2019高三数学错题重做
2019年高考数学试题评析及阅卷启示、反思

min
min
x[ 2, 2 a
]
min
x[ 2, 2 a
]
f (x) g(x)
min
0 a2
4a
3分
2
(或m(a) min{ f (1), g(a)}也一样得3分,若对一个给2分)
令 a2 4a 2 0,a 2 2或a 2 2(舍)
AK 面BFQ, AK BQ FQB为二面角B AD F的平面角
结论2分,证明过程1分,共3分。
CK=2,且正BCK,BF= 3 2分
又 AC 面BCK,又 AC 3,CK =2, AK = 13
利用相似三角形原理,FQ= 3 13 2分
13
BQ= 4
3,cos FQB FQ
2
4
理科16(2)评分标准
(2)其他思路:S =
a2 4
1 ac sin B 2
sin A 2sin Bsin C
均为3分 a2 1
S =
4
bc sin A sin A 2sin B sin C 2
sin A 2sin BsinC sin 2B 2sin Bsin3B
b
2ac
a2 b2 bc
sin B(
)0
6分
ab
理科16(1)评分标准
学生解法一:(射影定理)
b c 2acos B b acos B bcos A 2a cos B
b bcos A a cos B
中学 什生
sin B sin Bcos A sin Acos B
cos 2B
优质错题重组卷(适合新课标)2019冲刺高考用好卷之高三理数含答题卡及解析 (5)

第1页 共24页 ◎ 第2页 共24页………外…………○…………装学校:___________姓名:………内…………○…………装绝密★启用前【4月优质错题重组卷】高三数学理科新课标版第二套一、选择题1.集合{}(){}22,,,,A y y x x R B x y y x x R ==∈==∈,以下正确的是( ) A. A B = B. A B R ⋃= C. A B ⋂=∅ D. 2B ∈2.已知i 为虚数单位,实数x , y 满足()2x i i y i +=-,则x yi -=( ) A. 1 B.C. D. 3. 已知平面向量,a b 满足()3a a b ⋅+=,且2,1a b ==,则向量a 与b 的夹角为A.π6 B. π3 C. 2π3 D. 5π64. 中国传统数学中许多著名的“术”都是典型的算法.如南宋秦九韶的“大衍总数术”就是一次剩余定理问题的算法,是闻名中外的“中国剩余定理”.若正整数N 除以正整数m 后的余数为n ,则记为N n =(mod m ),例如()101mod3≡.我国南北朝时代名著《孙子算经》中“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩问物几何?”就可以用源于“中国剩余定理”思想的算法解决.执行如图的程序框图,则输出的n =( )A. 16B. 18C. 23D. 285. 命题“2m =-”是命题“直线2240x my m +-+=与直线220mx y m +-+=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分也不必要条件6. 已知函数()24,1{ 1,1x x a x f x lnx x -+<=+≥,若方程()2f x =有两个解,则实数a 的取值范围是( )A. (),2-∞B. (],2-∞C. (),5-∞D. (],5-∞ 7. 已知某几何体的三视图如图所示,则该几何体的最大边长为A.B.C. D. 8. f(x)=ln|x|+1e x的图像大致是( (A. B. C. D.9. 已知圆C 的方程为2220x x y -+=,直线:220l kx y k -+-=与圆C 交于A ,B 两点,则当ABC ∆面积最大时,直线l 的斜率k =( ) A. 1 B. 6 C. 1或7 D. 2或610. 在三棱锥S ABC -中, SB BC ⊥, SA AC ⊥, SB BC =, SA AC =,○…………外………○……………○…………订…※请※※不※※要装※※订※※线※※内※○…………内………○……………○…………订…12AB SC=,且三棱锥S ABC-的体积为2,则该三棱锥的外接球半径是()A. 1B. 2C. 3D. 411.已知函数()()2sinf x xωϕ=+(0ϕπ<<)的图象与直线2y=的某两个交点的横坐标分别为12,x x,若21x x-的最小值为π,且将函数()f x的图象向右平移4π个单位得到的函数为奇函数,则函数()f x的一个递增区间为()A. ,02π⎛⎫-⎪⎝⎭B. ,44ππ⎛⎫-⎪⎝⎭C. 0,2π⎛⎫⎪⎝⎭D.3,44ππ⎛⎫⎪⎝⎭12.已知函数()()21202xf x x x=+-<与()()22logg x x x a=++的图象上存在关于y轴对称的点,则a的取值范围是()A. (,-∞B. (-∞C. (,-∞D. 2⎛-⎝⎭二、填空题13.若实数x,y满足约束条件{x−y+2≥02x+3y+9≥0x≤0,则z=2x+3y的取值范围是__________.14.已知51()(2)ax xx x+-的展开式中的各项系数的和为2,则该展开式中的常数项为.15.已知正项数列{}n a的前n项和为n S,若{}n a和{}n S都是等差数列,且公差相等,则2a=_______.16.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2√2)(x0>p2)是抛物线C上一点,以M为圆心的圆与线段MF相交于点A,且被直线x=p2截得的弦长为√3|MA|,若|MA||AF|=2,则|AF|=_______.三、解答题17.在ABC∆中,角,,A B C的对边分别为,,a b c,且满足2cos.cosc b Ba A-=(Ⅰ)求角A的大小;(Ⅱ)若a=求ABC面积的最大值.18.近年来,我国电子商务蓬勃发展,有关部门推出了针对网购平台的商品和服务的评价系统,从该系统中随机选出100次成功了的交易,并对这些交易的评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为40次.(1)根据已知条件完成下面的22⨯列联表,并回答能否有99%的把握认为“网购者对服务满意与对商品满意之间有关”?(2)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为X,求X的分布列和数学期望.附:()()()()()22n ad bcKa b c d a c b d-=++++(其中n a b c d=+++为样本容量)19.如图,四边形ABCD是矩形,沿对角线AC将ACD∆折起,使得点D在平面ABC上的射影恰好落在边AB上.(1)求证:平面ACD⊥平面BCD;第3页共24页◎第4页共24页第5页 共24页 ◎ 第6页 共24页(2)当2ABAD=时,求二面角D AC B --的余弦值. 20. 椭圆C : 22221(0)x y a b a b +=>>的离心率为3,过右焦点()2,0F c 垂直于x 轴的直线与椭圆交于A , B 两点且3AB =,又过左焦点()1,0F c -任作直线l 交椭圆于点M . (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 上两点A , B 关于直线l 对称,求AOB ∆面积的最大值. 21. 已知函数()()21x f x x e ax =--(e 是自然对数的底数) (1)判断函数()f x 极值点的个数,并说明理由;(2)若x R ∀∈, ()3x f x e x x +≥+,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,曲线1C 的参数方程为,{ 1x cos y sin θθ==+(θ为参数),曲线2C 的参数方程为2,{ x cos y sin ϕϕ==(ϕ为参数). (1)将1C , 2C 的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为()cos 2sin 4ρθθ-=.若1C 上的点P 对应的参数为2πθ=点Q 在2C 上,点M 为PQ 的中点,求点M 到直线l 距离的最小值.23.选修4-5:不等式选讲设函数()()2432f x x a x a =-++-≠-. (1)试比较()f a 与()2f -的大小;○............装............○............订............○............线............○ (18)、19、20、第9页 共24页 ◎ 第10页 共24页第11页 共24页 ◎ 第12页 共24页……外…………○…………○…………订………※※请在※※装※※订※※线※※内※※答※……内…………○…………○…………订………1.C 【解析】 由题意,集合{}2,y y x x R R =∈=,表示实数集,集合(){}2,,B x y y x x R ==∈表示二次函数2y x=图象上的点作为元素构成的点集,所以A B ⋂=∅,故选C. 2.D 【解析】()12,2,{2x x i i y i xi y i y =-+=-∴-+=-∴=- , 则12x yi i -=-+= 故选D.4.D 【解析】该程序框图的功能是求满足下列条件的正整数:①被除余数为;②被除余数为;③被除余数为,结合四个选项,符合题意的正整数只有23,故选D.5.C 【解析】当两直线平行时, 24,2m m ==±,当m=2时,两直线均为x+y=0,不符。
高考数学错题重做篇考前必看系列材料之四

x2 5
22.函数 y=
的最小值为 _______________
x2 4
23.已知 a,b R ,且满足 a+3b=1,则 ab 的最大值为 ___________________.
