第二章--同余---第七节--简化剩余系(2)
第二章II 同余方程

例2 设 m=30, a=7, 有 (a, m)=(7, 30)=1, (30)=8。
模 30 的最小非负简化剩余系
1 , 7 , 11 , 13 , 17 , 19 , 23 , 29 有
两端作 k( (n) / (p)) 次幂得, ak (n)≡1 (mod p)
两端乘以 a 得到 a1+k (n)≡a (mod p)
即
a ed≡a (mod p)
即
a ed≡a (mod p)
同理,
aed≡a (mod q)
因为 p 和 q 是不同的素数,根据例2.1.16,
由 因此,
a (m)-1≡0(mod m)
即
a (m)≡1 (mod m)
例2.4.3 设 m=11, a=2, 有 (2, 11)=1, (11)=10,
故 210≡1 (mod 11)
例2.4.4 设 m=23, (a, 23)=1, (23)=22,
a22≡1 (mod 23)
定理 2.3.5 设 m 是一个正整数,a 是满足(a,m)=1 的整数,则存在整数a, 1≤a<m 使得 aa≡1 (mod m) 称 a 是 (mod m)下a 的逆元。(记a 为a-1读作a逆)
≡ 7×19×17×1×29×13×11×23 (mod 30) 有 78×1×7×11×13×17×19×23×29
≡1×7×11×13×17×19×23×29 (mod 30) 即 1×7×11×13×17×19×23×29 ×(78-1)≡0 (mod 30) 又,(1×7×11×13×17×19×23×29, 30)=1, 有 78-1≡ 0 (mod 30)。故 78≡1 (mod 30) , 即7 (30) ≡1 (mod 30) 。
第二章 同余

3
定理 2 模m同余是等价关系, 即 (1) 对任一整数a , a ≡ a (mod m ); (3)若a ≡ b (mod m ), b ≡ c (mod m ), 则a ≡ c (mod m ) (传递性 ) (自反性 ) (2)若a ≡ b (mod m ), 则b ≡ a (mod m ); (对称性 )
即:欧拉( Euler ) 数ϕ ( x )是定义在正整数上的 函 函数,ϕ ( m )的值等于0,1, 2,L , m − 1中与m互素的数的 个 数.
12
二、简化剩余系
定义 2 如果模m的剩余类里面的数与m互素,就 .(又 把这个类叫做一个与模m互素的剩余类.(又称简化 剩余类)
定义3 设m是一个正整数,在模m的所有不同简 化剩余类中,从每个类任取一个数组成的整数的集合, 叫做模m的一个简化剩余系.
证 因(e , ϕ ( n)) = 1, 则存在整数d ,1 ≤ d < ϕ ( n), 使得
ed ≡ 1 (mod ϕ ( n))
由2.3定理4 2.3定理4 定理
19
于是存在正整数k , 使得 ed = 1 + kϕ ( n). 因(a , pq ) = 1, 所以(a , p ) = 1,由Euler 定理
定 理13 设 m 是 正 整 数 , a ≡ b (mod m ), 则 ( a , m ) = ( b , m ). 因 而 若 d 能 整 除 m 及 a, b二 者 之 一, 则 d 必 能 整 除 a, b 中的另一个.
7
证明同余式的一般方法(基本的方法):
初等数论2.

我喜欢数学
性质(6)
性质(7)
若a =a1d, b =b1d, (m, d) =1, a ≡b (mod m),则 a1 ≡ b1 (mod m) .
性质(8) 若a ≡b (mod m),k 为正整数 , 则 ka ≡ kb (mod km) .
a b m (mod ). d为a,b及m的任一正公约数,则 d d d
2019年4月13日11时56分
性质(5) 若a ≡b (mod m),c ≡d (mod m) , 则 ac ≡ bd (mod m) .
同余式可以相乘。
推论
若a ≡b (mod m), 则 a k ≡ b k (mod m), k 为任意整数.
