高考数学错题重做篇
2019高三数学错题重做

1 2e
,0
C.
1 e
,
D.
1 e
,0
答案:C. 解:令 h(x)=f(x)﹣g(x)=ex+1﹣ma﹣aex+x=(e﹣a)ex﹣ma+x, 则 h′(x)=(e﹣a)ex+1,
郑州外国语学校 2019 届高三阶段错题重做 第 1 页 共 20 页 理科数学
=
=,
若
=﹣ ,则
=
=﹣ ,
解得 tanαtanβ=5,即 b2=5a2,可得双曲线的离心率为 e= =
= .故选:D.
7.已知| |=| |=5,| |=1,( )•( )=0,则| |的取值范围是( )
A.[ ﹣1, +1] B.[3,4] C.[ 2 6 - 2,2 6 2 ] D.[6,8]
答案:D.
2.已知四面体
ABCD 外接球球 O 的体积为
32 3
,且
AB
CD
2.
当四面体
ABCD 的体积最大时,设
二面角 A CD B 的大小为 ,则 sin 的值为( )
A.
2 13 13
答案:D.
B.1
C.
2
2 3
D.
43 13
3.已知函数 f x x3 3x2 5x 2 ,若 s,t R ,且满足不等式 f (s2 2s 1) f (1 2t t2 ) 2 ,则当
郑州外国语学校 2019 届高三阶段错题重做
理科数学
一.选择题
1.坐标平面上的点集
S
满足
【推荐】第09天 错题重做(回顾基础篇)-2017年高考数学自由复习步步高系列(江苏版)

1.已知函数2()()ln f x ax x x x =+-在[1,)+∞上单调递增,则实数a 的取值范围是 ; 【答案】12a e≥【错因】单调增转化为在这个区间上大于零还是大于等于零的纠结.【正解】由题意得:()(21)ln 10f x ax x '=+--≥在[1,)+∞上恒成立,即max ln (),(1)2x a x x ≥≥,因为ln ,2x y x =则由21ln 02xy x -'==得x e =,所以当(1,)x e ∈时,0y '>;当(,)x e ∈+∞时,0y '<;因此当x e =时,ln 2x y x =取最大值1.2e即实数a 的取值范围是12a e≥. 2. 若关于x 的方程ax 2-x +1=0至少有一个正根,则a 的取值范围为________. 【答案】⎝⎛⎦⎥⎤-∞,14【错因】原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.3. 函数y =12log (x 2-5x +6)的单调递增区间为__________.【答案】 (-∞,2)【解析】 由x 2-5x +6>0知{x |x >3或x <2}.令u =x 2-5x +6,则u =x 2-5x +6在(-∞,2)上是减函数,∴y =12log (x 2-5x +6)的单调增区间为(-∞,2).易错分析 忽视对函数定义域的要求,漏掉条件x 2-5x +6>0.4. 函数f (x )=⎩⎨⎧ax 2+1,x ≥0,a 2-ax,x <0在(-∞,+∞)上单调,则a 的取值范围是________________.【答案】 (-∞,-2]∪(1,2]5. 已知f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则a +b =________. 【答案】 -7【解析】 f ′(x )=3x 2+2ax +b ,由x =1时,函数取得极值10,得⎩⎨⎧f=3+2a +b =0, ①f=1+a +b +a 2=10, ②联立①②得⎩⎨⎧a =4,b =-11,或⎩⎨⎧a =-3,b =3.当a =4,b =-11时,f ′(x )=3x 2+8x -11=(3x +11)(x -1). 在x =1两侧的符号相反,符合题意. 当a =-3,b =3时,f ′(x )=3(x -1)2在x =1两侧的符号相同, 所以a =-3,b =3不符合题意,舍去. 综上可知,a =4,b =-11,∴a +b =-7.易错分析 把f ′(x 0)=0作为x 0为极值点的充要条件,没有对a ,b 值进行验证,导致增解.6. 已知函数f (x )=sin(2x +π4),为了得到函数g (x )=cos 2x 的图象,只要将y=f (x )的图象向左至少平移_______个单位长度 【答案】π8【解析】 g (x )=sin(2x +π2)=sin2(x +π8)+π4], ∴y =f (x )的图象向左平移π8个单位长度即可得到y =g (x )的图象. 易错分析 ①没有将f (x ),g (x )化为同名函数;②平移时看2x 变成了什么,而没有认识到平移过程只是对“x ”而言.7. 已知a =(2,1),b =(λ,1),λ∈R ,a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是____________. 【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫λ|λ>-12且λ≠28. 设等比数列{a n }的前n 项和为S n ,若S 3+S 6=S 9,则数列{a n }的公比q =________. 【答案】 1或-1【解析】 ①当q =1时,S 3+S 6=9a 1,S 9=9a 1, ∴S 3+S 6=S 9成立.②当q ≠1时,由S 3+S 6=S 9, 得a 1-q 31-q+a 1-q 61-q=a 1-q 91-q.∴q 9-q 6-q 3+1=0,即(q 3-1)(q 6-1)=0. ∵q ≠1,∴q 3-1≠0,∴q 6=1,∴q =-1. 易错分析 没有考虑等比数列求和公式S n =a 1-q n 1-q中q ≠1的条件,本题中q=1恰好符合题目条件.9. 数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n (n ∈N *),求数列{a n }的通项a n . 【解析】 因为a n +1=2S n , 所以S n +1=3S n ,所以S n +1S n=3. 因为S 1=a 1=1,所以数列{S n }是首项为1、公比为3的等比数列,S n =3n -1 (n ∈N *). 所以当n ≥2时,a n =2S n -1=2×3n -2(n ≥2), 所以a n =⎩⎨⎧1,n =1,2×3n -2,n ≥2.易错分析 a n =S n -S n -1成立的条件是n ≥2,若忽略对n =1时的验证则出错.10. 函数y =x 2+5x 2+4的最小值为________.【答案】5211. 如图所示是某公司(共有员工300人)2016年员工年薪情况的频率分布直方图,由此可知,员工中年薪在1.4万元~1.6万元之间的共有______人.【答案】72【解析】由所给图形,可知员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.08+0.10+0.10)×2=0.24,所以员工中年薪在1.4万元~1.6万元之间的共有300×0.24=72(人)易错分析解本题容易出现的错误是审题不细,对所给图形观察不细心,认为员工中年薪在1.4万元~1.6万元之间的频率为1-(0.02+0.08+0.10)×2=0.60,从而得到员工中年薪在1.4万元~1.6万元之间的共有300×1-(0.02+0.08+0.10)×2]=180(人)的错误答案.12. 执行下边的程序框图,若p=0.8,则输出的n=________.【答案】 4。
推荐高考数学自由复习系列江苏 专题08 错题重做 含解析

1.已知函数2()()ln f x ax x x x =+-在[1,)+∞上单调递增,则实数a 的取值范围是 ; 【答案】12a e≥【错因】少数学生没有导数研究函数的意识,多数学生的错误在于单调增转化为在这个区间上大于零还是大于等于零的纠结.2.关于x 的实系数方程的一个根在区间上,另一个根在区间上,则2a+3b 的最大值为 。