七、直线和圆
24.已知直线 l 与点 A( 3, 3)和 B( 5,2)的距离相等,且过二直线 l1 : 3x-y- 1=0 和
异面直线 CD与 EF 所成角的余弦值为 35.棱长为 1 的正四面体内有一点 P,由点 P 向各面引垂线,垂线段长度分别为
d 1, d 2,d 3,
d4,则 d1 +d2+ d3+ d4 的值为
36.直二面角 α - l - β 的棱 l 上有一点 A,在平面 α、β内各有一条射线 AB,AC与 l 成 450,
2,则正整数
k 的最小值是
___________
五、平面向量部分
16.已知向量 m =(a,b) ,向量 m ⊥ n 且 m n , 则 n 的坐标可能的一个为(
)
A.( a, - b)
B . ( - a,b)
C
. (b, -a) D
. ( - b, - a)
17. 将函数 y=x+2 的图象按 a =(6, -2) 平移后,得到的新图象的解析为 _____________
l 2 :x+y- 3=0 的交点,则直线 l 的方程为 _______________________
25. 有一批钢管长度为 4 米,要截成 50 厘米和 60 厘米两种毛坯,且按这两种毛坯数量比大
于 1 配套,怎样截最合理? ________________3
26.已知直线 x=a 和圆 (x - 1) 2+y2=4 相切,那么实数
专题08 立体几何-备战2019年高考数学(理)之纠错笔记系列(原卷版)

原创精品资源学科网独家享有版权,侵权必究!
1
易错点1 对空间几何体的结构认识不准确致错
有一种骰子,每一面上都有一个英文字母,如图是从3个不同的角度看同一粒骰子的情形,请画出骰子的一个侧面展开图,并根据展开图说明字母H 对面的字母是 .
【错解】P
【错因分析】空间想象能力差而乱猜一气,实际上可以动手制作模型,通过折叠得出答案.
【试题解析】将原正方体外面朝上展开,得其表面字母的排列如图所示,易得H 对面的字母是O
.
【参考答案】O
1.对于平面图形折叠或空间图形展开的问题,空间想象能力是解题的关键,正确识图才能有效折叠平面图
形、展开空间图形.而对于简单几何体的展开图,可以通过制作模型来解答.
2.关于空间几何体的结构特征问题的注意事项:
(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.
(2)通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可
.
1.一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为_________(只填写序号).。
优质错题重组卷(适合新课标)2019冲刺高考用好卷 高三理数含答题卡及解析

………外…………○学校:_………内…………○绝密★启用前【4月优质错题重组卷】高三数学理科新课标版第一套一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1A=-,2{|}B x x x==,则A B=()A.{}1B.{}1-C.{}0,1D.{}1,0-2.设复数z满足12iiz+=,则z的虚部为()A.-1 B.i-C D.13.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为()A.1B.34C D.144.数列{}n a满足()11nn na a n++=-⋅,则数列{}n a的前20项的和为()A.100-B.100C.110-D.1105.在()62x-展开式中,二项式系数的最大值为a,含5x项的系数为b,则ab=()A.53B.53-C.35D.35-6.已知某几何体的三视图如图所示,则该几何体的最大边长为()A B C D.7.已知向量a,b满足1a=,(1,3b=-,且()a a b⊥-,则a与b的夹角为()A.30︒B.60︒C.120︒D.150︒8.执行下面的程序框图,如果输入1a=,1b=,则输出的S=()A.54 B.33 C.20 D.79.已知直线:l y m=+与圆()22:36C x y+-=相交于A,B两点,若120ACB∠=︒,则实数m的值为()A.3或3-B.3+或3-C.9或3-D.8或2-10.已知函数()31sin31xxf x x x-=+++,若[]2,1x∃∈-,使得()()20f x x f x k++-<成立,则实数k的取值范围是()A.()1,-+∞B.()3,+∞C.()0,+∞D.(),1-∞-11.在ABC∆中,,,a b c分别为,,A B C∠∠∠所对的边,若函数()()3222113f x x bx a c ac x=+++-+有极值点,则sin23Bπ⎛⎫-⎪⎝⎭的最小值是()A.0 B.C D.-1第1页共28页◎第2页共28页第3页 共28页 ◎ 第4页 共28页………○…………在※※装※※订※※线※………○…………12.已知函数()()()2ln ln f x ax x x x x =+--,有三个不同的零点,(其中123x x x <<),则2312123ln ln ln 111x x x x x x ⎛⎫⎛⎫⎛⎫---⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为 ( ) A .1a - B .1a - C .-1 D .1 二、填空题:本题共4小题,每小题5分,共20分.13.已知变量x ,y 满足30{40 240x x y x y +≥-+≥+-≤,则3z x y =+的最大值为__________.14.若函数()sin 4f x m x π⎛⎫=+ ⎪⎝⎭ x 在开区间70,6π⎛⎫⎪⎝⎭内,既有最大值又有最小值,则正实数m 的取值范围为 .15.已知点()1,0F c -,()2,0(0)F c c >是椭圆22221(0)x y a b a b+=>>的左、右焦点,点P 是这个椭圆上位于x 轴上方的点,点G 是12PF F ∆的外心,若存在实数λ,使得120GF GF GP λ++=,则当12PF F ∆的面积为8时,a 的最小值为________. 16.已知四面体ABCD 的所有棱长都为√6,O 是该四面体内一点,且点O 到平面ABC 、平面ACD 、平面ABD 、平面BCD 的距离分别为13,x ,16和y ,则1x +1y的最小值是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(本小题满分10分)已知数列{}n a 满足11a =,12n n a a λ+=+(λ为常数).(Ⅰ)试探究数列{}n a λ+是否为等比数列,并求n a ; (II )当1λ=时,求数列(){}n n a λ+的前n 项和n T .18.(本小题满分12分)如图,在矩形ABCD 中,4AB =,2AD =,E 是CD 的中点,以AE 为折痕将DAE ∆向上折起,D 变为'D ,且平面'D AE ⊥平面ABCE . (Ⅰ)求证:'AD EB ⊥;(Ⅱ)求二面角'A BD E --的大小.第5页 共28页 ◎ 第6页 共28页19.(本小题满分12分)第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:(Ⅰ)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全22⨯列联表:并判断能否有90%的把握认为该校教职工是否为“体育达人”与“性别”有关; (II )在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望. 附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++.20.(本小题满分12分)已知长度为AB 的两个端点A 、B 分别在x 轴和y 轴上运动,动点P 满足2BP PA =,设动点P 的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(II )过点()4,0且斜率不为零的直线l 与曲线C 交于两点M 、N ,在x 轴上是否存在定点T ,使得直线MT 与NT 的斜率之积为常数.