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 7.(2023·全国·九年级假期作业)实数x 满足方程222()()20x x x x +++−=,则2x x +的值等于( ) A .2− B .1 C .2−或1 D .2或1−【答案】B【分析】运用换元法解方程,再根据根的判别式判断根的情况,由此即可求解.【详解】解:根据题意,设2x x M +=,则原式变形得220M M +−=,因式分解法解一元二次方程得,22(1)(2)0M M M M +−=−+=, ∴12M =−,21M =,当2M =−时,22x x +=−,变形得,220x x ++=,根据判别式24141270b ac ∆=−=−⨯⨯=−<,无实根;当1M =时,21x x +=,变形得,210x x +−=,根据判别式24141(1)50b ac ∆=−=−⨯⨯−=>,方程有两个实根;∴21x x +=,故选:B .【点睛】本题主要考查换元法解高次方程,掌握换元法解方程的方法,根的判别式判断根的情况等知识是解题的关键.8.(2023·全国·九年级假期作业)若关于x 的一元二次方程()230x k x k +++=的一个根是2−,则另一个根是( ) A .1 B .1−C .3−D .2【答案】A【分析】将2x =−代入方程得:()4230k k −++=,解得:2k =−,再把2k =−代入原方程求解.【详解】解:将2x =−代入方程得:()4230k k −++=,解得:2k =−,∴原方程为:220x x +−=,则()2(1)0x x +−=,解得:2x =−或1x =, ∴另一个根为1. 故选:A .【点睛】本题考查了一元二次方程的根,因式分解法解一元二次方程,属于基础题.【答案】D【分析】设221x y x −=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x −=,则原方程可变形为15y y +=,即2510y y −+=;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.10.(2023春·重庆合川·九年级重庆市合川中学校考阶段练习)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了()()12345na b n +=⋯,,,,,的展开式的系数规律(其中,字母按a 的降幂排列,b 的升幂排列).例如,在三角形中第2行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第三行的的4个数1,3,3,1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数;第4行的五个数1,4,6,4,1;恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,有如下结论:①()3322333b a b a a ab b −−+=−; ②“杨辉三角”中第9行所有数之和1024; ③“杨辉三角”中第20行第3个数为190; ④32993993991+⨯+⨯+的结果是610;⑤当代数式4328243216a a a a ++++的值是1时,实数a 的值是1−或3−,上述结论中,正确的有( )A .2个B .3个C .4个D .5个【答案】C【分析】把()3322333a b a a b ab b +=+++中b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,由此即可判断①;观察并计算可以发现第n 行所有数字之和为2n,由此即可判断②;观察并计算可以发现第n 行(n 大于2)第三个数诶为()12n n −,由此即可判断③;991a b ==,时,()326399139939999110=+++=+⨯⨯,即可判断④;当2b =时,()443228243216a a a a a +=++++,再由4328243216a a a a ++++的值为1,得到()421a +=,解方程即可判断⑤.【详解】解:∵()3322333a b a a b ab b +=+++,∴把上述式子中的b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,∴()3322333b a b a a ab b −−+=−,故①正确;第1行的所有数字之和为11122+==,第2行的所有数字之和为212124++==,第3行的所有数字之和为3133128+++==,第4行的所有数字之和为414641216++++==,……,∴可以得到规律第n 行所有数字之和为2n,∴“杨辉三角”中第9行所有数之和92512=,故②错误;第2行第三个数为()22112⨯−=, 第3行第三个数为()33132⨯−=,第4行第三个数为()44162⨯−=,第5行第三个数为()551102⨯−=,……,∴第n 行(n 大于2)第三个数为()12n n −, ∴“杨辉三角”中第20行第3个数为()202011902−=,故③正确;∵()3322333a b a a b ab b +=+++,∴当991a b ==,时,()326399139939999110=+++=+⨯⨯,故④正确;∵()4432234464a b a a b a b ab b +=++++,∴当2b =时,()443228243216a a a a a +=++++,∵4328243216a a a a ++++的值为1,∴()421a +=, ∴()221a +=,∴21a +=±, ∴1213a a =−=−,,故⑤正确;故选C .【点睛】本题主要考查了多项式乘法中得规律探索,正确理解题意找到规律是解题的关键.二、填空题11.(2023·全国·九年级假期作业)若关于x 的一元二次方程230ax bx +−=(0a ≠)有一个根为5x =,则方程()213a x bx b −+−=必有一根为______. 【答案】6x = 【分析】把()213a x bx b−+−=化为()2(1)130,a xb x −+−−=再结合题意得到15,x −=解出即可.