【答案】9【错因】面对的是一个一元二次方程的根的分布问题,不少学生总想用求根公式求出它的根,进而使问题变得复杂,而想到合理的运用三个二次的关系转化为函数问题求解. 【正解】令,椐题意知,方程的一个根在区间上,另一个根在区间上等价于在直角坐标中作出关于不等式组的点(a ,b)的可行域,则2a+3b 的最大值即为目标函数的最优解,结合图形可知,时, 目标函数的最大值为93.已知函数1()()e x a f x a x=-∈R .若存在实数m ,n ,使得()0f x ≥的解集恰为[],m n ,则a 的取值范围是 . 【答案】1(0,).e【错因】多数学生对此题无法入手,头脑中没有函数,方程与不等式的关系的体系,更没有数形结合的意识从而导致对问题理解的偏差. 【正解】由题意得方程10x a e x -=有两个不等的非零根,方程变形得xxa e =,则由1()0xx x xe e-'==得1x =,因此当1x <时,1(,),a e ∈-∞当1x >时,1(0,),a e ∈因此a 的取值范围为111(0,)(,)(0,).e e e-∞=4.已知函数4411()11sin cos f x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,则函数()f x 的最小值为 . 【答案】9【错因】面对此题很多学生被它的形式所吓倒,这其实体现出了学生三角公式的记忆和理解较薄弱的事实,如果解决公式这一题,此题就是一个三角函数的范围问题.5.已知ABC ∆中,,,a b c 分别为,,A B C ∠∠∠的对边,60,2,B b a x ∠=︒==,若c 有两组解,则x 的取值范围是 . 【答案】432,3⎛⎫⎪ ⎪⎝⎭. 【错因】少数学生想不到运用余弦定理构建等式关系,多数学生得到c 和x 的关系后就无法处理了,这实际是一个谁是主元的问题.【正解】由余弦定理2222cos b a c ac B =+-,得22224,40,x c cx c cx x =+-∴-+-=c 有两解224160x x ∴∆=-+>,解得43x <.画图:以边AC 为半径,点A 为圆心作圆弧,要使c 有两解,必有斜边432,2x x >∴<<. 6.设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________. 【答案】-55【错因】江苏对三角公式的要求并不是很多,且不学反三角函数,故不少学生看到此题中并非特殊角时就感到很困难.7.如图所示,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量(,AP mAB nAF m n =+为实数),则m n +的最大值为____________.【答案】5【错因】多数学生对向量中三点共线则系数和为1这个结论不清楚,更不说还要灵活运用了,另外学生对此题中动圆的理解和运用与存在问题.【正解】我们知道当点'P 在直线BF 上时,若'AP mAB nAF =+,则1m n +=,因此我们把直线BF 向上平移,则m n +在增大(只要点'P 在与BF 平行的同一条直线上,m n +就不变,也即m n +的值随直线到点A 的距离的变化而变化),当Q 与D 重合,这时圆Q 上有一点到A 的距离最大为5,而点A 到直线BF 的距离为1,故m n +最大值为5.8.如图ABC ∆是直角边等于4的等腰直角三角形,D 是斜边BC 的中点,14AM AB m AC =+⋅,向量AM 的终点M 在ACD ∆的内部(不含边界),则实数m 的取值范围是 .【答案】1344m << 【错因】面对本题中向量的关系,很多学生想不到揪住一些特殊的位置加以思考问题,这实质上就是填空题中的特值法的运用.【答案】34【错因】有些学生一看到函数与数列的结合题就感到害怕,还有部分学生解题的目标意识不强,得到了11,4n n a a ++=-又不能将问题转化到函数了.【正解】因为21(1)()[()]2f x f x f x +=-,所以222211((1))()(),(1)(1)()(),24f x f x f x f x f x f x f x +-=-+-++=-即11,4n n a a ++=-因此数列}{n a 任意相邻两项和为1,4-因为151517()4S a =+⨯-=3116-,153.16a =-因此23(15)(15),16f f -=-所以3(15)4f =或1(15)4f =,又由21(1)()[()]2f x f x f x +=-1,2≥(15)f =34.10.已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2132n n S S n n -+=.若对任意的*n N ∈,1n n a a +<恒成立,则a 的取值范围是 . 【答案】915,44⎛⎫⎪⎝⎭ 【错因】不少学生不会处理213(2)n n S S n n -+=≥这个条件,部分学生得到了361+=++n a a n n ,不能想到再写出一个类似的式子就有突破口了.11.已知函数12()416mx f x x =+,21()()2x mf x -=,其中m∈R. (1)若0<m≤2,试判断函数f (x)=f 1 (x)+f 2 (x)()[2,)x ∈+∞的单调性,并证明你的结论;(2)设函数12(),2,()(), 2.f x x g x f x x ⎧=⎨<⎩≥ 若对任意大于等于2的实数x 1,总存在唯一的小于2的实数x 2,使得g (x 1) = g (x 2) 成立,试确定实数m 的取值范围. 【答案】(1)单调减函数,(2)(0,4).【错因】第一问中学生首先不知道要将绝对值去掉,更多的学生求出导数后不知道如何判断出导数的符号,第二问中大多数学生无法正确的对m 进行分类讨论,绝大多数学生没有想到先显然可以排除m 小于等于零这种情形. 【正解】(1)f (x)为单调减函数. 证明:由0<m≤2,x≥2,可得12()()()f x f x f x =+=21()4162x m mx x -++=212()4162mx mx x +⋅+. 由 2224(4)11()2()ln (416)22mx m x f x x -'=+⋅=+222(4)12()ln 2(28)2m x m x x --⋅+, 且0<m≤2,x≥2,所以()0f x '<.从而函数f(x)为单调减函数.(亦可先分别用定义法或导数法论证函数12()()f x f x 和在[2,)+∞上单调递减,再得函数f(x)为单调减函数.)(b )若0<m <2,由于x <2时,||21(),,12()()()12(), 2.2m xx m x m x m g x f x m x ---⎧<⎪⎪===⎨⎪<⎪⎩≤ 所以g(x)在(,]m -∞上单调递增,在[,2)m 上单调递减. 从而22()(0,()]g x f m ∈,即2()(0,1]g x ∈.要使g (x1) = g (x2)成立,只需21,161()162mmm -⎧<⎪⎪⎨⎪⎪⎩≤成立,即21()162m m -≤成立即可.由0<m <2,得2111,()16824m m -<>. 故当0<m <2时,21()162m m -≤恒成立.综上所述,m 为区间(0,4)上任意实数.12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知B p C A sin sin sin ⋅=+(R ∈p ),且241b ac =. (1)当45=p ,1=b 时,求a ,c 的值; (2)若B 为锐角,求实数p 的取值范围.【答案】(1)⎪⎩⎪⎨⎧==41,1c a 或⎪⎩⎪⎨⎧==.1,41c a ;(2)⎪⎪⎭⎫ ⎝⎛∈2,26p . 【错因】第一问中少数学生不知道运用正弦定理将条件化角为边,但很多学生出现了少一组解的问题;第二问中不少学生不能想到正确运用余弦定理求出p 的表达式,角的范围是一个很大的错误.13.已知向量1(cos ,1),(3sin ,)2m x n x =-=-,设函数()()f x m n m =+⋅. (1).求函数f(x)的最小正周期;(2).已知a,b,c 分别为三角形ABC 的内角对应的三边长,A 为锐角,a=1,3c =,且()f A 恰是函数f(x)在[0,]2π上的最大值,求A,b 和三角形ABC 的面积.【答案】(1)π;(2)6A π=,1=b 或2=b ,34S =或32S =. 【错因】第一问中的错误主要集中在运用用三角公式时,所引入的辅助角是6π还是3π的问题;第二问中所考查的知识点比较多,故部分学生出现了乱用的现象.14.