计算机科学与技术专业外文翻译--数据库
计算机专业外文翻译+原文-数据库管理系统介绍知识讲解

计算机专业外文翻译+原文-数据库管理系统介绍外文资料Database Management SystemsA database (sometimes spelled data base) is also called an electronic database , referring to any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval , modification, and deletion of data in conjunction with various data-processing operations .Databases can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage , and each field typically contains information pertaining to one aspect or attribute of the entity described by the database . Using keywords and various sorting commands, users can rapidly search , rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregate of data.Complex data relationships and linkages may be found in all but the simplest databases .The system software package that handles the difficult tasks associated with creating ,accessing, and maintaining database records is called a database management system(DBMS).The programs in a DBMS package establish an interface between the database itself and the users of the database.. (These users may be applications programmers, managers and others with information needs, and various OS programs.)A DBMS can organize, process, and present selected data elements form the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or poorly defined ,but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers.A database management system (DBMS) is composed of three major parts:(1)a storage subsystem that stores and retrieves data in files;(2) a modeling and manipulation subsystem that provides the means with which to organize the data and to add , delete, maintain, and update the data;(3)and an interface between the DBMS and its users. Severalmajor trends are emerging that enhance the value and usefulness of database management systems;Managers: who require more up-to-data information to make effective decisionCustomers: who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.Users: who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.Organizations : that discover information has a strategic value; they utilize theirdatabase systems to gain an edge over their competitors.The Database ModelA data model describes a way to structure and manipulate the data in a database. The structural part of the model specifies how data should be represented(such as tree, tables, and so on ).The manipulative part of the model specifies the operation with which to add, delete, display, maintain, print, search, select, sort and update the data.Hierarchical ModelThe first database management systems used a hierarchical model-that is-they arranged records into a tree structure. Some records are root records and all others have unique parent records. The structure of the tree is designed to reflect the order in which the data will be used that is ,the record at the root of a tree will be accessed first, then records one level below the root ,and so on.The hierarchical model was developed because hierarchical relationships are commonly found in business applications. As you have known, an organization char often describes a hierarchical relationship: top management is at the highest level, middle management at lower levels, and operational employees at the lowest levels. Note that within a strict hierarchy, each level of management may have many employees or levels of employees beneath it, but each employee has only one manager. Hierarchical data are characterized by this one-to-many relationship among data.In the hierarchical approach, each relationship must be explicitly defined when the database is created. Each record in a hierarchical database can contain only one key field and only one relationship is allowed between any two fields. This can create a problem because data do not always conform to such a strict hierarchy.Relational ModelA major breakthrough in database research occurred in 1970 when E. F. Codd proposed a fundamentally different approach to database management called relational model ,which uses a table as its data structure.The relational database is the most widely used database structure. Data is organized into related tables. Each table is made up of rows called and columns called fields. Each record contains fields of data about some specific item. For example, in a table containing information on employees, a record would contain fields of data such as a person’s last name ,first name ,and street address.Structured query language(SQL)is a query language for manipulating data in a relational database .It is nonprocedural or declarative, in which the user need only specify an English-like description that specifies the operation and the described record or combination of records. A query optimizer translates the description into a procedure to perform the database manipulation.Network ModelThe network model creates relationships among data through a linked-list structure in which subordinate records can be linked to more than one parent record. This approach combines records with links, which are called pointers. The pointers are addresses that indicate the location of a record. With the network approach, a subordinate record can be linked to a key record and at the same time itself be a key record linked to other sets of subordinate records. The network mode historically has had a performance advantage over other database models. Today , such performance characteristics are only important in high-volume ,high-speed transaction processing such as automatic teller machine networks or airline reservation system.Both hierarchical and network databases are application specific. If a new application is developed ,maintaining the consistency of databases in different applications can be very difficult. For example, suppose a new pension application is developed .The data are the same, but a new database must be created.Object ModelThe newest approach to database management uses an object model , in which records are represented by entities called objects that can both store data and provide methods or procedures to perform specific tasks.The query language used for the object model is the same object-oriented programming language used to develop the database application .This can create problems because there is no simple , uniform