【详解】解:()213a x bx b−+−=,()2(1)130a xb x ∴−+−−=.令1x t −=,则230,at bt +−=∵方程230ax bx +−=(0a ≠)有一个根为5x =,∴方程230at bt +−=有一根为5t =,()2(1)130a xb x ∴−+−−=有一根为15x −=,15,x ∴−=6.x ∴=故答案为: 6.x =【点睛】本题主要考查了一元二次方程的根的含义,掌握利用整体未知数求解方程的根是解此题的关键. 12.(2023·全国·九年级假期作业)一元二次方程220x x +−=的解是________. 【答案】122,1x x =−= 【分析】原方程可转化为()()210x x +−=,再化为两个一次方程即可.【详解】解:∵220x x +−=,∴()()210x x +−=,∴20x +=或10x −=, 解得122,1x x =−=.故答案为:122,1x x =−=.【点睛】本题考查的是一元二次方程的解法,熟练的掌握因式分解的方法解一元二次方程是解本题的关键. 13.(2023·全国·九年级假期作业)一元二次方程()()23121x x =−−的解是________.【答案】12531,x x ==【分析】先移项,再提取公因式分解因式,把原方程化为两个一次方程,再解一次方程即可. 【详解】∵()()23121x x =−−,∴()()231201x x −−−=.∴()()13120x x −−−⎤⎣⎦=⎡.∴10x −=或()3120x −−=,解得12531,x x ==.故答案为:12531,x x ==.【点睛】本题考查的是一元二次方程的解法,熟练的利用因式分解的方法解方程是解本题的关键. 14.(2023·河南信阳·校考三模)小明在解方程2320x x −+=时,发现用配方法和公式法计算量都比较大,因此他又想到了另外一种方法,快速解出了答案: 方法如下: 2320x x −+=2220x x x −−+= 第①步222x x x −=− 第②步()22x x x −=− 第③步1x = 第④步老师看到后,夸小明很聪明,方法很好,但是有一步做错了,请问小明出错的步骤为________(填序号). 【答案】④ 【分析】由()22x x x −=−,()()120x x −−=,解得1x =或2x =,进而判断作答即可.【详解】解:()22x x x −=−,()()120x x −−=,解得1x =或2x =,∴第④步错误, 故答案为:④.【点睛】本题考查了解一元二次方程.解题的关键在于正确的解一元二次方程.15.(2023秋·湖南常德·九年级统考期末)若()()22222340x y x y +−+−=,则22x y +=______.【答案】4【分析】设22t x y =+,则0t >,根据换元法解一元二次方程,即可求解.【详解】解:设22t x y =+,则0t >,∴原方程可以化为2340t t −−=,解得:4t =或1t =−(舍去)即22x y +=4 故答案为:4.【点睛】本题考查了换元法解一元二次方程,掌握换元法解一元二次方程是解题的关键.16.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x −−−−=,则代数式22020x x −+的值为_______.【答案】2023【分析】设2t x x =−,则原方程转化为关于t 的一元二次方程2230t t −−=,利用因式分解法解该方程即可求得t 的值;然后整体代入所求的代数式进行解答,注意判断方程的根的判别式0≥,方程有解.【详解】解:设2t x x =−,由原方程,得2230t t −−=,整理,得()()310t t −+=,所以3t =或1t =−.当3t =时,23−=x x ,则220202023x x −+=;当1t =−时,21x x −=−即210x x −+=时,()214110∆=−−⨯⨯<,方程无解,此种情形不存在.故答案是:2023.【点睛】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换.三、解答题17.(2023·江苏·九年级假期作业)用适当的方法解下列各一元二次方程: (1)(2)15x x −=;(2)23680x x +−=(用配方法); (3)2(2)10(2)210x x +−++=; (4)23520x x −+=;(5)22(2)(1)6x x ++−=. 【答案】(1)15a =,23a =−(2)11x =−,21x =−(3)15=x ,21x = (4)123x =,21x =(5)1x =,2x =【分析】(1)(4)用因式分解的十字相乘法求解比较简便;(2)先把常数项移到等号的另一边,把二次项系数化为1,配方,利用直接开平方法求解; (3)把(2)x +看成一个整体,利用因式分解的十字相乘法求解比较简便; (5)先整理方程,用公式法比较简便. 【详解】(1)解:(2)15x x −=,整理,得22150a a −−=,(5)(3)0a a ∴−+=.50a ∴−=或30a +=.15a ∴=,23a =−;(2)23680x x +−=(用配方法),移项,得2368x x +=,二次项系数化为1,得2823x x +=,配方,得211213x x ++=,211(1)3x ∴+=.1x ∴+=.11x ∴=−,21x =−;(3)2(2)10(2)210x x +−++=,[(2)7][(2)3]0x x ∴+−+−=,即(5)(1)0x x −−=.50x ∴−=或10x −=.15x ∴=,21x =;(4)23520x x −+=,(32)(1)0x x −−=,320x −=或10x −=,123x ∴=,21x =;(5)22(2)(1)6x x ++−=,方程整理,得22210x x +−=,x ===.1x ∴=,2x =. 【点睛】本题考查了解一元二次方程,掌握一元二次方程的直接开平方法、配方法、因式分解法、公式法是解决本题的关键.18.(2023·全国·九年级假期作业)已知()()22222150a b a b +++−=,求22a b +的值. 