已知函数23()3x f x x+=, 数列{}n a 满足1111,(),n n a a f n N a *+==∈.(1)求数列{}n a 的通项公式; (2)令11211(2),3,n n n n nb n b S b b b a a -=≥==++⋅⋅⋅+,若20042n m S -<对一切n N *∈成立,求最小正整数m . 【答案】(1)2133n a n ∴=+;(2)2013m =最小. 【错因】第一问中学生代入后无法灵活运用等差数列的定义,使得问题无法进行下去了,也有出现不作任何交代直接就用的问题,第二问中部分学生不知道运用裂项相消的方法进行数列求和,多数学生不能将数列问题和函数问题结合起来研究问题.15.设()xf x e ax a =--.(Ⅰ)若()0f x ≥对一切1x ≥-恒成立,求a 的取值范围; (Ⅱ)设()()x ag x f x e=+,且112212(,),(,)()A x y B x y x x ≠是曲线()y g x =上任意两点,若对任意的1a ≤-,直线AB 的斜率恒大于常数m ,求m 的取值范围;(Ⅲ)求证:*13(21))()n nn n en n n N +++-<∈. 【答案】(Ⅰ) 1a ≤;(Ⅱ)3m ≤;(Ⅲ)详见解析【错因】第一问中这个恒成立问题学生的主要问题主要出现在一个细节上:运用参数分离时不知道一定要单独考虑一下端点问题;第二问中绝大多数学生无法想到去构建一个新的函数:mx x g x F -=)()(,第三问中不等于的证明绝大多数学生无法想到第一问中的结论再结合放缩法进行对不等于的证明.(Ⅲ)由(Ⅰ) 知1(0xe x x ≥+=时取等号),取2ix n=-,,12,3,1-=n i 得212ini e n --<即22()2i nn i e n--< 累加得。
重庆市西南大学附属中学20221届高三定时训练(七)数学错题重做(10.27)

西南大学附属中学高2021级定时训练(七) 数学错题重做(满分:100分 考试时间:60分钟) 2020年10月27日一.单选题(本大题共8小题,每小题5分,满分40分)1. 在关于x 的不等式x 2-(a +1)x +a<0的解集中恰有3个整数,则a 的取值范围是( ) A .(3,4) B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]答案 D2. 已知m ,n 为非零实数,则“0<m n <1”是“nm >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C3. 已知函数f(x)=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f(1-x 2)>f(2x)的x 的取值范围是( ) A .[0,2) B .(0,2)C .(-1,2-1)D .(-1,2)答案 C4. 已知实数x ,y 满足条件⎩⎨⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( ) A .3+ 2 B .2+ 2C.34D.43答案 C5. 已知235log log log 0x y z ==<,则2x ,3y ,5z的大小排序为( ) A.2x <3y <5z B.3y <2x <5zC.5z <2x <3yD.5z <3y <2x答案 A6. 已知x>2,y>3,(x -2)(y -3)=9,则x +y 的最小值是( ) A .7 B .11C .12D .13答案 B7. 下列说法正确的是( ) A .若2211a b >,则a b < B .若ln ()xf x x=,且0a b >>,则()()()2a b f a f f f b +<<< C .若,a b c d >>,则ac bd >D .若2log (1)log 20a a a a +<<,则1(,1)2a ∈答案 D8. 若函数f(x)=4x -m·2x +m +3有两个不同的零点x 1,x 2,且x 1∈(0,1),x 2∈(2,+∞),则实数m 的取值范围为( ) A .(-∞,-2) B .(-∞,-2)∪(6,+∞)C .(7,+∞)D .(-∞,-3)答案 C二.多选题(本大题共4小题,每小题5分,满分20分,部分选对得3分) 9. 下面四个条件中,使a >b 成立的充分不必要条件是( )A .|a|>|b|B .1a >1bC .3322a b >D .lg lg a b >答案 CD10. 下列函数中,最小值为4的是( ) A .y =x +4xB .y =sinx +4sinx (0<x<π)C .4x x y e e -=+D .3log 4log 3(1)x y x x =+>答案 CD11. 已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-+∞,则( ) A .0a >B .不等式0bx c +>的解集是{|6}x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-+∞答案 ABD12. 设正项等差数列{}n a 满足()211029220a a a a +=+,则()A .29a a 的最大值为10B .29a a +的最大值为210C .222911a a +的最大值为15D .4429a a +的最小值为200答案 ABD三.填空题(本大题共4小题,每小题5分,满分20分) 13. 若-1<a +b<3,2<a -b<4,则3a +2b 的取值范围为________. 答案 319(,)22-14. 不等式21log (+6)3x x+≤的解集为________.答案 (-3-22,-3+22)∪{1}15. 若a>0,b>0,a +b =4,则23ab ab +-的最小值为________.答案 616. 已知函数f(x)=2mx 2-x -1在区间(-2,2)上恰有一个零点,则实数m 的取值范围是________. 答案 ⎝ ⎛⎦⎥⎤-18,38四.解答题(本大题共2小题,每小题10分,满分20分)17. 已知集合P =⎣⎢⎡⎦⎥⎤12,2,函数y =log 2(ax 2-2x +2)的定义域为Q.(1)若P∩Q≠∅,求实数a 的取值范围;(2)若方程log 2(ax 2-2x +2)=2在⎣⎢⎡⎦⎥⎤12,2内有解,求实数a 的取值范围.解:(1)若P∩Q≠∅,则在⎣⎢⎡⎦⎥⎤12,2内至少有一个值,使ax 2-2x +2>0成立,即在⎣⎢⎡⎦⎥⎤12,2内,至少有一个x 值使a<-2x 2+2x 成立.设u =-2x 2+2x =-2⎝ ⎛⎭⎪⎫1x -122+12,∵当x∈⎣⎢⎡⎦⎥⎤12,2时,u ∈⎣⎢⎡⎦⎥⎤-4,12,∴a >-4.∴实数a 的取值范围是(-4,+∞).(2)方程log 2(ax 2-2x +2)=2在⎣⎢⎡⎦⎥⎤12,2内有解,则ax 2-2x +2=4在⎣⎢⎡⎦⎥⎤12,2内有解,即在⎣⎢⎡⎦⎥⎤12,2内至少有一个x 值,使a =2x 2+2x 成立.设v =2x 2+2x =2⎝ ⎛⎭⎪⎫1x +122-12.当x∈⎣⎢⎡⎦⎥⎤12,2时,v ∈⎣⎢⎡⎦⎥⎤32,12,∴a ∈⎣⎢⎡⎦⎥⎤32,12,∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤32,12.18. 已知二次函数()y f x =的图象的顶点坐标为11,3⎛⎫-- ⎪⎝⎭,且过坐标原点O,数列{}n a 的前n 项和为n S ,点()()N ,n n S n *∈在二次函数()y f x =的图象上. (1)求数列{}n a 的表达式;(2)设*1cos(1)()n n n b a a n n N π+=⋅+∈,数列{}n b 的前n 项和为n T ,若2n T tn ≥对n N *∈恒成立,求实数t 的取值范围.