若存在,求出定点T 的坐标以及此常数;若不存在,请说明理由.第7页 共28页 ◎ 第8页 共28页21.(本小题满分12分)已知函数()2ln f x a x =+且()f x a x ≤.(Ⅰ)求实数a 的值; (II )令()()xf x g x x a=-在(),a +∞上的最小值为m ,求证:()67f m <<.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修44:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,直线l :2{2x ty t=+=-(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C :2sin ρθ=.(Ⅰ)求直线l 的极坐标方程及曲线C 的直角坐标方程; (II ) 记射线0,02πθαρα⎛⎫=≥<<⎪⎝⎭与直线l 和曲线C 的交点分别为点M 和点N (异于点O ),求ON OM的最大值.24.【选修45:不等式选讲】(本小题满分10分)已知函数()1f x x =-.(Ⅰ)解关于x 的不等式()21f x x ≥-;(II )若关于x 的不等式()21f x a x x <-++的解集非空,求实数a 的取值范围.【4月优质错题重组卷】高三数学理科新课标版第一套答题卡第9页 共28页 ◎ 第10页 共28页18.19.第13页 共28页 ◎ 第14页 共28页......装......___姓名:___......装 (21920119)...13 (19102)a a a +++++=----=-⨯ 100=-,故选A .B 【解析】根据三视图作出原几何体(四棱锥P ABCD -)的直观图如下:PB PD BC PC ====.“长”的基本原则,其内涵为正视图的高是几何体的高,长是几何体1、首先看俯视图,根据俯视图2、观察正视图和侧视图找到几何体前、后、左、右的高度; B 【解析】设与b 的夹角为α,((21,1,3,12a b b ==-∴=+=,()(),0a a b a a b ⊥-∴⋅-=,22112cos 0a a b α∴-⋅=-⨯=,解得第15页 共28页 ◎ 第16页 共28页○............装............○............订.........※请※※不※※要※※在※※装※※订※※线※※内※※答※○............装............○............订 (1)cos ,602αα=∴=,故选B .8.C 【解析】执行程序框图,1,1,0,0;2,2,3,2a b S k S a b k ========;7,5,8,4S a b k ====;20,13,21,6S a b k ====,结束循环,输出20S =,故选C .学#9.A 【解析】由题意可得,圆心(0,3)到直线的距离为,所以332m d m -===,选A . 【名师点睛】直线与圆相交圆心角大小均是转化为圆心到直线的距离,用点到直线的距离公式解决.11.D 【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ), 又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ; 即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1,故选D . 12.D 【解析】令f (x )=0,分离参数得a=ln ln x x x x x --令h (x )=ln ln x xx x x--由h′(x )=()()()22ln 1ln 2ln 0ln x x x x x x x --=- 得x=1或x=e .当x ∈(0,1)时,h′(x )<0;当x ∈(1,e )时,h′(x )>0;当x ∈(e ,+∞)时,h′(x )<0.即h (x )在(0,1),(e ,+∞)上为减函数,在(1,e )上为增函数.【名师点睛】本题考查了利用导数研究函数单调性,极值等性质,训练了函数零点的判断方法,运用了分离变量法,换元法,函数构造法等数学转化思想方法,综合性强. 13.12【解析】由约束条件画出可行域如下图,目标函数变形为3y=-x+z ,即求截距的最大值,过点A(0,4)时目标函数取最大值12,填12.学%第17页 共28页 ◎ 第18页 共28页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………【名师点睛】线性规划中常见目标函数的转化公式:(1)截距型:x z z ax by y b b =+⇒=-+,与直线的截距相关联,若0b >,当zb 的最值情况和z 的一致;若0b <,当zb的最值情况和的相反;(2)斜率型:(),y bz a b x a-=⇒-与(),x y 的斜率,常见的变形:()b y ay b a a ak xc x c -⎛⎫- ⎪+⎝⎭⇔⨯=+--,()()11y c b x y bk x c x c --++⇔+=++--,11x b y c y ck x b-⇔=---.(3)点点距离型:()()2222z x y ax by c z x m x n =++++⇒=-+-表示(),x y 到(),m n 两点距离的平方;(4)点线距离型:2222ax by c z ax by c z a b a b ++=++⇒=⨯++表示(),x y 到直线0ax by c ++=的距离的22a b +倍.15.4【解析】由于点G 是12ΔPFF 的外心,则G 在轴的正半轴上,12GF GF λGP 0++=,则()1212GP GF GF GO λλ=-+=-,则P ,G ,O 三点共线,即P 位于上顶点,则12ΔPFF 的面积1282S b c bc =⨯⨯==,由222216a b c bc =+≥=,则a 4≥,当且仅当22b c ==时取等号,∴的最小值为4,故答案为4.【名师点睛】本题考查向量的共线定理,基本不等式的性质,考查转化思想,属于中档题根据向量的共线定理,即可求得则P ,G ,O 三点共线,则P 位于上顶点,则bc 8=,根据基本不等式的性质,即可求得的最小值.16.83【解析】该几何体为正四面体,体积为()326312⨯=.各个面的面积为()2333642⨯=,所以四面体的体积又可以表示为1331133236x y ⎛⎫⨯⨯+++= ⎪⎝⎭,化简得32x y +=,故()()112112282223333y x x y x y x y x y ⎛⎫⎛⎫+=⨯+⨯+=++≥+= ⎪ ⎪⎝⎭⎝⎭. 【名师点睛】本小题主要考查正四面体体积的计算,考查利用分割法求几何体的体积,考查了方程的思想,考查了利用基本不等式求解和的最小值的方法.首先根据题目的已知条件判断出四面体为正四面体,由于正四面体的棱长给出,所以可以计算出正四面体的体积,根据等体积法求得的一个等式,再利用基本不等式求得最小值.第19页 共28页 ◎ 第20页 共28页………外…………○…………装…………○…………订………※※请※※不※要※※在※※装※※订※※线※※内※※答※………内…………○…………装…………○…………订………17.(1)()112n n a λλ-=+-.(2)()1122n n T n +=-+. 【解析】试题分析:(1)由已知()12n n a a λλ++=+,当1λ=-时,数列{}n a λ+不是等比数列,当1λ≠-时数列{}n a λ+是以1λ+为首项,2为公比的等比数列.(2)由(1)知21nn a =-,所以()12nn n a n +=⨯,由错位相减法可得数列(){}n n a λ+的前n 项和n T .(2)由(1)知21nn a =-,所以()12nn n a n +=⨯,2322232n T =+⨯+⨯ 2n n +⋅⋅⋅+⨯① 234222232n T =+⨯+⨯ 12n n ++⋅⋅⋅+⨯②①-②得:23222n T -=++122n n n ++⋅⋅⋅+-⨯()1212212n n n +-=-⨯-11222n n n ++=--⨯()1122n n +=--.所以()1122n n T n +=-+.18.