【答案】3【分析】先用换元法令22(0)a b x x +=>,再解关于x 的一元二次方程即可. 【详解】解:令22(0)a b x x +=>,则原等式可化为:(2)150x x +−=,解得:123,5x x ==−,0x >,3x ∴=,即223a b +=.22a b +的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意22a b +为非负数是本题的关键.【答案】2x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+−方程两边同乘()()11x x +−, 得()12x x −=,整理得,220x x −−=,∴()()120x x +−=,解得:11x −=,22x =,检验:当=1x −时,()()110x x +−=,=1x −是增根, 当2x =时,()()1130x x +−=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.【答案】,21x −+【分析】先对分式进行化简,然后求出一元二次方程的解,进而代值求解即可.【详解】2222421121x x x x x x x −−−÷+−−+()()()()222121112x x x x x x x −−=−⋅++−−()21211x x x x −=−++, 2221x x x −+=+ 21x =+解方程220x x +−=得:2x =−或1x =,如果已知分式有意义,必须x 不等于2,1−,1,∵x 为方程220x x +−=的根,∴x 只能为2−,∴当2x =−时,原式2221−+==−.【点睛】本题主要考查分式的化简求值及一元二次方程的解法,解题的关键是熟练掌握各个运算方法. 21.(2023·陕西榆林·校考模拟预测)已知数字A 为负数,将其加6得到数字B ,若数字A 与数字B 的积为7,求数字A .【答案】7A =−【分析】根据题意得()67A A +=,解一元二次方程即可求解.【详解】解:由题意得6A B +=,7A B ⨯=,∴()67A A +=,∴2670A A +−=,即()()710A A +−=, 解得7A =−或1A =,∵数字A 为负数,∴7A =−.【点睛】本题考查了一元二次方程的应用,掌握“因式分解法”解一元二次方程是解题的关键.22.(2023·全国·九年级假期作业)阅读下面的材料:【答案】(1)1x =,2x =,3x ,4x =;(2)5【分析】(1)设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解关于y 的一元二次方程,然后解关于x 的一元二次方程即可求解;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解一元二次方程即可求解.【详解】(1)解:设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解得11y =,24y =,当21x x +=即210x x +−=时,解得x = ;当24x x +=即240x x +−=时,解得x ;∴原方程的解为112x −=, 212x −=, 312x −=, 412x −=;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解得15y =,2(2y =−舍去),225a b +=.【点睛】本题考查了换元法解一元二次方程,熟练掌握换元法是解题的关键.【答案】(1)1x =±(2)114x =−,21x =【分析】(1)设2x y =,则由已知方程得到:2560y y −=+,利用因式分解法求得该方程的解,然后解关于x 的一元二次方程;(2)设1x y x +=,则由已知方程得到:260y y +−=,利用因式分解法求得该方程的解,然后进行检验即可.【详解】(1)令2x y =∴2560y y −=+∴(6)(1)0y y +−=∴16y =−,21y =∴26x =−(舍去),21x =∴1x =±;(2)令1x y x += ∴610y y −+=∴260y y +−=∴(3)(2)0y y +−=∴13y =−,22y = ∴13x x +=−,12x x += ∴114x =−,21x = 经检验,114x =−,21x =为原方程的解.【点睛】本题主要考查了换元法解一元二次方程,分式方程,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.任务:(1)判断:方程2560x x −+= ______ “邻根方程”(填“是”或“不是”);(2)已知关于x 的一元二次方程()210(x m x m m +++=是常数)是“邻根方程”,求m 的值.【答案】(1)是(2)0m =或2m =【分析】(1)先利用因式分解法解一元二次方程,然后根据“邻根方程”的定义进行判断;(2)先利用因式分解法解一元二次方程得到1x m =,21x =−,再根据“邻根方程”的定义得到11m −=−或11+=−m ,然后解关于m 的方程即可.【详解】(1)解方程2560x x −+=得13x =,22x =, 3比2大1,∴方程是“邻根方程”;(2)()210x m x m +++=, ()()10x m x ∴++=, 0x m ∴+=或10x +=,1x m ∴=−,21x =−,方程()210(x m x m m +++=是常数)是“邻根方程”,11m ∴−−=−或11m −+=−,0m ∴=或2m =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.【答案】14x =,214x =m =m =代入方程得22520m m −+=,求出m 的值,再求出x 即可.m .原方程化为:22520m m −+=,解得:12m =,212m =.当2m =2,解得:14x =;当12m =12=,解得:214x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是正确理解题意,会根据题目所描述的换元法求解方程.。