解:(1)由题意设21()(1)3f x a x =+-,因为二次函数()y f x =的图像过坐标原点O,所以13a =,所以211()(1)33f x x =+-,因为点()()N ,n n S n *∈在二次函数()y f x =的图像上,所以221112(1)3333n S n n n =+-=+,当1n =时,11S =,即11a =,当2n ≥时,221121221[(1)(1)]333333n n n a S S n n n n n -=-=+--+-=+1n =时,满足上式,所以2133n a n =+, (2)因为()()1cos 1N n n n b a a n n π*+=+∈⋅,所以12n n T b b b =++⋅⋅⋅+1122334451(1)n n n a a a a a a a a a a -+=-+-+⋅⋅⋅+-,由(1)得,数列{}n a 是以1为首项,23为公差的等差数列,①当2,n m m N +=∈时,12122334451(1)n n m n n T T a a a a a a a a a a -+==-+-+⋅⋅⋅+-21343522121()()()m m m a a a a a a a a a -+=-+-+⋅⋅⋅+-2424()3m a a a =-++⋅⋅⋅+22432m a a m +=-⋅⋅21(812)9m m =-+21(26)9n n =-+,②当21,n m m N +=-∈时,21212221(1)m n m m m m T T T a a --+==--2211(812)(16163)99m m m m =-++++,21(843)9m m =++ 21(267)9n n =++ 所以221(26),91(267),9n n n Tn n n n ⎧-+⎪⎪=⎨⎪++⎪⎩为正偶数为正奇数,要使2n T tn ≥对N n *∈恒成立,只要使221(26)9n n tn -+≥(n 为正偶数),即16(2)9t n -+≥对n 为正偶数恒成立,所以min165(2)99t n ⎡⎤≤-+=-⎢⎥⎣⎦。
错题重组卷(适合新课标)2019冲刺高考用好卷之高三理数含答题卡及解析

第1页 共26页 ◎ 第2页 共26页…………○…………装学校:___________姓名…………○…………装【4月优质错题重组卷】高三数学文科新课标版第一套一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合M ()(){}{}120,12x x x N x x =-+≥=-≤≤,则()U C M N ⋂= ( ) A .[]2,1-- B .[]1,2- C .[)1,1- D .[]1,2 2.已知复数z 满足()1+234i z i =-+,则z =( )A B .5 C D 3.若角α的终边经过点(1-,则tan 3πα⎛⎫+= ⎪⎝⎭( ) A . B .- C D 4.某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为A .512−96πB .296C .512−24πD .512 ( )5.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是( )A .110 B .15 C .310 D .256.执行如图所示的程序框图,则输出的n 为( )A .5B .6C .7D .87.已知命题p :对x R ∀∈,总有22x x >;:1q ab >是1a >且1b >的必要不充分条件条件,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()()p q ⌝∧⌝8.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .100-B .100C .110-D .1109.已知函数()f x 在区间[]2,2-上单调递增,若()()()24log log 2f m f m <+成立,则实数m 的取值范围是( )A .1,24⎡⎫⎪⎢⎣⎭ B .1,14⎡⎫⎪⎢⎣⎭C .(]1,4D .[]2,410.已知1F ,2F 是椭圆2222:1(0)x y E a b a b+=>>的两个焦点,过原点的直线l 交E 于第3页 共26页 ◎ 第4页 共26页○…………外…………○※※请○…………内…………○,A B 两点,220AF BF ⋅=,且2234||AF BF =,则E 的离心率为 ( ) A .12 B .34 C .27 D .5711.如图,在底面为矩形的四棱锥E −ABCD 中,DE ⊥平面ABCD ,F ,G 分别为棱DE ,AB 上一点,已知CD =DE =3,BC =4,DF =1,且FG ∥平面BCE ,四面体ADFG 的每个顶点都在球O 的表面上,则球O 的表面积为 ( )A .12πB .16πC .18πD .20π12.若曲线21:C y x =与曲线()2:0xe C y a a=>存在公共切线,则a 的取值范围为( ) A .()01, B .214e ⎛⎤ ⎥⎝⎦, C .2,24e ⎡⎤⎢⎥⎣⎦ D .2,4e ⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分.13.已知实数x ,y 满足条件23{ 00x y x y x y -≥+≤≥≥,则3x y +的最大值为__________.14.函数()2cos 2f x x x =- 0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________. 15.在ABC ∆中,226,AB AC BA BC BA ==⋅=,点P 是ABC ∆所在平面内一点,则当222PA PB PC ++取得最小值时,AP BC ⋅=__________.16.已知()f x 是定义在R 上的奇函数,()f x '是()f x 的导函数,当0x <时,()()+0f x xf x '<,若()()22log log 1a f a f ⋅>,则实数a 的取值范围是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(本小题满分10分)已知数列{}n a 满足132n n a a +=+,且12a =.(Ⅰ)求证:数列{}1n a +是等比数列;(Ⅱ)数列{}n b 满足()3log 1n n b a =+,判断数列2211n n b b +⎧⎫⎨⎬⎩⎭的前n 项和nT 与12的大小关系,并说明理由.18.(本小题满分12分)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的正方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE ∠=∠,且二面角F AE B --的大小为90︒.(1)求证:AE BG ⊥; (2)求四面体B AGE -的体积.第5页 共26页 ◎ 第6页 共26页○…………线______○…………线19.(本小题满分12分)某地区积极发展电商,通过近些年工作的开展在新农村建设和扶贫过程中起到了非常重要的作用,促进了农民生活富裕,为了更好地了解本地区某一特色产品的宣传费x (千元)对销量y (千件)的影响,统计了近六年的数据如下:(1)若近6年的宣传费x 与销量y 呈线性分布,由前5年数据求线性回归直线方程,并写出y 的预测值;(2)若利润与宣传费的比值不低于20的年份称为“吉祥年”,在这6个年份中任意选2个年份,求这2个年份均为“吉祥年”的概率附:回归方程ˆˆˆybx a =+的斜率与截距的最小二乘法估计分别为111221ˆni ni i x y nx y bx nx==-=-∑∑,ˆˆa y bx =-,其中x ,y 为i x ,iy 的平均数.20.(本小题满分12分)设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,ABF ∆是边长为4的等边三角形. (1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线l '与抛物线C 交于Q 、R 两点时,2211||||NQ NR +为定值?若存在,求出点N 的坐标,若不存在,请说明理由.21.