【答案】(Ⅰ)证明见解析;(Ⅱ) 90.【解析】试题分析:(Ⅰ)根据勾股定理推导出AE EB ⊥,取AE 的中点M ,连结MD ',则MD '⊥ BE ,从而EB ⊥平面AD E ',由此证得结论成立;(Ⅱ)以C 为原点,CE为x 轴,CB 为y 轴,过C 作平面ABCE 的垂线为z 轴,建立空间直角坐标系,利用向量法能求出二面角A BD'E --的大小.(Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、(D ',第21页共28页◎第22页共28页……○………线……:___________……○………线……1n x=(,11n BA4{n BD'32xx y z⋅=⋅=-+1n0,2,1)=(()2n x y z=,,为平面的法向量,22n BE2{n BD'32xx y z⋅=-⋅=-+可以取2n(1,12=-,)因此,12n n0⋅=,有12n n⊥,即平面ABD'⊥平面故二面角A BD-'-的大小为90..【答案】(1)见解析;(2)见解析.【解析】试题分析:1)根据题意填写列联表,计算观测值,对照临界值得出结论;)由题意知抽取的6名“体育达人2BP PA=,可得代入即可求得椭圆方程;学*,()22,N x y,第23页 共28页 ◎ 第24页 共28页订…………○…………线…………○…※内※※答※※题※※订…………○…………线…………○…(2)由题意设直线l 的方程为:4x my =+,()11,M x y ,()22,N x y ,由224{ 182x my x y =++=得:()224880m y my +++=, 所以()12212222848{ 4643240my y m y y m m m +=-+=+∆=-+>.故()12128x x m y y +=++ 2324m =+, ()21212124x x m y y m y y =++ 22648164m m -+=+,21.【答案】(1)2a =.(2)见解析.【解析】试题分析:由题意知:2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立,令()2ln h t a at t =-+,由于()10h =,故2ln 0a at t -+≤ ()()1h t h ⇔≤, 可证:()h t 在()0,1上单调递增;在()1,+∞上单调递减.故2a =合题意.#网 (2)由(1)知()()xf x g x x a=- 22ln (2)2x x xx x +=>-,所以()()()222ln 4'2x x g x x --=-,令()2ln 4s x x x =--,可证()08,9x ∃∈,使得()00s x =,且当02x x <<时,()0s x <;当0x x >时,()0s x >,进而证明()()0f m f x =()0022ln 26,7x x =+=-∈,即()67f m <<.试题解析:(1)法1:由题意知:2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >第25页 共28页 ◎ 第26页 共28页时恒成立,令()2ln h t a at t =-+,则()22'ath t a t t-=-=, 当0a ≤时,()'0h t >,故()h t 在()0,+∞上单调递增, 由于()10h =,所以当1t >时,()()10h t h >=,不合题意.当0a >时,()2'a t a h t t ⎛⎫-- ⎪⎝⎭=,所以当20t a <<时,()'0h t >;当2t a >时,()'0h t <,所以()h t 在20,a ⎛⎫ ⎪⎝⎭上单调递增,()h t 在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,即()max 2h t h a ⎛⎫= ⎪⎝⎭22ln22ln a a =-+-.所以要使()0h t ≤在0t >时恒成立,则只需()max 0h t ≤, 亦即22ln22ln 0a a -+-≤,令()22ln22ln a a a ϕ=-+-,则()22'1a a a aϕ-=-=,所以当02a <<时,()'0a ϕ<;当2a >时,()'0a ϕ>,即()a ϕ在()0,2上单调递减,在()2,+∞上单调递增.又()20ϕ=,所以满足条件的a 只有2, 即2a =.(2)由(1)知()()xf x g x x a=- 22ln (2)2x x xx x +=>-,所以()()()222ln 4'2x x g x x --=-,令()2ln 4s x x x =--,则()22'1x s x x x-=-=, 由于2x >,所以()'0s x >,即()s x 在()2,+∞上单调递增;又()80s <,()90s >, 所以()08,9x ∃∈,使得()00s x =,且当02x x <<时,()0s x <;当0x x >时,()0s x >,即()g x 在()02,x 上单调递减;在()0,x +∞上单调递增. 所以()()0ming x g x = 000022ln 2x x x x +=- 2000022x x x x -==-.(∵002ln 4x x =-) 即0m x =,所以()()0f m f x = ()0022ln 26,7x x =+=-∈,第27页 共28页 ◎ 第28页 共28页○…………订…………○…………线…………○…※订※※线※※内※※答※※题※※○…………订…………○…………线…………○…即()67f m <<.22.【答案】(1)4sin cos ρθθ=+.2220x y y +-=.(2)14.【解析】试题分析:(1)根据极坐标方程、参数方程与普通方程的对应关系即可得出答案;(2)由(1)2sin ON α=,4sin OM cos αα=+,所以2sin sin cos 2ONOM ααα+=1244πα⎛⎫=-+ ⎪⎝⎭,即可得到ON OM 的最大值.(2)由题意2sin ON α=,4sin OM cos αα=+,所以2sin sin cos 2ON OMααα+=1244πα⎛⎫=-+ ⎪⎝⎭,由于02πα<<,所以当38πα=时,ON OM取得最大值:14.23.【答案】(1){|01}x x x ≤≥或.(2)()1,-+∞.【解析】试题分析:(1)由题意()21f x x ≥- 211x x ⇔-≥- 211x x ⇔-≥-或211x x -≤-,由此可解不等式;%网(2)由于关于x 的不等式()21f x a x x <-++的解集非空,函数()f x 的最小值为-1,由此解得a 的范围.【名师点睛】本题主要考查绝对值的意义,绝对值不等式的解法,体现了等价转化的数学思想,属于中档题.。
江苏省苏州市2019届高三数学一轮复习 防错纠错9 算法、概率与统计 含答案

防错纠错9 算法、概率与统计一、填空题1.如果执行下面的流程图,那么输出的S 等于____________.【解析】本流程图含有循环结构.第1次循环为1≤50;S =0+2×1;k =1+1=2;第2次循环为2≤50;S =2+2×2;k =2+1=3;……第50次循环为50≤50;S =2+4+…+100=2 550. k =51>50,退出循环,输出S . 答案:2 550【易错、易失分点点拨】对于含有循环结构的算法问题,一定要注意循环变量、计数变量以及终止条件之间的关系,通常可以采取列出前几次操作,然后找到规律,再注意终止条件的判定.2.阅读下列程序:输出的结果是 .【解析】第一次循环时,I 被赋予1,S 被赋予2,并输出2;第二次循环时,I 被赋予3,S 被赋予2+3=5,并输出5;第三次循环时,I 被赋予5,S 被赋予5+5=10,并输出5;由于此时5=I ,故循环终止,程序结束.所以输出的结果是2,5,10.【易错、易失分点点拨】本题最容易出现的问题是没有弄清Print S 是在循环体内,即每循环一次,都将执行一次Print S ,因为循环进行了3次,所以Print S 也执行了3次.所以本题最常见的错解为:第一次循环时,I 被赋予1,S 被赋予2;第二次循环时,I 被赋予3,S 被赋予2+3=5;第三次循环时,I 被赋予5,S 被赋予5+5=10;由于此时5=I ,故循环终止,最后输出S 为10.3.