同余式的数乘。
推广
E
2019年4月13日11时56分
2019年4月13日11时56分
2、同余的性质:
(1) 反身性: a ≡ a (mod m). (2) 对称性:若 a ≡ b (mod m), 则 b ≡ a (mod m). (3) 传递性:若 a ≡ b (mod m), b ≡ c (mod m), 则 a ≡ c (mod m). (4) 若a ≡b (mod m),c ≡d (mod m) , 则 a + c ≡ b + d (mod m) , a-c ≡ b-d (mod m). 同余式可以相加减。
例7 用弃九法验算 28947×34578 =1001865676 是否正确. 解 28947≡3 (mod 9), 34578≡0 (mod 9) 应有28947×34578 ≡0 (mod 9), 而 1001865676 ≡0 (mod 9), 所以计算必有错误. 弃九法只是运算结果正确的必要条件,而非充 分条件 ! 因此只能判误.
初等数论第二章同余

和
N = cin_Yan_2…①仇=a2ci[a()-10°+a5a4a3-103H。
注:一般地,在考虑使N = an_{an_2-被加除的余数时,首先 是求岀正整数匕使得
10*三 一1或1(modm),
再将N=ci叶\5_2…写成
x + y+ 1 = 9或18,
3-y + x = 0或llo
这样得到四个方程组:
j\ + y + l = a
\3- y+x = b
其中。取值9或18, b取值0或11。在0<x,y<9的条件下解这四个 方程组,得到x=8, y = 0, z = 6o
习题一
1.证明定理1和定理2。
2.证明定理4。
3.证明定理5中的结论(i )—(iv)o
(v)由
ac=be(mod m)
得到m |c(a-b),再由(c,加)=1和鉛一章翕三节定理4得到m \a- b,即
a = b(mod m)o
证毕。
例1设N = anall_[- --aQ是整数N的十进制表示,即
N=ani0,?+an-ilO,/_1+ …+ailO+ao ,
则
(i )3|Nq3|£⑷;
x = y(modm),⑷三切(modm),0 < / <n,
则பைடு நூலகம்
工4兀’三工(mod力7)。⑵
i=0i=0
证明留作习题。
定理5下面的结论成立:
(i)a = b(mod m),d \ m, d> 0 a = b(modd);
第二章--同余---第七节--简化剩余系(2)

初 等 数 论 (16)(第二章 同余 第七节 简化剩余系(2))一、复习二、例题例2 什么样的正整数满足ϕ (2x ) = ϕ (3x )解 设x =2a 3b y ,其中ab 为非负整数,y |6/。
若b > 0,(a 、b 大于或等于0)则ϕ (2x ) =ϕ (2a +1) ϕ (3b ) ϕ (y ) =2a ×3b -1×(3-1)ϕ (y )ϕ (3x ) =ϕ (2a ) ϕ (3b +1) ϕ (y ) =2a -1×3b ×(3-1)ϕ (y )这时ϕ (2x )和ϕ (3x )不会相等。
所以在ϕ (2x ) =ϕ (3x )时,b = 0,x =2a y 。
这时,ϕ (2x ) =2a ×ϕ (y ),ϕ (3x ) =2×ϕ (2a )×ϕ (y )由ϕ (2x ) = ϕ (3x )得ϕ (2a ) =2a -1, (a > 0)故 x =2a y ,a 为正整数,y |6/。
例如 x = 215×35,则ϕ (2×215×35) =215×ϕ (35)ϕ (3×215×35) =(3 - 1)×214×ϕ (35)例3 证明:n n 41)(=ϕ不可能成立。
证明 若n n 41)(=ϕ,则n 4。
设 k p p p n αααα 21212=,其中p i 为奇质数,a ≥ 2,则k k p p p n αααα 21212241-=)1()1(2)(111211121--=----k k p p p p p n k ααααϕ,于是 )1()1)(1(22121---=k k p p p p p p上式右边为偶数,左边为奇数,矛盾。
故不存在n ,使得n n 41)(=ϕ。
例4 设m 与n 是正整数,证明:ϕ (mn )ϕ ((m ,n )) = (m ,n )ϕ (m )ϕ (n )。
信息安全数学基础第2章 同余-精选文档-PPT文档资料

《信息安全数学基础》 第2章
简化剩余系-例题
•
5×1=5