(本小题满分12分)设函数()21ln 2a f x x ax x -=+-(a R ∈). (1)当1a =时,求函数()f x 的极值;(2)若对任意()3,4a ∈及任意1x ,[]21,2x ,恒有()()()2121ln22am f x f x -+>-成立,求实数m 的取值范围.第7页 共26页 (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修44:坐标系与参数方程】(本小题满分10分)已知直线2:{4x tcos l y tsin αα=+=+,(t 为参数,α为倾斜角).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的直角坐标方程为2240x y y +-=.(Ⅰ)将曲线C 的直角坐标方程化为极坐标方程;(Ⅱ)设点M 的直角坐标为()2,4,直线l 与曲线C 的交点为A 、B ,求MA MB +的取值范围.4第9页 共26页 ◎ 第10页 共26页19.第13页 共26页 ◎ 第14页 共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………1.【答案】C 【解析】因为全集U R =,集合()(){}120,M x x x =-+≥所以{}21U C M x x =-<<,又{}12x x -≤≤,所以()[)1,1U C M N ⋂=-,故选C .2.【答案】C 【解析】()()()()34i 12i 510i 12i,12i 512i 12i 5z -+-+===++=+-,故选C . 3.【答案】B 【解析】由题意可得:23tan 231α==--,则:()tan tan 2333tan 312331tan tan 3παπαπα+-+⎛⎫+==⎪⎝⎭--⨯- 37=-.本题选择B 选项. 4.【答案】C 【解析】由三视图可知,该几何体是一个正方体挖去一个圆柱所得的组合体,其中正方体的棱长为8,圆柱的底面半径为2,高为6,则该几何体的体积为:.本题选择C 选项.【名师点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.【答案】B 【解析】命题p :对x R ∀∈,总有22x x >是假命题,当2x =-时不成立;:q 命题由1a >,11b ab >⇒>,反之不成立,例如当10a =,12b =时,51ab =>,1b <,命题为真命题.故选B ,p q ⌝∧是真命题.8.【答案】A 【解析】由()11nn n a a n ++=-,得2134561,3,5a a a a a a +=-+=-+=-,1920...,19a a +=-,na ∴的前20项的和为121920119...13 (19102)a a a a +++++=----=-⨯ 100=-,故选A . 9.【答案】A 【解析】不等式即为()()()244log log 2f m f m <+,∵函数()f x 在区间[]2,2-上单调递增,∴()()24424log log 2{2log 2 2log 22m m m m <+-≤≤-≤+≤,即第15页 共26页 ◎ 第16页 共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………221{4 41244m m m m <+≤≤≤+≤,解得124m ≤<.∴实数m 的取值范围是1,24⎡⎫⎪⎢⎣⎭.选A .【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出;②构造,a c 的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题是利用双曲线的几何性质以及双曲线的定义根据方法①求解的.11.【答案】C 【解析】在棱CD 上取一点H ,使得HD=1,平面BCE , 又平面BCE ,平面平面BCE ,又平面平面ABCD=GH ,平面平面ABCD=BC ,= HD=1,故四面体可以补成一个长方体,且长,宽,高分别为4,1,1,所以球的表面积为【名师点睛】本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.【名师点睛】本小题主要考查利用导数研究曲线上某点的切线方程,过曲线上某点出的切线的斜率,就是函数在该点处的导数值,是中档题.要求曲线上某点的切线方程,需要到两个量,一个是切点,一个是切线的斜率,分别求得切点和斜率,然后根据点斜式可写出切线方程.13.【答案】8【解析】画出可行域如图所示,则当目标函数z 3x =+y 经过点51,22A ⎛⎫⎪⎝⎭时取代最大值,max 51z 3422=+⨯=,即答案为4.第17页 共26页 ◎ 第18页 共26页○…………订…_班级:___________考○…………订…14.【答案】14-【解析】()221sin 2sin 1f x x x x x =-+-=--=21sin 4x ⎛-- ⎝⎭, 所以当sin 2x =时,有最大值14-.故答案为:14-. 15.【答案】-9【解析】∵2BA BC BA⋅=,∴()20BA BC BA BA BC BA BA AC ⋅-=⋅-=⋅=,∴BA AC ⊥,即BA AC ⊥.以点A 为原点建立如图所示的平面直角坐标系,则B(6,0),C(0,3),设(),P x y ,所以()()22222222263PA PB PC x y x y x y ++=++-+++-223123645x x y y =-+-+()()2232110x y ⎡⎤=-+-+⎣⎦.所以当2,1x y ==时222PA PB PC ++有最小值,此时()()2,16,39AP BC ⋅=⋅-=-. 【名师点睛】数量积的计算有两种不同的方式,一是根据定义计算,二是用向量的坐标计算,其中用坐标进行运算可使得数量积的计算变得简单易行.在本题的解法中通过建立坐标系将数量积的最小值问题转化为函数的最值问题处理,体现了转化方法在数学解题中的应用.17.【答案】(I )证明见解析;(II )12n T <. 【解析】试题分析:(Ⅰ)由132n n a a +=+可得()()1131n n a a ++=+,所以数列{}1n a +是以3为首项,3为公比的等比数列;(Ⅱ)由(Ⅰ)可知13n n a +=,即()33log 1log 3n n n b a n=+==.故()()()221111111221212122121n n b b n n n n n n +⎛⎫=<=- ⎪⋅+-⋅+-+⎝⎭,根据裂项相消法结合放缩法可得12n T <. 试题解析:(Ⅰ)由题意可得()113331n n n a a a ++=+=+,即()()1131n n a a ++=+,又1130a +=≠,故数列{}1n a +是以3为首项,3为公比的等比数列.18.【答案】(1)见解析;(2)。
高三数学错题总结与改进

高三数学错题总结与改进前言:数学作为一门重要的学科,对于高中生来说尤为关键。
而高三是高中生进行最后冲刺的阶段,复习过程中出现错题是常有的事情。
本文将对高三数学错题进行总结,并提出改进的方法,帮助同学们在数学学习中取得更好的成绩。
一、导致高三数学错题的原因分析在总结高三数学错题之前,我们需要先了解造成这些错题的原因。
以下是一些常见的原因分析:1. 知识理解不透彻:高三数学考试中,要求学生对基础知识有深入的理解和把握。
如果对某些知识点掌握不牢固,就很容易在解题过程中出错。
2. 粗心大意:由于备考压力大,有时学生会在解题过程中出现粗心的情况,导致简单的错误。
3. 非细心审题:数学考试中,题目的条件很重要。
如果学生没有仔细阅读题目,就会忽略一些重要的条件,从而导致解答错误。
4. 解题思路混乱:在解题过程中,一些学生可能没有清晰的解题思路,导致方向错误,解答不出正确答案。
二、高三数学错题的具体总结下面将结合具体的数学题目,对高三数学错题进行总结:1. 未掌握基础知识点:部分学生在高三仍然存在一些基础知识不牢固的问题。
比如,对于函数的概念和性质掌握不到位,导致求导、积分等计算错误。
2. 操之过急:在解题过程中,一些学生急于求解结果,忽略了条件和各个步骤之间的逻辑关系。
导致答案错误或者解题思路混乱。