下面的程序运行时输出的结果是 .【解析】当4=I 时,16440=⨯+=S .【易错、易失分点点拨】没有注意到由于0←S 在循环内,每经过一次循环后S 都被赋值0,习惯性认为0←S 在While 5<I 之前,因此,只要求满足条件的最后一次循环S 的值.本题较容易出现的错解为:第一次循环时,I 被赋予2,S 被赋予4;第二次循环时,I 被赋予3,S 被赋予4+23=13;第三次循环时,I 被赋予4,S 被赋予13+24=29;第四次循环时,I 被赋予5,S 被赋予545292=+.由于此时5=I ,故循环终止,输出S 为54.4.在区间内随机取出两个数,则这两个数的平方和也在区间内的概率是 .【解析】将取出的两个数分别用x ,y 表示,则x ,y ∈,要求这两个数的平方和也在区间内,即要求0≤x 2+y 2≤10,故此题可以转化为求0≤x 2+y 2≤10在区域{}010,010x y ≤≤≤≤内的面积比的问题,即由几何概型知识可得到概率为14×π×10102=π40. 【易错、易失分点点拨】本题容易习惯性地把条件“在区间内随机取出两个数”误认为“在区间内随机取出两个整数数”,从而将本题当做古典概型进行求解.5.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为__________.【解析】两次有放回抽取卡片所有可能的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共有9种可能,其中至少有一个为偶数的结果为(2,2),(2,1),(1,2),(2,3),(3,2),共5种,所以所求概率P =59. 【易错、易失分点点拨】本题容易发生的错误在于对本题基本事件总数的计算,易混淆“有放回”和“无放回”,将(1,2),(2,1)之情形,认为是同一种基本事件.6.在等腰Rt△ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD<AC 的概率为__________.【解析】射线CD 在∠ACB 内是均匀分布的,故∠ACB =90°可看成试验的所有结果构成的区域,在线段AB 上取一点E ,使AE =AC ,则∠ACE =67.5°可看成事件构成的区域,所以满足条件的概率为67.590=34. 【易错、易失分点点拨】本题是很典型的一道题目,最容易产生的错解为:在线段AB 上取一点E ,使AE =AC ,在线段AE 上取一点D ,此时AP <AC ,求得概率为AE AB =AC AB =22.原因是不能准确找出事件的几何度量.7.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为____________.【解析】由x 1+x 2+…+x n =n x ,所以2x 1+3+2x 2+3+…+2x n +3n =2(x 1+x 2+…+x n )+3n n=2n xn+3=2x +3. 又(x 1-x )2+(x 2-x )2+…+(x n -x )2=ns 2, 所以2+2+…+2=4=4 ns 2.所以方差为4s 2. 答案:2x +3,4s 2【易错、易失分点点拨】本题考查平均数以及方差的相关运算性质,容易发生的错误是学生不通过计算,只是根据直觉认为方差与平均数的变化随数据进行相同规律的变化,对变化间的本质理解不到位.8.如图是甲、乙两名运动员2014年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和为________.【解析】甲运动员的比赛得分是:17,22,28,34,35,36,其中位数是28+342=31;乙运动员的比赛得分是:12,16,21,23,29,32,33,其中位数是23,所以甲、乙两人比赛得分的中位数之和为31+23=54.【易错、易失分点点拨】本题容易出现的错误在于不会计算中位数,将中位数与平均数混淆.二、解答题9.向面积为S 的正方形ABCD 内投一点P ,试求△PBC 的面积小于S 4的概率. 【解析】如图,M ,N 分别为AB ,CD 中点,当点P 位于阴影部分时,△PBC 的面积小于S 4,根据几何概型,其概率为P =S 矩形MBCN S 矩形ABCD =12.【易错、易失分点点拨】本题容易产生如下错解:如图所示,设△PBC 的边BC 上的高为PF ,线段PF 所在的直线交AD 于点E ,则当点P 到底边BC 的距离小于EF 的一半时,有0<12BC ·PF <14BC ·EF ,即0<S △PBC <S 4. 记事件A 为“△PBC 的面积小于S 4”,由几何概型可得P (A )=S △PBC S 正方形ABCD =14. 错误原因在于错解构造的图形有误, 所以对于几何概型对应的几何图形应认真思考,正确确定几何图形的形状.10.已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组,现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.【解析】(1)由题意,得抽出号码为22的组数为3.因为2+10×(3-1)=22,所以第1组抽出的号码应该为02,抽出的10名学生的号码依次分别为:02,12,22,32,42,52,62,72,82,92.(2)这10名学生的平均成绩为: x =110×(81+70+73+76+78+79+62+65+67+59)=71,故样本方差为:s 2=110×(102+12+22+52+72+82+92+62+42+122)=52. (3)从这10名学生中随机抽取两名成绩不低于73分的学生,共有如下10种不同的取法: (73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).其中成绩之和不小于154分的有如下7种:(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故被抽取到的两名学生的成绩之和不小于154分的概率为:P =710. 【易错、易失分点点拨】本题易错点在于对于系统抽样的相关知识掌握不牢固,对其抽样方法不熟悉,同时在用列举法求解古典概率问题时,容易产生遗漏.11.某市教育主管部门为了弘扬民族文化,在全市各中学开展汉字听写大赛,某学校经过七轮选拔,最后选出甲、乙两名选手代表本校参加市里决赛,甲、乙两名选手七轮比赛得分情况如下表所示:(1)(2)从甲选手的7次成绩中随机抽取两次成绩,求抽出的两次成绩的分数差距至少是3分的概率.【解析】(1)由题意得x 甲=86+94+89+88+91+90+927=90, x 乙=88+89+90+91+93+92+877=90, s 2甲=17=6; s 2乙=17=4;因为6>4,所以乙选手成绩更稳定.(2)从甲选手的七次成绩中随机抽取2次的所有基本事件为:(86,94)(86,89),(86,88),(86,91),(86,90),(86,92),(94,89),(94,88),(94,91),(94,90),(94,92),(89,88),(89,91),(89,90),(89,92),(88,91),(88,90),(88,92),(91,90),(91,92),(90,92)共21种情况,则抽取的两次分数差距至少3分的事件包含:(86,94)(86,89),(86,91),(86,90),(86,92),(94,89),(94,88),(94,91),(94,90),(89,92),(88,91),(88,92)共12种情况.则抽取的两次成绩差距至少3分的概率P =1221=47. 【易错、易失分点点拨】本题易错点在于,方差是衡量稳定程度的重要指标,对方差的计算方法不熟悉,或者计算能力不过关极易导致出错,平时要注重此方面的训练,同时要知道方差越小稳定程度越高.12.某个团购网站为了更好地满足消费者,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组,得到的频率分布直方图如图所示.(1)分别求第三、四、五组的频率;(2)该网站在得分较高的第三、四、五组中用分层抽样的方法抽取6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的2个产品均来自第三组的概率.【解析】(1)第三组的频率是0.150×2=0.3;第四组的频率是0.100×2=0.2;第五组的频率是0.050×2=0.1.(2)设“抽到的2个产品均来自第三组”为事件A,由题意可知,分别抽取3个、2个、1个.不妨设第三组抽到的是A1、A2、A3;第四组抽到的是B1、B2;第五组抽到的是C1,所含基本事件为:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{A3,B2},{A3,C1},{B1,B2},{B1,C1},{B2,C1},共15个,事件A包含的基本事件有3个,所以P(A)=315=15.【易错、易失分点点拨】本题易错点在于,由频率分布直方图计算频率时,直接读取高度作为频率,没有真正理解频率是对应相应小长方形的面积.。