query language such as SQL . The object model isrelatively new, and only a few examples of object-oriented database exist. It has attracted attention because developers who choose an object-oriented programming language want a database based on an object-oriented model.Distributed DatabaseSimilarly , a distributed database is one in which different parts of the database reside on physically separated computers . One goal of distributed databases is the access of information without regard to where the data might be stored. Keeping in mind that once the users and their data are separated , the communication and networking concepts come into play .Distributed databases require software that resides partially in the larger computer. This software bridges the gap between personal and large computers and resolves the problems of incompatible data formats. Ideally, it would make the mainframe databases appear to be large libraries of information, with most of the processing accomplished on the personal computer.A drawback to some distributed systems is that they are often based on what is called a mainframe-entire model , in which the larger host computer is seen as the master and the terminal or personal computer is seen as a slave. There are some advantages to this approach . With databases under centralized control , many of the problems of data integrity that we mentioned earlier are solved . But today’s personal computers, departmental computers, and distributed processing require computers and their applications to communicate with each other on a more equal or peer-to-peer basis. In a database, the client/server model provides the framework for distributing databases.One way to take advantage of many connected computers running database applications is to distribute the application into cooperating parts that are independent of one anther. A client is an end user or computer program that requests resources across a network. A server is a computer running software that fulfills those requests across a network . When the resources are data in a database ,the client/server model provides the framework for distributing database.A file serve is software that provides access to files across a network. A dedicated file server is a single computer dedicated to being a file server. This is useful ,for example ,if the files are large and require fast access .In such cases, a minicomputer or mainframe would be used as a file server. A distributed file server spreads the files around on individual computers instead of placing them on one dedicated computer.Advantages of the latter server include the ability to store and retrieve files on other computers and the elimination of duplicate files on each computer. A major disadvantage , however, is that individual read/write requests are being moved across the network and problems can arise when updating files. Suppose a user requests a record from a file and changes it while another user requests the same record and changes it too. The solution to this problems called record locking, which means that the first request makes others requests wait until the first request is satisfied . Other users may be able to read the record, but they will not be able to change it .A database server is software that services requests to a database across a network. For example, suppose a user types in a query for data on his or her personal computer . If the application is designed with the client/server model in mind ,the query language part on the personal computer simple sends the query across the network to the database server and requests to be notified when the data are found.Examples of distributed database systems can be found in the engineering world. Sun’s Network Filing System(NFS),for example, is used in computer-aided engineering applications to distribute data among the hard disks in a network of Sun workstation.Distributing databases is an evolutionary step because it is logical that data should exist at the location where they are being used . Departmental computers within a large corporation ,for example, should have data reside locally , yet those data should be accessible by authorized corporate management when they want to consolidate departmental data . DBMS software will protect the security and integrity of the database , and the distributed database will appear to its users as no different from the non-distributed database .In this information age, the data server has become the heart of a company. This one piece of software controls the rhythm of most organizations and is used to pump information lifeblood through the arteries of the network. Because of the critical nature of this application, the data server is also the one of the most popular targets for hackers. If a hacker owns this application, he can cause the company's "heart" to suffer a fatal arrest.Ironically, although most users are now aware of hackers, they still do not realize how susceptible their database servers are to hack attacks. Thus, this article presents a description of the primary methods of attacking database servers (also known as SQL servers) and shows you how to protect yourself from these attacks.You should note this information is not new. Many technical white papers go into great detail about how to perform SQL attacks, and numerous vulnerabilities have beenposted to security lists that describe exactly how certain database applications can be exploited. This article was written for the curious non-SQL experts who do not care to know the details, and as a review to those who do use SQL regularly.What Is a SQL Server?A database application is a program that provides clients with access to data. There are many variations of this type of application, ranging from the expensive enterprise-level Microsoft SQL Server to the free and open source mySQL. Regardless of the flavor, most database server applications have several things in common.First, database applications use the same general programming language known as SQL, or Structured Query Language. This language, also known as a fourth-level language due to its simplistic syntax, is at the core of how a client communicates its requests to the server. Using SQL in its simplest form, a programmer can select, add, update, and