3. 粗心大意:一些题目给出了一些直接得出结论或者中间结果的条件,但部分学生并没有仔细阅读,从而导致错题。
比如,在证明题中,忽略了某一步的条件,得出错误的结论。
三、改进方法为了提高高三数学错题的改进率,我们可以采取以下方法:1. 强化基础知识:巩固基础是提高数学成绩的关键。
通过学习相关辅导资料、做大量的习题来增加对基础知识的掌握,同时注重基础知识与实际应用的结合。
2. 细心审题:在做题前,认真阅读题目,并标记出重要的条件和关键信息。
确保理解题目的意思,避免因为一些细节导致解题错误。
3. 做题思路清晰:在解题过程中,应该先理清思路,确定解答的方向。
高考数学考前必看__错题重做篇

高考数学考前必看系列材料之四错题重做篇一、集合与简易逻辑部分1.已知集合A={x x 2+(p+2)x+1=0, p ∈R },若A ∩R +=φ。
则实数P 的取值范围为 。
2.已知集合A={x| -2≤x ≤7 }, B={x|m+1<x <2m -1},若A ∪B=A ,则函数m 的取值范围是_________________。
A .-3≤m ≤4B .-3<m <4C .2<m <4D . m ≤43.命题“若△ABC 有一内角为3π,则△ABC 的三内角成等差数列”的逆命题是( ) A .与原命题真值相异 B .与原命题的否命题真值相异C .与原命题的逆否命题的真值不同D .与原命题真值相同二、函数部分4.函数y=3472+++kx kx kx 的定义域是一切实数,则实数k 的取值范围是_____________ 5.判断函数f(x)=(x -1)x x -+11的奇偶性为____________________ 6.设函数f(x)=132-+x x ,函数y=g(x)的图象与函数y=f -1(x+1)的图象关于直线y=x 对称,则g (3)=_____________7. 方程log 2(9 x -1-5)-log 2(3 x -1-2)-2=0的解集为___________________-三、数列部分8.x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件9.已知数列{a n }的前n 项和S n =a n -1(a 0,≠∈a R ),则数列{a n }_______________A.一定是A ·PB.一定是G ·PC.或者是A ·P 或者是G ·PD.既非等差数列又非等比数列10.A ·P {a n }中, a 1=25, S 17=S 9,则该数列的前__________项之和最大,其最大值为_______。
2016届高考数学自由复习步步高系列(江苏版)专题08错题重做(解析版)

1.已知函数2()()ln f x ax x x x =+-在[1,)+∞上单调递增,则实数a 的取值范围是 ; 【答案】12a e≥【错因】少数学生没有导数研究函数的意识,多数学生的错误在于单调增转化为在这个区间上大于零还是大于等于零的纠结.2.关于x 的实系数方程的一个根在区间[0,1]上,另一个根在区间[1,2]上,则2a+3b 的最大值为 。
【答案】9【错因】面对的是一个一元二次方程的根的分布问题,不少学生总想用求根公式求出它的根,进而使问题变得复杂,而想到合理的运用三个二次的关系转化为函数问题求解. 【正解】令,椐题意知,方程的一个根在区间[0,1]上,另一个根在区间[1,2]上等价于在直角坐标中作出关于不等式组的点(a ,b)的可行域,则2a+3b 的最大值即为目标函数的最优解,结合图形可知,时, 目标函数的最大值为93.已知函数1()()e x a f x a x=-∈R .若存在实数m ,n ,使得()0f x ≥的解集恰为[],m n ,则a 的取值范围是 . 【答案】1(0,).e【错因】多数学生对此题无法入手,头脑中没有函数,方程与不等式的关系的体系,更没有数形结合的意识从而导致对问题理解的偏差. 【正解】由题意得方程10x a e x -=有两个不等的非零根,方程变形得xxa e =,则由1()0x x x x e e -'==得1x =,因此当1x <时,1(,),a e ∈-∞当1x >时,1(0,),a e∈因此a 的取值范围为111(0,)(,)(0,).ee e-∞=4.已知函数4411()11sin cos f x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,则函数()f x 的最小值为 . 【答案】9【错因】面对此题很多学生被它的形式所吓倒,这其实体现出了学生三角公式的记忆和理解较薄弱的事实,如果解决公式这一题,此题就是一个三角函数的范围问题.5.已知ABC ∆中,,,a b c 分别为,,A B C ∠∠∠的对边,60,2,B b a x ∠=︒==,若c 有两组解,则x 的取值范围是 .【答案】2,⎛⎝. 【错因】少数学生想不到运用余弦定理构建等式关系,多数学生得到c 和x 的关系后就无法处理了,这实际是一个谁是主元的问题.【正解】由余弦定理2222cos b a c ac B =+-,得22224,40,x c cx c cx x =+-∴-+-=c 有两解224160x x ∴∆=-+>,解得x <.画图:以边AC 为半径,点A 为圆心作圆弧,要使c 有两解,必有斜边2,2x x >∴<<.6.设当x =θ时,函数f(x)=sin x -2cos x 取得最大值,则cos θ=________.【错因】江苏对三角公式的要求并不是很多,且不学反三角函数,故不少学生看到此题中并非特殊角时就感到很困难.7.如图所示,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量(,AP mAB nAF m n =+为实数),则m n+的最大值为____________.【答案】5【错因】多数学生对向量中三点共线则系数和为1这个结论不清楚,更不说还要灵活运用了,另外学生对此题中动圆的理解和运用与存在问题.【正解】我们知道当点'P 在直线BF 上时,若'AP mAB nAF =+,则1m n +=,因此我们把直线BF 向上平移,则m n +在增大(只要点'P 在与BF 平行的同一条直线上,m n +就不变,也即m n +的值随直线到点A 的距离的变化而变化),当Q 与D 重合,这时圆Q 上有一点到A 的距离最大为5,而点A 到直线BF 的距离为1,故m n +最大值为5.8.如图ABC ∆是直角边等于4的等腰直角三角形,D 是斜边BC 的中点,14AM AB m AC =+⋅,向量AM 的终点M 在ACD ∆的内部(不含边界),则实数m 的取值范围是 .【答案】1344m << 【错因】面对本题中向量的关系,很多学生想不到揪住一些特殊的位置加以思考问题,这实质上就是填空题中的特值法的运用.【答案】34【错因】有些学生一看到函数与数列的结合题就感到害怕,还有部分学生解题的目标意识不强,得到了11,4n n a a ++=-又不能将问题转化到函数了.【正解】因为1(1)2f x +=+,所以222211((1))()(),(1)(1)()(),24f x f x f x f x f x f x f x +-=-+-++=-即11,4n n a a ++=-因此数列}{n a 任意相邻两项和为1,4-因为151517()4S a =+⨯-=3116-,153.16a =-因此23(15)(15),16f f -=-所以3(15)4f =或1(15)4f =,又由1(1)2f x +=+1,2≥(15)f =34.10.已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2132n n S S n n -+=….若对任意的*n N ∈,1n n a a +<恒成立,则a 的取值范围是 . 【答案】915,44⎛⎫⎪⎝⎭【错因】不少学生不会处理213(2)n n S S n n -+=≥这个条件,部分学生得到了361+=++n a a n n ,不能想到再写出一个类似的式子就有突破口了.11.