错题重组卷(适合新课标)2019冲刺高考用好卷之高三理数含答题卡及解析

第1页 共26页 ◎ 第2页 共26页…………○…………装学校:___________姓名…………○…………装【4月优质错题重组卷】高三数学文科新课标版第一套一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合M ()(){}{}120,12x x x N x x =-+≥=-≤≤,则()U C M N ⋂= ( ) A .[]2,1-- B .[]1,2- C .[)1,1- D .[]1,2 2.已知复数z 满足()1+234i z i =-+,则z =( )A B .5 C D 3.若角α的终边经过点(1-,则tan 3πα⎛⎫+= ⎪⎝⎭( ) A . B .- C D 4.某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为A .512−96πB .296C .512−24πD .512 ( )5.我国三国时期的数学家赵爽为了证明勾股定理创制了一幅“勾股圆方图”,该图是由四个全等的直角三角形组成,它们共同围成了一个如图所示的大正方形和一个小正方形.设直角三角形中一个锐角的正切值为3.在大正方形内随机取一点,则此点取自小正方形内的概率是( )A .110 B .15 C .310 D .256.执行如图所示的程序框图,则输出的n 为( )A .5B .6C .7D .87.已知命题p :对x R ∀∈,总有22x x >;:1q ab >是1a >且1b >的必要不充分条件条件,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()()p q ⌝∧⌝8.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .100-B .100C .110-D .1109.已知函数()f x 在区间[]2,2-上单调递增,若()()()24log log 2f m f m <+成立,则实数m 的取值范围是( )A .1,24⎡⎫⎪⎢⎣⎭ B .1,14⎡⎫⎪⎢⎣⎭C .(]1,4D .[]2,410.已知1F ,2F 是椭圆2222:1(0)x y E a b a b+=>>的两个焦点,过原点的直线l 交E 于第3页 共26页 ◎ 第4页 共26页○…………外…………○※※请○…………内…………○,A B 两点,220AF BF ⋅=,且2234||AF BF =,则E 的离心率为 ( ) A .12 B .34 C .27 D .5711.如图,在底面为矩形的四棱锥E −ABCD 中,DE ⊥平面ABCD ,F ,G 分别为棱DE ,AB 上一点,已知CD =DE =3,BC =4,DF =1,且FG ∥平面BCE ,四面体ADFG 的每个顶点都在球O 的表面上,则球O 的表面积为 ( )A .12πB .16πC .18πD .20π12.若曲线21:C y x =与曲线()2:0xe C y a a=>存在公共切线,则a 的取值范围为( ) A .()01, B .214e ⎛⎤ ⎥⎝⎦, C .2,24e ⎡⎤⎢⎥⎣⎦ D .2,4e ⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分.13.已知实数x ,y 满足条件23{ 00x y x y x y -≥+≤≥≥,则3x y +的最大值为__________.14.函数()2cos 2f x x x =- 0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________. 15.在ABC ∆中,226,AB AC BA BC BA ==⋅=,点P 是ABC ∆所在平面内一点,则当222PA PB PC ++取得最小值时,AP BC ⋅=__________.16.已知()f x 是定义在R 上的奇函数,()f x '是()f x 的导函数,当0x <时,()()+0f x xf x '<,若()()22log log 1a f a f ⋅>,则实数a 的取值范围是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(本小题满分10分)已知数列{}n a 满足132n n a a +=+,且12a =.(Ⅰ)求证:数列{}1n a +是等比数列;(Ⅱ)数列{}n b 满足()3log 1n n b a =+,判断数列2211n n b b +⎧⎫⎨⎬⎩⎭的前n 项和nT 与12的大小关系,并说明理由.18.(本小题满分12分)如图,四棱锥F ABCD -中,底面ABCD 为边长是2的正方形,E ,G 分别是CD ,AF 的中点,4AF =,FAE BAE ∠=∠,且二面角F AE B --的大小为90︒.(1)求证:AE BG ⊥; (2)求四面体B AGE -的体积.第5页 共26页 ◎ 第6页 共26页○…………线______○…………线19.(本小题满分12分)某地区积极发展电商,通过近些年工作的开展在新农村建设和扶贫过程中起到了非常重要的作用,促进了农民生活富裕,为了更好地了解本地区某一特色产品的宣传费x (千元)对销量y (千件)的影响,统计了近六年的数据如下:(1)若近6年的宣传费x 与销量y 呈线性分布,由前5年数据求线性回归直线方程,并写出y 的预测值;(2)若利润与宣传费的比值不低于20的年份称为“吉祥年”,在这6个年份中任意选2个年份,求这2个年份均为“吉祥年”的概率附:回归方程ˆˆˆybx a =+的斜率与截距的最小二乘法估计分别为111221ˆni ni i x y nx y bx nx==-=-∑∑,ˆˆa y bx =-,其中x ,y 为i x ,iy 的平均数.20.(本小题满分12分)设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,ABF ∆是边长为4的等边三角形. (1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线l '与抛物线C 交于Q 、R 两点时,2211||||NQ NR +为定值?若存在,求出点N 的坐标,若不存在,请说明理由.21.(本小题满分12分)设函数()21ln 2a f x x ax x -=+-(a R ∈). (1)当1a =时,求函数()f x 的极值;(2)若对任意()3,4a ∈及任意1x ,[]21,2x ,恒有()()()2121ln22am f x f x -+>-成立,求实数m 的取值范围.第7页 共26页 (二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修44:坐标系与参数方程】(本小题满分10分)已知直线2:{4x tcos l y tsin αα=+=+,(t 为参数,α为倾斜角).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的直角坐标方程为2240x y y +-=.