北师大版九年级数学上册课件2.2.2解一元二次方程—配方法

北师大版九年级数学上册课件2.2.2解一元二次方程—配方法

3.有n个方程:x2+2x-8=0;x2+2×2x-8×22=0;…;x2 +2nx-8n2=0.小静同学解第一个方程x2+2x-8=0的步骤 为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④ x+1=±3;⑤x=1±3;⑥x1=4,x2=-2.” (1)小静的解法是从步骤______⑤__开始出现错误的; (2)用配方法解第n个方程x2+2nx-8n2=0.(用含有n的式子 表示方程的根)
2.2.2解一元二次方程— 配方 法
例2: 解方程3x2+8x-3=0
思路:将二次项系数化为1
解:方程两边都除以3,得 x2 + 8 x - 1=0.
3
移项得
x2 +
8 3
x =1
配方,得 x2 + 8 x + ( 4 ) 2 = ( 4 )2 +1 ,
3
3
3
(x +
4 3
)2
=
25 9
.
开平方得 所以
4
直接开平方,得2-x= ±3 地∴2-x= 2
∴x1=2- 3, x2=2+ 3.
3或2-x=-
2
,3
2
2
2
(2)原方程可变形为(3x+1)2=8,
直接开平方,得3x+1=±2 2,
∴3x+1=2
2 或3x+1=-2 2
,∴x1=1
2 3
2,x2=
1 2 . 2
3
(3)移项,得3x2+2x=3,
2
二次项系数化为1,得x2+ 3x=1,
2 (1)小静的解法是从步骤____2____开始出现错误1的;2