已知函数12()416mx f x x =+,21()()2x mf x -=,其中m ∈R . (1)若0<m≤2,试判断函数f (x)=f 1 (x)+f 2 (x)()[2,)x ∈+∞的单调性,并证明你的结论;(2)设函数12(),2,()(), 2.f x x g x f x x ⎧=⎨<⎩≥ 若对任意大于等于2的实数x 1,总存在唯一的小于2的实数x 2,使得g (x 1) = g (x 2) 成立,试确定实数m 的取值范围. 【答案】(1)单调减函数,(2)(0,4).【错因】第一问中学生首先不知道要将绝对值去掉,更多的学生求出导数后不知道如何判断出导数的符号,第二问中大多数学生无法正确的对m 进行分类讨论,绝大多数学生没有想到先显然可以排除m 小于等于零这种情形. 【正解】(1)f (x)为单调减函数. 证明:由0<m≤2,x≥2,可得12()()()f x f x f x =+=21()4162x m mx x -++=212()4162mx mx x +⋅+. 由 2224(4)11()2()ln (416)22m x m x f x x -'=+⋅=+222(4)12()ln 2(28)2m x m x x --⋅+, 且0<m≤2,x≥2,所以()0f x '<.从而函数f(x)为单调减函数.(亦可先分别用定义法或导数法论证函数12()()f x f x 和在[2,)+∞上单调递减,再得函数f(x)为单调减函数.)(b )若0<m <2,由于x <2时,||21(),,12()()()12(), 2.2m xx m x m x m g x f x m x ---⎧<⎪⎪===⎨⎪<⎪⎩≤ 所以g(x)在(,]m -∞上单调递增,在[,2)m 上单调递减. 从而22()(0,()]g x f m ∈,即2()(0,1]g x ∈.要使g (x1) = g (x2)成立,只需21,161()162mmm -⎧<⎪⎪⎨⎪⎪⎩≤成立,即21()162m m -≤成立即可.由0<m <2,得2111,()16824m m -<>. 故当0<m <2时,21()162m m -≤恒成立.综上所述,m 为区间(0,4)上任意实数.12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知B p C A sin sin sin ⋅=+(R ∈p ),且241b ac =.(1)当45=p ,1=b 时,求a ,c 的值; (2)若B 为锐角,求实数p 的取值范围.【答案】(1) ⎪⎩⎪⎨⎧==41,1c a 或⎪⎩⎪⎨⎧==.1,41c a ;(2)⎪⎪⎭⎫ ⎝⎛∈2,26p . 【错因】第一问中少数学生不知道运用正弦定理将条件化角为边,但很多学生出现了少一组解的问题;第二问中不少学生不能想到正确运用余弦定理求出p 的表达式,角的范围是一个很大的错误.13.已知向量1(cos ,1),(3sin ,)2m x n x =-=-,设函数()()f x m n m =+⋅. (1).求函数f(x)的最小正周期;(2).已知a,b,c 分别为三角形ABC 的内角对应的三边长,A 为锐角,a=1,c =()f A 恰是函数f(x)在[0,]2π上的最大值,求A,b 和三角形ABC 的面积.【答案】(1)π;(2)6A π=,1=b 或2=b,S =或S =.【错因】第一问中的错误主要集中在运用用三角公式时,所引入的辅助角是6π还是3π的问题;第二问中所考查的知识点比较多,故部分学生出现了乱用的现象.14.已知函数23()3x f x x +=, 数列{}n a 满足1111,(),n na a f n N a *+==∈. (1)求数列{}n a 的通项公式; (2)令11211(2),3,n n n n nb n b S b b b a a -=≥==++⋅⋅⋅+,若20042n m S -<对一切n N *∈成立,求最小正整数m .【答案】(1)2133n a n ∴=+;(2)2013m =最小. 【错因】第一问中学生代入后无法灵活运用等差数列的定义,使得问题无法进行下去了,也有出现不作任何交代直接就用的问题,第二问中部分学生不知道运用裂项相消的方法进行数列求和,多数学生不能将数列问题和函数问题结合起来研究问题.15.设()xf x e ax a =--.(Ⅰ)若()0f x ≥对一切1x ≥-恒成立,求a 的取值范围; (Ⅱ)设()()xag x f x e =+,且112212(,),(,)()A x y B x y x x ≠是曲线()y g x =上任意两点,若对任意的1a ≤-,直线AB 的斜率恒大于常数m ,求m 的取值范围;(Ⅲ)求证:*13(21))()n n n n n n n N +++-<∈. 【答案】(Ⅰ) 1a ≤;(Ⅱ)3m ≤;(Ⅲ)详见解析【错因】第一问中这个恒成立问题学生的主要问题主要出现在一个细节上:运用参数分离时不知道一定要单独考虑一下端点问题;第二问中绝大多数学生无法想到去构建一个新的函数:mx x g x F -=)()(,第三问中不等于的证明绝大多数学生无法想到第一问中的结论再结合放缩法进行对不等于的证明.(Ⅲ)由(Ⅰ) 知1(0xe x x ≥+=时取等号),取2ix n =-,,12,3,1-=n i 得212i ni e n --<即22()2inn i e n--< 累加得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
错题重做篇一、集合与简易逻辑部分1.已知集合A={x x 2+(p+2)x+1=0, p ∈R },若A ∩R +=φ。
则实数P 的取值范围为 。
2.已知集合A={x| -2≤x ≤7 }, B={x|m+1<x <2m -1},若A ∪B=A ,则函数m 的取值范围是_________________。
A .-3≤m ≤4B .-3<m <4C .2<m <4D . m ≤43.命题“若△ABC 有一内角为3π,则△ABC 的三内角成等差数列”的逆命题是( ) A .与原命题真值相异 B .与原命题的否命题真值相异C .与原命题的逆否命题的真值不同D .与原命题真值相同二、函数部分4.函数y=3472+++kx kx kx 的定义域是一切实数,则实数k 的取值范围是_____________ 5.判断函数f(x)=(x -1)xx -+11的奇偶性为____________________ 6.设函数f(x)=132-+x x ,函数y=g(x)的图象与函数y=f -1(x+1)的图象关于直线y=x 对称,则g (3)=_____________7. 方程log 2(9 x -1-5)-log 2(3 x -1-2)-2=0的解集为___________________-三、数列部分8.x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件9.已知数列{a n }的前n 项和S n =a n -1(a 0,≠∈a R ),则数列{a n }_______________A.一定是A ²PB.一定是G ²PC.或者是A ²P 或者是G ²PD.既非等差数列又非等比数列10.A ²P {a n }中, a 1=25, S 17=S 9,则该数列的前__________项之和最大,其最大值为_______。
四、三角函数部分11.设θθsin 1sin 1+-=tan θθsec -成立,则θ的取值范围是_______________ 12.函数y=sin 4x+cos 4x -43的相位____________,初相为__________ 。
周期为_________,单调递增区间为____________。
13.函数f(x)=xx x x cos sin 1cos sin ++的值域为______________。