3×1=3
《信息安全数学基础》 第2章
简化剩余系-性质
•
《信息安全数学基础》 第2章
简化剩余系-例题
•
《信息安全数学基础》 第2章
简化剩余系-性质
•
《信息安全数学基础》 第2章
•
《信息安全数学基础》 第2章
简化剩余系-例题
•
《信息安全数学基础》 第2章
同余的性质
•
《信息安全数学基础》 第2章
2.2完全剩余系
•
《信息安全数学基础》 第2章
剩余类
•
《信息安全数学基础》 第2章
•
《信息安全数学基础》 第2章
剩余类
•
《信息安全数学基础》 第2章
剩余类
•
《信息安全数学基础》 第2章
完全剩余系
•
《信息安全数学基础》 第2章
完全剩余系
•
《信息安全数学基础》 第2章
第2章 同余
2.1同余的基本性质
•
《信息安全数学基础》 第2章
同余
•
《信息安全数学基础》 第2章
同余的性质
•
《信息安全数学基础》 第2章
同余的性质
•
《信息安全数学基础》 第2章
同余的性质
•
《信息安全数学基础》 第2章
•
《信息安全数学基础》 第2章
推论
•
《信息安全数学基础》 第2章
同余的性质
•
《信息安全数学基础》 第2章
•
《信息安全数学基础》 第2章
完全剩余系-举例
•
《信息安全数学基础》 第2章
第2章 同余

2.1同余的概念及一次同余式
证明 1 自反性,显然m|a-a ,故a≡a(mod m); 2 对称性 如果a≡b(mod m); 即m|a-b ,从而 m|b-a 因此, b≡a(mod m); 3 传递性 如果a≡b(mod m); b≡c(mod m); 则m|a-b,m|b-c 从而,m|(a-b+b-c), 也就是 m|a-c ,及a≡c(mod m);
2.2剩余类及完全剩余系
定理3 若a0,a1,…,am-1是模m的一完全剩余系,a和c是任意 二整数且(a,m)=1, 则aa0+c, aa1+c, …,aam-1+c也 是模m的一完全剩余系. 证明:由定理2,只需证明当a0,a1,…,am-1是模m的一 完全剩余系时, aa0+c, aa1+c, …,aam-1+c两两模m 不同余就可以了 采用反正法,假设,存在ai和ak(i≠k),使得 aai+c≡ aak+c(modm) ⇒m|a(ai-ak) , 又(a,m)=1 从而 m|ai-ak ,即ai和ak同余,矛盾
背包公钥密码(续)
加密过程 取正整数u,m,使得a1+a2 +…+an-1 +an <m, (u,m)=1,u,m作为密钥,只有接收方知道; bi ≡ uai (mod m). b1 , b2 … bn为公钥 ( m1, m2, L, mn )为明文 s=a1x1 + a2x2 + L + anxn
2.2剩余类及完全剩余系
定义1 给定正整数m,对于任意整数a,称集 合 Ca = { c;a ≡ c (mod m),c∈Z }是模m的一 个剩余类。 一个剩余类中的任一数叫做该类 的剩余或者代表元。若r0,r1,…, rm-1是m个整 数,并且其中任何两个数都不在剩余类里,则 r0,r1,…, rm-1 称为模m的一个完全剩余 从定义可以看出,模m的剩余类有m个 C0, C1,…, Cm-1,
完系、简系、剩余类(讲稿)

完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初 等 数 论 (16)(第二章 同余 第七节 简化剩余系(2))一、复习二、例题例2 什么样的正整数满足ϕ (2x ) = ϕ (3x )解 设x =2a 3b y ,其中ab 为非负整数,y |6/。
若b > 0,(a 、b 大于或等于0)则ϕ (2x ) =ϕ (2a +1) ϕ (3b ) ϕ (y ) =2a ×3b -1×(3-1)ϕ (y )ϕ (3x ) =ϕ (2a ) ϕ (3b +1) ϕ (y ) =2a -1×3b ×(3-1)ϕ (y )这时ϕ (2x )和ϕ (3x )不会相等。
所以在ϕ (2x ) =ϕ (3x )时,b = 0,x =2a y 。
这时,ϕ (2x ) =2a ×ϕ (y ),ϕ (3x ) =2×ϕ (2a )×ϕ (y )由ϕ (2x ) = ϕ (3x )得ϕ (2a ) =2a -1, (a > 0)故 x =2a y ,a 为正整数,y |6/。
例如 x = 215×35,则ϕ (2×215×35) =215×ϕ (35)ϕ (3×215×35) =(3 - 1)×214×ϕ (35)例3 证明:n n 41)(=ϕ不可能成立。