北师大版 九年级上册 第二章 《一元二次方程》(解法)

一元二次方程教学目标1.一元二次方程的概念2.直接开平方法、配方法解一元二次方程3.推导一元二次方程的求根公式,并运用公式法解一元二次方程4.用因式分解法解一元二次方程重点难点灵活选择直接开平方法、配方法、公式法和因式分解法解一元二次方程知识解析1.一元二次方程的概念方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a、b、c为常数,a≠0)这种形式叫做一元二次方程的一般形式.其中______是二次项,_____是二次项的系数;______是一次项,______是一次项系数;______是常数项.2.直接开平方法与配方法①直接开平方:注意:用直接开平方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b 同号,且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c 同号,且a≠0)。

②通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.③配方法的一般步骤:①把常数项移到等号的右边②二次项的系数化为1;③等式两边同时加上一次项系数一半的平方。

3.公式法、根的判别式以及根与系数的关系①求根公式的推导用配方法解方程:ax2+bx+c=0(a≠0).解:移项,得____________________________________二次项系数化为1,得___________________________配方,得___________________________即⎝⎛⎭⎫x +b 2a 2=b 2-4ac4a 2.提示:这时能不能开方解方程?为什么?当b 2-4ac >0时,直接开平方,得____________________________________即x =____________________________________∴x 1=_____________________, x 2=_______________________.当b 2-4ac =0时,方程_________________________________当b 2-4ac <0时,方程_________________________________.由上可知,一元二次方程ax 2+bx +c =0(a≠0)的根由_______________而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当____________________时,将a ,b ,c 的值代入x =-b±b 2-4ac2a就可得到方程的根. (2)_________________________________叫做一元二次方程的求根公式.(3)利用_______________________解一元二次方程的方法叫公式法.②公式法注意事项及根的判别式(1)在运用求根公式求解时,应先计算b 2-4ac 的值. 当b 2-4ac ≥0时,可以用公式求出两个实数解;当b 2-4ac<0时,方程没有实数解,就不必再代入公式计算了. (2)把方程化为一般形式后,在确定a ,b ,c 时,需注意符号.总结:一元二次方程ax 2+bx +c =0(a≠0)的根的情况可___________来确定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a≠0)的根的判别式,通常用希腊字母“Δ”来表示. 当b 2-4ac >0时,方程有_________________________________; 当b 2-4ac =0时,方程有_________________________________; 当b 2-4ac <0时,方程_________________________________.③一元二次方程根与系数的关系一般地,对于关于x 的一元二次方程ax 2+bx +c =0(a≠0),用求根公式求出它的两个根x 1、x 2,由一元二次方程ax 2+bx +c =0的求根公式知x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a,能得出以下结果: x 1+x 2= ,x 1·x 2= .4.因式分解法当一元二次方程的一边为0,而另一边易于分解为两个 的乘积时,我们就可以采用分解因式法解一元二次方程.典例解析考点一:一元二次方程的概念例1、(一元二次方程的判断)下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3D .xy+1=0 【变式1】下列方程中,是一元二次方程的是( )A 、5x+3=0B 、x 2-x (x+1)=0C 、4x 2=9D 、x 2-x 3+4=0 1-2、若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是 .例2、(一元二次方程一般形式的理解)把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A 、2,-3B 、-2,-3C 、2,-3xD 、-2,-3x【变式1】若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( ) A 、1 B 、2 C 、1或-1 D 、0【变式2】关于x 的方程013)2(22=--+-x x a a是一元二次方程,则a 的值是( )A 、a=±2B 、a=-2C 、a=2D 、a 为任意实数【变式3】把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( ) A 、8 B 、9 C 、-2 D 、-1 【变式3】方程5)1)(13(=+-x x 的一次项系数是 。