(Ⅰ)将曲线C 的直角坐标方程化为极坐标方程;(Ⅱ)设点M 的直角坐标为()2,4,直线l 与曲线C 的交点为A 、B ,求MA MB +的取值范围.4第9页 共26页 ◎ 第10页 共26页19.第13页 共26页 ◎ 第14页 共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………1.【答案】C 【解析】因为全集U R =,集合()(){}120,M x x x =-+≥所以{}21U C M x x =-<<,又{}12x x -≤≤,所以()[)1,1U C M N ⋂=-,故选C .2.【答案】C 【解析】()()()()34i 12i 510i 12i,12i 512i 12i 5z -+-+===++=+-,故选C . 3.【答案】B 【解析】由题意可得:23tan 231α==--,则:()tan tan 2333tan 312331tan tan 3παπαπα+-+⎛⎫+==⎪⎝⎭--⨯- 37=-.本题选择B 选项. 4.【答案】C 【解析】由三视图可知,该几何体是一个正方体挖去一个圆柱所得的组合体,其中正方体的棱长为8,圆柱的底面半径为2,高为6,则该几何体的体积为:.本题选择C 选项.【名师点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.【答案】B 【解析】命题p :对x R ∀∈,总有22x x >是假命题,当2x =-时不成立;:q 命题由1a >,11b ab >⇒>,反之不成立,例如当10a =,12b =时,51ab =>,1b <,命题为真命题.故选B ,p q ⌝∧是真命题.8.【答案】A 【解析】由()11nn n a a n ++=-,得2134561,3,5a a a a a a +=-+=-+=-,1920...,19a a +=-,na ∴的前20项的和为121920119...13 (19102)a a a a +++++=----=-⨯ 100=-,故选A . 9.【答案】A 【解析】不等式即为()()()244log log 2f m f m <+,∵函数()f x 在区间[]2,2-上单调递增,∴()()24424log log 2{2log 2 2log 22m m m m <+-≤≤-≤+≤,即第15页 共26页 ◎ 第16页 共26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………221{4 41244m m m m <+≤≤≤+≤,解得124m ≤<.∴实数m 的取值范围是1,24⎡⎫⎪⎢⎣⎭.选A .【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出;②构造,a c 的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题是利用双曲线的几何性质以及双曲线的定义根据方法①求解的.11.【答案】C 【解析】在棱CD 上取一点H ,使得HD=1,平面BCE , 又平面BCE ,平面平面BCE ,又平面平面ABCD=GH ,平面平面ABCD=BC ,= HD=1,故四面体可以补成一个长方体,且长,宽,高分别为4,1,1,所以球的表面积为【名师点睛】本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.【名师点睛】本小题主要考查利用导数研究曲线上某点的切线方程,过曲线上某点出的切线的斜率,就是函数在该点处的导数值,是中档题.要求曲线上某点的切线方程,需要到两个量,一个是切点,一个是切线的斜率,分别求得切点和斜率,然后根据点斜式可写出切线方程.13.【答案】8【解析】画出可行域如图所示,则当目标函数z 3x =+y 经过点51,22A ⎛⎫⎪⎝⎭时取代最大值,max 51z 3422=+⨯=,即答案为4.第17页 共26页 ◎ 第18页 共26页○…………订…_班级:___________考○…………订…14.【答案】14-【解析】()221sin 2sin 1f x x x x x =-+-=--=21sin 4x ⎛-- ⎝⎭, 所以当sin 2x =时,有最大值14-.故答案为:14-. 15.【答案】-9【解析】∵2BA BC BA⋅=,∴()20BA BC BA BA BC BA BA AC ⋅-=⋅-=⋅=,∴BA AC ⊥,即BA AC ⊥.以点A 为原点建立如图所示的平面直角坐标系,则B(6,0),C(0,3),设(),P x y ,所以()()22222222263PA PB PC x y x y x y ++=++-+++-223123645x x y y =-+-+()()2232110x y ⎡⎤=-+-+⎣⎦.所以当2,1x y ==时222PA PB PC ++有最小值,此时()()2,16,39AP BC ⋅=⋅-=-. 【名师点睛】数量积的计算有两种不同的方式,一是根据定义计算,二是用向量的坐标计算,其中用坐标进行运算可使得数量积的计算变得简单易行.在本题的解法中通过建立坐标系将数量积的最小值问题转化为函数的最值问题处理,体现了转化方法在数学解题中的应用.17.【答案】(I )证明见解析;(II )12n T <. 【解析】试题分析:(Ⅰ)由132n n a a +=+可得()()1131n n a a ++=+,所以数列{}1n a +是以3为首项,3为公比的等比数列;(Ⅱ)由(Ⅰ)可知13n n a +=,即()33log 1log 3n n n b a n=+==.故()()()221111111221212122121n n b b n n n n n n +⎛⎫=<=- ⎪⋅+-⋅+-+⎝⎭,根据裂项相消法结合放缩法可得12n T <. 试题解析:(Ⅰ)由题意可得()113331n n n a a a ++=+=+,即()()1131n n a a ++=+,又1130a +=≠,故数列{}1n a +是以3为首项,3为公比的等比数列.18.【答案】(1)见解析;(2)。
2019年湖南高考数学(理科)试题(word版)和答案详细解析及备考策略

不要让关心成为孩子甜蜜负担北京市第三十五中学教师郝乐奇案例鑫新进入高三已三月有余。
除了日渐繁重的学习任务给她带来很大压力,父母也一直困扰着她。
自高三开始,父母每天都早起为她准备营养早餐;中午打电话提醒她吃好午饭、注意午休;晚上回到家,隔一会儿就往她屋里端水果和夜宵。
鑫新虽然理解父母的良苦用心,但家人的举动也让她感受到前所未有的压力。
分析很多父母在孩子步入高三后过度关心其状态:担心孩子的营养跟不上高强度的学习,购买各种保健品;担心孩子独自上下学浪费时间,想为他们争取更多休息的时间,自己起早贪黑承担接送工作;担心孩子功课复习不扎实,额外请老师补课等。
父母都希望在高三一年中成为合格的后勤保障工作者,让孩子在高考的跑道上安心冲刺。
殊不知,正是这些无微不至的关心和不同常态的变化,成了孩子甜蜜的负担,变为孩子的精神压力。
孩子害怕自己成绩不理想而辜负了父母的关爱。
建议父母的关爱是必不可少的,它是孩子前进中的重要动力和保障,但过犹不及。
如何在其中找到平衡?这就需要父母对自己的角色定位有更清晰的认识。
生涯路途的参谋者高三学习中,孩子不仅要提高现有的学习水平,更重要的是找到发展目标。
孩子在学校里参加社会实践的机会较少,对自我能力的判断、如何选择合适的专业等缺少客观性。
父母可给予孩子建议,共同探索感兴趣的专业、职业,分析其能力和素养需求及今后的发展路径。
父母也可给孩子讲述自己的职业生涯路程,分析工作中可能遇到的困难或机遇,帮助孩子思考、规划,为其日后的社会实践做准备。
学习历程的陪伴者父母都经历过学生时代,体验过失利时的挫败和收获时的欣喜。
面对孩子,父母除了感同身受,更多的是对孩子的担忧和关切。
但这不能是对孩子不分缘由的责怪和寸步不离的看守。
很多父母说起晚上的“陪读”经历都感觉“委屈”:明明牺牲了自己的休息时间,坐在旁边也没有对孩子指手画脚,还能起到监督效果,怎么就引起了孩子的反感呢?换个角度,在孩子看来,“陪读”是对其学习的干扰,更像变相监视。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2e
,0
C.