证明 若n n 41)(=ϕ,则n 4。
设 k p p p n αααα 21212=,其中p i 为奇质数,a ≥ 2,则k k p p p n αααα 21212241-=)1()1(2)(111211121--=----k k p p p p p n k ααααϕ,于是 )1()1)(1(22121---=k k p p p p p p上式右边为偶数,左边为奇数,矛盾。
故不存在n ,使得n n 41)(=ϕ。
例4 设m 与n 是正整数,证明:ϕ (mn )ϕ ((m ,n )) = (m ,n )ϕ (m )ϕ (n )。
证明 设,,111111n p p n m p p m k k k k ββαα ==1)(1111||=//n m n p m p i i ,,,,则 )()(11111n m p p mn k k kβαβαϕϕ++= ,∏=++-=k i ik n m p p p k k 1111)()(11)(11ϕϕβαβα )())((},{},{111k k n m i k n m i p p n m βαβαϕϕ =,,,∏=-=k i ip n m 1)(11)( 由此得)())(()(n m n m mn ,,=ϕϕ)()11(1111m p p p k i ik k ϕαα∏=-⨯ )()11(1111n p p p k i ik k ϕββ∏=-⨯ )()()(n m n m ϕϕ,=例5 设n ∈N ,证明:(ⅰ) 若n 是奇数,则ϕ(4n ) = 2ϕ(n );证明 我们有(4,n )=1ϕ (4n ) = ϕ (22n ) = ϕ (22)ϕ (n ) = 2ϕ (n );例如 n = 5,则有ϕ (4n ) =ϕ (22)ϕ (5) =2×4 = 8,模20的简化剩余系中有8个元素1,3,7,9,11,13,17,19 (ⅱ) n n 21)(=ϕ的充要条件是n = 2k ,k ∈N ; 证明 若n = 2k ,则n k k k 2122112)2(1)(==-=-ϕ, 若n n 21)(=ϕ,设n = 2k n 1,2|/n 1,则由 )()2()2()(2111n n n n k k ϕϕϕϕ=== 1111111)(21)(221)(2n n n n n n n k k ϕϕϕ===- 推出ϕ (n 1) = n 1,所以n 1 = 1,即n = 2k ;(ⅲ) n n 31)(=ϕ的充要条件是 n = 2k 3l ,k ,l ∈N ;证明 若n = 2k 3l ,则)3()2()(l k n ϕϕϕ=n l k 3131132112)()(=--=。
若n n 31)(=ϕ, 设n = 2k 3l n 1,6|/n 1,则由)32()(311n n n l k ϕϕ== )()3()2(1n l k ϕϕϕ=)()311(3)211(21n l k ϕ-⨯-=111)(3231n n n l k ϕ=11)(31n n n ϕ= 推出ϕ (n 1) = n 1,所以n 1 = 1,即n = 2k3l。
(若ϕ(n1) =1,则n1 = 1或n1 = 2。
)初等数论(17)(第二章同余第八节Euler定理(1))本节中所介绍的Euler定理,在理论和应用两个方面都是很重要的。
定理1 (Euler定理)设m是正整数,(a,m)= 1,则aϕ(m)≡ 1 (mod m)。
证明由第三节定理2,设{x1,x2, ,xϕ(m)}是模m的一个简化剩余系,则{ax1,ax2, ,axϕ(m)}也是模m的简化剩余系,因此ax1ax2 axϕ(m)≡x1x2 xϕ(m) (mod m),aϕ(m)x1x2 xϕ(m)≡x1x2 xϕ(m)(mod m)(1)由于(x1x2 xϕ(m),m)= 1,所以m∣(aϕ(m)-1)得出aϕ(m)≡ 1 (mod m)。
例如(5,12)= 1,ϕ(12)= 4,54 = 252 ≡ 12 = 1 (mod12)。
例如,(7,12)= 1,ϕ(12)= 4,74 ≡(-5)4 =(5)4 ≡ 252 ≡ 12 = 1 (mod12)。
再如(5,17)= 1,ϕ(17)= 16,516 =258 ≡ 88 ≡ 644 ≡ 134 ≡(- 4)4 ≡(16)2≡(-1)2 ≡1 (mod 17)。