北师大版九年级上册第二单元一元二次方程解法复习及根的判别式应用的讲义

共 页 第8 页
17.x2-15x-16=0.(最佳方法:______)
18.4x2+1=4x.(最佳方法:______)
9.(x-1)(x+1)-5x+2=0.(最佳方法:______)
综合运用 一、填空题
20.若分式 x2 7x 8 的值是 0,则 x=______. x 1
21.关于 x 的方程 x2+2ax+a2-b2=0 的根是____________. 二、选择题
共 页 第2 页
一元二次方程的根有三种情况(根的判别式)
1、 当b2 4ac 0时, 方程有两个不相等的实数根;
方程有两个相等的实数根;
3、 当b2 4ac 0时, 方程没有实数根;
练习 1:1). 2x2+x-6=0; 2). x2+4x=2; 3). 5x2 - 4x – 12 = 0 ;
A. m 3 2
B. m 3 且 m≠1 2
C. m 3 且 m≠1 2
D. m 3 2
16.如果关于 x 的二次方程 a(1+x2)+2bx=c(1-x2)有两个相等的实根,那么以正数 a,b,c 为边长的三角形是
( ).
A.锐角三角形
B.钝角三角形
C.直角三角形
D.任意三角形
二、解答题
17.已知方程 mx2+mx+5=m 有相等的两实根,求方程的解.
(4)、-3x2+22x-24=0
例 2、用公式法解方程 5x2-4x=12
步骤:1.变形:化已知方程为一般形式; 2.确定系数:用 a,b,c 写出各项系数; 3.计算: b2-4ac 的值; 4.代入:把有关数值代入公式计算; 例 2、用公式法解方程 4x2+4x+10=1-8x
例 3、解方程:x2-5x+12=0

新北师大版九年级数学上册《一元二次方程的解法-公式法》教学课件


4
4
x1
-3,x2
1 2
求根公式 :x= -b b2 4ac 2a
(a≠0, b2-4ac≥0)
例3:用公式法解方程 x2+4x=2
解:移项,得 x2+4x-2=0
a=1 b=4 c= -2 ∴ b2-4ac=42-4×1×(-2)=24
x -4 24 -2 6
4
2
x1
-2+ 2
6 ,x2
原方程无实数根
用公式法解一元二次方程的一般步骤: 1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值,
特别注意:当 b2 4ac 0 时无解 3、代入求根公式 : x b b2 4ac
2a
4、写出方程的解: x1、x2
随堂 练习 用公式法解下列方程:
(1)2x2-9x+8=0
x
9 4
2
17 16
.
4.变形:方程左 分解因式,右边合
并同类;
x 9 17 . 44
5.开方:根据平 方根意义,方程两
边开平方;
x 9 17 . 44
6.求解:解一元 一次方程;
x1
9
4
17
;x2
9
4
17
.
7.定解:写出原 方程的解.
心动 不如行动 公式法是这样生产的
你能用配方法解方程 ax2+bx+c=0(a≠0) 吗?
二、用配方法解一元二次方程:
(1).2x2 4x 1 0 (2).3x2 12x 1 0 3
公式法
一般地,对于一元二次方程 ax2+bx+c=0 (a≠0)
当b2 4ac 0时,它的根是 : x b b2 4ac . b2 4ac 0 . 2a