1 e
,
D.
1 e
,0
答案:C. 解:令 h(x)=f(x)﹣g(x)=ex+1﹣ma﹣aex+x=(e﹣a)ex﹣ma+x, 则 h′(x)=(e﹣a)ex+1,
郑州外国语学校 2019 届高三阶段错题重做 第 1 页 共 20 页 理科数学
=
=,
若
=﹣ ,则
=
=﹣ ,
解得 tanαtanβ=5,即 b2=5a2,可得双曲线的离心率为 e= =
= .故选:D.
7.已知| |=| |=5,| |=1,( )•( )=0,则| |的取值范围是( )
A.[ ﹣1, +1] B.[3,4] C.[ 2 6 - 2,2 6 2 ] D.[6,8]
答案:D.
2.已知四面体
ABCD 外接球球 O 的体积为
32 3
,且
AB
CD
2.
当四面体
ABCD 的体积最大时,设
二面角 A CD B 的大小为 ,则 sin 的值为( )
A.
2 13 13
答案:D.
B.1
C.
2
2 3
D.
43 13
3.已知函数 f x x3 3x2 5x 2 ,若 s,t R ,且满足不等式 f (s2 2s 1) f (1 2t t2 ) 2 ,则当
郑州外国语学校 2019 届高三阶段错题重做
理科数学
一.选择题
1.坐标平面上的点集
S
满足
S
{(x ,
y)
|
log2 (x2
x
2)
2sin4
y
2cos4
y
,
-
8
y
},将点集 4
S
中的所
有点向 x 轴作投影,所得投影线段的长度为( )
A. 1
B.
3 5 2
C. 8 2 7
D. 2
说法错误的是( )
A.a>1+ln2
B.x1+x2>1
C.x1•x2
D.f′(x)在(0,+∞)上有极小值
答案:C. 解:∵f(x)=x2+(1﹣a﹣lnx)x+b(a,b∈R)在(0,+∞)上有两个极值点 x1,x2(x1<x2),
∴f′(x)=2x﹣a﹣lnx=0,在(0,+∞)上有两个不同的解,设 g(x)=2x﹣lnx﹣a,
线 PA,PB 的倾斜角分别为α,β.若
=﹣ ,则 C 的离心率为( )
A. 答案:D. 解:双曲线 C:
B.
C.
D.
=1(a>0,b>0)的两个顶点分别为 A(﹣a,0),B(a,0),
点 P(m,n)是 C 上异于 A,B 的一点,可得 ﹣ =1,即有
=,
设 k1=tanα= ,k2=tanβ= ,k1k2=tanαtanβ=
郑州外国语学校 2019 届高三阶段错题重做 第 2 页 共 20 页 理科数学
答案:D. 解:如图所示,设 = , = , = ,点 C 在圆 x2+y2=1 上,点 A,B 在圆 x2+y2=25 上,则 ﹣ = , ﹣ = ,因此 CA⊥CB,即点 C 在以 AB 为直径的圆 M 上.由于点 C 同时在圆 x2+y2=1 上,故两圆有公共点. 设圆 M 的半径为 r,则有|r﹣1|≤|OM|≤r+1,由于 M 为 AB 的中点,所以 OM⊥AB,
1
s
4
时,
t 2s st
的取值范围是(
)
A.
3,
1 2
B.
3,
1 2
C.
5,
1 2
D.
5,
1 2
答案:D. 4.若函数 f(x)=x2+(1﹣a﹣lnx)x+b(a,b∈R)在(0,+∞)上有两个极值点 x1,x2(x1<x2),则下列
故|OM|= 25 - r 2 ,解得:3≤r≤4,又| ﹣ |=| |=2r,
故有| ﹣ |∈[6,8].故选:D.
8.设 An,Bn 分别为等比数列{an},{bn}的前 n 项和,若 = ,则 =( )
若 e﹣a≥0,可得 h′(x)>0,函数 h(x)为增函数,当 x→+∞时,h(x)→+∞,
不满足 h(x)≤0 对任意 x∈R 恒成立;
若
e﹣a<0,由
h′(x)=0,得 ex
1 a
e
,则
x=ln
a
1
e
,
∴当
x∈(﹣∞,ln
a
1
e
)时,h′(x)>0,当
x∈(ln
a
1
e
,+∞)时,h′(x)<0,
e
1
,
∴
m
ln
a a
e
1 a
(a>e),
令
F(a)=
ln
a
a
e
1 a
,
则 F′(a)=
a ae
ln a e
a2
1 a2
a
2
a a
e
ln a e
a2
1 a2
=
a
a
e
a2
lna a e
e
a
e
=
a
e ln a2 a
a
e
e
Байду номын сангаас
e
.
∴当
a<2e
时,F′(a)<0,当
a>2e
时,F′(a)>0,则
F (a)min
F
2e
1 e
.
∴m
1 e
.则实数
m
的取值范围是[
1 e
,
).
故选:C.
6.已知双曲线 C:
=1(a>0,b>0)的两个顶点分别为 A,B,点 P 是 C 上异于 A,B 的一点,直
可得 x1∈
,x2=1,因此 x1x2< ,x1+x2>1,可知:C 不正确.故选:C.
5.设函数 f(x)=ex+1﹣ma,g(x)=aex﹣x(m,a 为实数),若存在实数 a,使得 f(x)≤g(x)对任意 x∈ R 恒成立,则实数 m 的取值范围是( )
A.
1 2e
,
B.
∴ h(x)max
h
ln
a
1
e
=
e
a
eln
1 ae
ma
ln
1 a
e
= 1
ma
ln
a
1
e
.
若
f(x)≤g(x)对任意
x∈R
恒成立,则
1
ma
ln
a
1
e
≤0(a>e)恒成立,
若存在实数
a,使得
1
ma
ln
a
1
e
≤0
成立,则
ma≥ln
a
1
∴g′(x)=2﹣ =
,∴当 x∈(0, )时,g′(x)<0,函数 g(x)单调递减,
当 x∈( ,+∞)时,g′(x)>0,函数 g(x)单调递增,∴当 x= 时,函数 f′(x)=g(x)有极小
值,故 D 正确,即 g(x)min=g( )=1+ln2﹣a,∵f′(x)=2x﹣a﹣lnx=0,有两个不同的解, ∴1+ln2﹣a<0,即 a>1+ln2,故 A 正确, 不妨取 a=2,则 g(x)=2x﹣lnx﹣2, 则 g(1)=0,g( )= +ln4<0,g( )=﹣ +ln100>0,