由Euler定理我们可以得到对于模m的一个简化剩余系中的任何一个整数x,都有xϕ(m)≡ 1 (mod m)例如m = 16,m的简化剩余系为{1,3,5,7,9,11,13,15},ϕ(m)= 818 ≡ 1 (mod16)38 ≡ 94 ≡ 812 ≡1 (mod16)58 ≡ 254 ≡ 94 ≡ 1 (mod16)78 ≡ 49 4 ≡1 (mod16)定理2 (Fermat)设p是质数,则对于任意的整数a,有a p≡a (mod p)。
证明若(a,p)= 1,则由定理1得到a p- 1≡ 1 (mod p)⇒a p≡a(mod p)。
若(a,p)> 1,则p∣a,所以a p≡ 0 ≡a(mod p)。
例如取p = 3,a = 6,则,63 ≡ 6 (mod3)取p = 3,a = 5,则,53 ≡ 23≡ 8 ≡ 5 (mod3)取p = 7,a = 5,则57 ≡(-2)7≡-2×82≡-2×1 ≡ 5 (mod 7)公元前50年左右,我国已经知道p∣2p - 2。
这是费马小定理的特殊情形。
例如5∣25-2=3011∣211 - 2=204617∣217- 2 =131070费马小定理的逆定理不成立,例如2341 ≡ 2 (mod341)但341不是质数,我们称这样的合数为伪质数。
例1 证明341是伪质数。
证明只要证明341是合数,且2341 ≡ 2 (mod341)就可以了。
341=11×31。
又由费马小定理知211 ≡ 2 (mod11)231 ≡ 2 (mod31)所以有2341 =(211)31 ≡ 231 = 29×(211)2≡ 29×22 = 211 ≡ 2 (mod11)及2341 =(231)11 ≡ 211 = 2×1024 ≡ 2×1≡ 2 (mod 31)即11∣2341 - 2,31∣2341 - 2,又 (11,31) =1,所以 341∣2341 - 2也就是 2341 ≡ 2 (mod 341)这就证明了341是伪质数。
341是最小的伪质数,在1000以下还有另外两个伪质数:561 =3×11×17,645 =3×5×43N = 561时,对每一个与561互质的整数a ,a p - 1 ≡ 1 (mod p )都成立。
例如 取a = 7则 7560 ≡ 1560 ≡ 1 (mod 3)7560 ≡ 49280 ≡ 5280 ≡62570 ≡62570 ≡270 ≡3214 ≡(-1)14 ≡1 (mod 11)7560 ≡ 49280 ≡(-2)280 ≡ 2280 ≡ 1670 ≡(-1)70 ≡ 3214 ≡ 1 (mod17)即 3∣7560 - 1,11∣7560 - 1,17∣7560 - 1,又 (3,11,17) =1,所以 3×11×17∣7560 - 1即 7560 ≡ 1 (mod 561)。
例2 证明有无穷多个伪质数。
证明 若a n 是一个伪质数,则22-n a n a ,令121-=+n a n a ,以下证明 1、a n +1是合数。
2、2211-++n a n a则由第一章第三节例11(教材22页)证明:当2n - 1为质数时,n 一定是质数。
知a n +1是合数。
因为若a n +1不是质数,121-=+n a n a 为合数,则a n 是质数,与a n 是伪质数相矛盾。
又因为22-n a n a ,所以N k ka a n a a n n n ∈=-=--=-+,2211211,从而Q n n n n a k a ka a )12(1)2(121211-=-=-=--+被12-n a 整除,即)(012111+-≡-+n a a od m n12111--++n a n a 22)12(21111-=-⨯++-+n n a a n a于是a n +1是伪质数。
例如341是伪质数,a n +1 = 2341 - 1是伪质数,先证明2341 - 1可以被2047整除,即2341 ≡ 1 (mod 2047)。
11)2048()2(231313111341=≡== (mod 2047),2341 - 1是合数。
以下证明221212341341---34122112341341⨯=-=--k1)2(12121234134122112341341-=-=-=-⨯---k k Q )12(341-=即2341 - 1可以整除12112341---,从而2341 - 1可以整除22)12(212112341341-=-⨯---。
例5 求710000与79999的末三位数字。
解 求一个数的末三位数字,就是求这个数除以1000的余数。