北师大版九年级上册 第二章一元二次方程的解法专题

专题 一元二次方程的解法类型1 直接开平方法形如x 2=p(p ≥0)或(mx +n)2=p(p ≥0)的方程,用直接开平方法求解.1.用直接开平方法解下列方程:(1)3x 2-27=0; (2)(x +3)2=(1-2x)2.类型2 配方法当二次项系数为1,且一次项系数为偶数时,用配方法求解.2.用配方法解下列方程:(1)9y 2-18y -4=0; (2)14x 2-6x +3=0.类型3 因式分解法能化成形如(x +a)(x +b)=0的一元二次方程用因式分解法求解.3.用因式分解法解下列方程:(1)x(x -2)+x -2=0; (2)5x(x -3)=6-2x (3)5(x -3)2=x 2-9.类型4 公式法当方程没有明显特征时,运用公式法求解.4.用公式法解下列方程:(1)2x 2-3x +1=0; (2)4x 2-36x +3=0; (3)3x(x -3)=2(x -1)(x +1). .类型5 选择合适的方法解一元二次方程5.用适当的方法解下列方程:(1)x 2-4x -6=0; (2)4x 2-4x -3=0; (3)(x +8)(x +1)=-12;(4)-3x +12x 2=-2; (5)4(x +1)2=9(x -2)2; (6)(2x -1)(x +1)=(3x +1)(x +1).类型6 换元法6.【注重阅读理解】(教材P57复习题T12变式)阅读材料:为了解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,设x 2-1=y ,那么原方程可化为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2-1=1,∴x2=2.∴x=±2;当y=4时,x2-1=4,∴x2=5.∴x=±5,故原方程的解为x1=2,x2=-2,x3=5,x4=- 5.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了转化的数学思想;(2)请利用以上知识解方程:(x2+x)2-5(x2+x)+4=0;(3)已知实数a,b满足(a2+b2)2-3(a2+b2)-10=0,试求a2+b2的值.根据一元二次方程根的情况求字母系数的取值(范围)【方法指导】关于x的方程ax2+bx+c=0有实数根,注意对a分类讨论.(1)当a=0,且b≠0时,方程为一元一次方程,必有实数根;(2)当a≠0时,方程为一元二次方程:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程没有实数根.已知关于x的一元二次方程m2x2+(2m+1)x+1=0有两个不相等的实数根,则m的取值范围是.【变式1】若该一元二次方程有两个相等的实数根,则m的值为.【变式2】若该一元二次方程没有实数根,则m的取值范围是.【变式3】若该一元二次方程有实数根,则m的取值范围是.【变式4】若方程m2x2+(2m+1)x+1=0有实数根,则m的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程的的解法—因式分解法》教学设计
一、教学内容分析
本节课选自九年级上册《一元二次方程的的解法》一章,在初中数学新课程标准中,关于一元二次方程的要求是:理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。

课本重点讲配方法,因为它是初中需要掌握的三种重要的数学方法之一。

对九年级的学生来说,部分学生会进入高中继续学习,但高中数学对学生的要求会更高,教材中许多题目用因式分解法比较简单,虽然都可以用万能法—公式法解。

作为老师也比较矛盾,一方面不能增加学生的负担,另一方面还要为学生的进一步发展考虑,于是,我和王爱武老师沟通并合作设计了这节课,不到之处敬请批评指正。

二、学情分析与学法指导
对于一元二次方程的解法学生基本掌握。

大多数学生喜欢用求根公式,但存在的问题是部分学生根式的化简不熟练导致方程的求解不彻底。

在本节初三复习课中,结合学生的实际,让学生通过复习教材,完成课前导学知识,逐步启发、引导学生课前自主预习、小组合作学习.。

三、设计意图
1.设计课前导学旨在引导学生逐步养成自主预习的学习习惯,有针对性的学习课本;
2.设计答疑解惑环节旨在结合学生自主预习中找出的疑惑点,更有针对性的解答学生的疑惑;
3.设计回顾反思环节旨在逐步引导学生及时总结规律方法,逐步养成解题后反思的学习习惯。

4.设计补充十字相乘法旨在渗透初高中衔接的相关内容。

四、教学三维目标
知识与技能:
1.复习因式分解的几种方法;
2.学会用因式分解的几种方法解一元二次方程;
3.了解十字相乘法,体会它实质是二项式乘法的逆过程;
4.学习含字母的因式的分解。

过程与方法:
通过课前导学及时复习因式分解,在课堂探究中让学生进一步体会因式分解法解一元二次方程的过程及特点。

情感态度价值观:
通过课前导学培养学生自学的习惯,通过解含字母的一元二次方程,给学生渗透分类讨论的数学思想方法。

五、教学重点、难点:
重点:用因式分解的几种方法解一元二次方程
难点:对十字相乘法的理解,含字母的一元二次方程的解法
六、教学过程
课前导学(落实基础)一、基础梳理
1.学过的因式分解有哪几种。

相关文档
最新文档