14.若2sin 2αβααβ222sin sin ,sin 3sin +=+则的取值范围是______________15.已知函数f (x) =2cos(324+x k )-5的最小正周期不.大于2,则正整数k 的最小值是___________ 五、平面向量部分16.已知向量m =(a,b),向量m ⊥n 且,n m =则n的坐标可能的一个为( )A .(a,-b )B .(-a,b)C .(b,-a)D .(-b,-a) 17.将函数y=x+2的图象按a =(6,-2)平移后,得到的新图象的解析为_____________ 18.若o 为平行四边形ABCD 的中心,B A =4e 1, 12223,6e e e C B -=则等于( )A .O AB .O BC .O CD .O D19.若)2,1(),7,5(-=-=b a ,且(b a λ+)b ⊥,则实数λ的值为____________.六、不等式部分20.设实数a,b,x,y 满足a 2+b 2=1,x 2+y 2=3, 则ax+by 的取值范围为_______________.21.-4<k <o 是函数y=kx 2-kx -1恒为负值的___________条件22.函数y=4522++x x 的最小值为_______________23.已知a,b R ∈,且满足a+3b=1,则ab 的最大值为___________________.七、直线和圆24.已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和 2l :x+y -3=0的交点,则直线l 的方程为_______________________25.有一批钢管长度为4米,要截成50厘米和60厘米两种毛坯,且按这两种毛坯数量比大于31配套,怎样截最合理?________________- 26.已知直线x=a 和圆(x -1)2+y 2=4相切,那么实数a 的值为_______________27.已知圆(x -3)2+y 2=4和直线y=mx 的交点分别为P ,Q 两点,O 为坐标原点,则OQ OP ⋅的值为 。
八、圆锥曲线部分28.过圆外一点P (5,-2)作圆x 2+y 2-4x -4y=1的切线,则切线方程为__________。
29.已知圆方程为x 2+y 2+8x+12=0,在此圆的所有切线中,纵横截距相等的条数有____________30.双曲线实轴在x 轴上,且与直线y=2x 有且只有一个公共点o(o,o),则双曲线的离心率e=______________。
31.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是____________32.过双曲线x 2-122=y 的右焦点作直线交双曲线于A 、B 两点,且4=AB ,则这样的直线有___________条。
33.经过抛物线y 2 = 4x 的焦点弦的中点轨迹方程是( ) A .y 2=x -1 B .y 2=2(x -1) C .y 2=x -21 D.y 2=2x -1 九、直线、平面与简单几何体34.已知二面角α-AB -β为120°,CD ⊂α,CD ⊥AB ,EF ⊂β,EF 与AB 成30°角,则异面直线CD 与EF 所成角的余弦值为35.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为36.直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= 。
37.直线l 与平面α成角为300,m A m A l ∉⊂=⋂,,αα则m 与l 所成角的取值范围是38.一凸多面体的面数为8,各面多边形的内角总和为16π,则它的棱数为( )A .24B .22C .18D .16它的顶点个数为十、排列、组合、二项式定理、概率39.计算C n n -383+C n n 321+的值40.编号为1,2,3,4,5的五个人,分别坐在编号为1,2,3,4,5的座位上,则至多有两个号码一致的坐法种数为( )A .120 B.119 C.110 D.10941.已知(2x x a -)9的开展式中x 3的系数为49,则常数a 为 。
42.定义:n i i i n i k k a a a a a ++++=++=∑ 21,其中i ,n N ∈且i ≤n 。
若 f ( x ) =∑∑=-==--200302003200302003)3()1(i i i k k k k x a x C ,则∑=20031k k a 的值为A .2B .0C .-1D .-243.12张分别标以1,2,…,12的卡片,任意分成两叠,每叠6张。
(1)若1,2,3三张在同一叠的概率为ml 。
其中l 、m 为互质的正整数,则l 等于( ) A .2 B .3 C .5 D .7 E .11m 等于( )A .11B .12C .15D .35E .77(2)若1,2,3,4四张中,每叠各有两张的概率为mn 。
其中n 、m 为互质的正整数,则n=( )A .2B .3C .5D .7E .1145.已知A 、B 、C 为三个彼此互相独立事件,若事件A 发生的概率为21,事件B 发生的概率为32,事件C 发生的概率为43,则发生其中两个事件的概率为 。
46.一箱磁带最多有一盒次品。
每箱装25盒磁带,而生产过程产生次品带的概率是0.01。
则一箱磁带最多有一盒次品的概率是 。
十一、统计与概率47.一个单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工和某种情况,决定采取分层抽样的方法。
抽取一个容量为10的样本,每个管理人员被抽到的概率为( )A .801 B .241 C .81 D .以上都不对 48.如果c 是(1+x )5的展开式中x 3的系数而在总体中抽出一个样本:2,3,4,6,7,S 2表示该样本的方差,S 2c 表示51[(2-c)2+(3-c)2+(4-c)2+(6-c)2+(7-c)2],则S 2与S 2c 的大小关系为49.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析。
运用系统抽样方法抽取样本时,每组的容量为 。
十二、导数50.若f ( x ) = x 3,f ′( x 0) =3,则x 0的值为( )A .1B .-1C .±1D .3351.若,f ′( x 0) =-3,则hh x f h x f h )3()(lim 000--+→=( ) A .-3 B .-6 C .-9 D .-1252.垂直于直线2x -6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。
53.若f ( x ) = ax 3+bx 2+cx +d (a>0)为增函数,则a 、b 、c 的关系式为(等式或不等式(组))是 .54.设f ( x ) = x 3-21x 2-2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 .55.函数y = f ( x ) = x 3+ax 2+bx +a 2,在x = 1时,有极值10,则a = ,b = 。
【参考答案】1. P ∈(-4,+∞)2. D3. D4. k ⎪⎭⎫⎢⎣⎡∈43,05. 非奇非偶6. g ( 3 ) = 277. {x x = 2}8. D 9. C 10. 13 , 169 11.)232,22(ππππθ++∈k k 12. ]2,412[,2,2,24πππππk k x -+ 13. ⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 14. [0 , 45]{}2⋃ 15. 1316. C 17. y = x -8 18. B 19. λ=51920. [-3,3] 21. 充分非必要条件 22. 2523. 12124.x -6y +11 = 0或x +2y -5 = 0 25. 50厘米2根,60厘米5根26. a = 3或a =-1 27. 528. 3x +4y -7 = 0或x = 5 29. 4 30. 531. 0 < k < 1 32. 3 33. B34. 4135. 3636. 600或1200 37. [ 300 , 900] 38. D10 39. 466 40. D 41. 4 42. D 43.(1)A A (2)C 45. 241146. C 125(0.01)²(0.99 )24+C 025( 0.99 )2547. C 48. S 2 < S 2c 49. 25 50. C 51. D52. 3x +y +5 = 0 53. b 2 < 3ac 且a > 0 54. m > 755. a = 4 b = -11。