delete information in a database. However, SQL can also be used to create and design entire databases, perform various functions on the returned information, and even execute other programs.To illustrate how SQL can be used, the following is an example of a simple standard SQL query and a more powerful SQL query:Simple: "Select * from dbFurniture.tblChair"This returns all information in the table tblChair from the database dbFurniture.Complex: "EXEC master..xp_cmdshell 'dir c:\'"This short SQL command returns to the client the list of files and folders under the c:\ directory of the SQL server. Note that this example uses an extended stored procedure that is exclusive to MS SQL Server.The second function that database server applications share is that they all require some form of authenticated connection between client and host. Although the SQL language is fairly easy to use, at least in its basic form, any client that wants to perform queries must first provide some form of credentials that will authorize the client; the client also must define the format of the request and response.This connection is defined by several attributes, depending on the relative location of the client and what operating systems are in use. We could spend a whole article discussing various technologies such as DSN connections, DSN-less connections, RDO, ADO, and more, but these subjects are outside the scope of this article. If you want to learn more about them, a little Google'ing will provide you with more than enough information.However, the following is a list of the more common items included in a connection request.Database sourceRequest typeDatabaseUser IDPasswordBefore any connection can be made, the client must define what type of database server it is connecting to. This is handled by a software component that provides the client with the instructions needed to create the request in the correct format. In addition to the type of database, the request type can be used to further define how the client's request will be handled by the server. Next comes the database name and finally the authentication information.All the connection information is important, but by far the weakest link is the authentication information—or lack thereof. In a properly managed server, each database has its own users with specifically designated permissions that control what type of activity they can perform. For example, a user account would be set up as read only for applications that need to only access information. Another account should be used for inserts or updates, and maybe even a third account would be used for deletes. This type of account control ensures that any compromised account is limited in functionality. Unfortunately, many database programs are set up with null or easy passwords, which leads to successful hack attacks.译文数据库管理系统介绍数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。
计算机专业中英文翻译(外文翻译、文献翻译)

英文参考文献及翻译Linux - Operating system of cybertimesThough for a lot of people , regard Linux as the main operating system to make up huge work station group, finish special effects of " Titanic " make , already can be regarded as and show talent fully. But for Linux, this only numerous news one of. Recently, the manufacturers concerned have announced that support the news of Linux to increase day by day, users' enthusiasm to Linux runs high unprecedentedly too. Then, Linux only have operating system not free more than on earth on 7 year this piece what glamour, get the favors of such numerous important software and hardware manufacturers as the masses of users and Orac le , Informix , HP , Sybase , Corel , Intel , Netscape , Dell ,etc. , OK?1.The background of Linux and characteristicLinux is a kind of " free (Free ) software ": What is called free,mean users can obtain the procedure and source code freely , and can use them freely , including revise or copy etc.. It is a result of cybertimes, numerous technical staff finish its research and development together through Inte rnet, countless user is it test and except fault , can add user expansion function that oneself make conveniently to participate in. As the most outstanding one in free software, Linux has characteristic of the following:(1)Totally follow POSLX standard, expand the network operatingsystem of supporting all AT&T and BSD Unix characteristic. Because of inheritting Unix outstanding design philosophy , and there are clean , stalwart , high-efficient and steady kernels, their all key codes are finished by Li nus Torvalds and other outstanding programmers, without any Unix code of AT&T or Berkeley, so Linu x is not Unix, but Linux and Unix are totally compatible.(2)Real many tasks, multi-user's system, the built-in networksupports, can be with such seamless links as NetWare , Windows NT , OS/2 , Unix ,etc.. Network in various kinds of Unix it tests to be fastest in comparing and assess efficiency. Support such many kinds of files systems as FAT16 , FAT32 , NTFS , Ex t2FS , ISO9600 ,etc. at the same time .(3) Can operate it in many kinds of hardwares platform , including such processors as Alpha , SunSparc , PowerPC , MIPS ,etc., to various kinds of new-type peripheral hardwares, can from distribute on global numerous programmer there getting support rapidly too.(4) To that the hardware requires lower, can obtain very good performance on more low-grade machine , what deserves particular mention is Linux outstanding stability , permitted " year " count often its running times.2.Main application of Linux At present,Now, the application of Linux mainly includes:(1) Internet/Intranet: This is one that Linux was used most at present, it can offer and include Web server , all such Inter net services as Ftp server , Gopher server , SMTP/POP3 mail server , Proxy/Cache server , DNS server ,etc.. Linux kernel supports IPalias , PPP and IPtunneling, these functions can be used for setting up fictitious host computer , fictitious service , VPN (fictitious special-purpose network ) ,etc.. Operating Apache Web server on Linux mainly, the occupation rate of market in 1998 is 49%, far exceeds the sum of such several big companies as Microsoft , Netscape ,etc..(2) Because Linux has outstanding networking ability , it can be usedin calculating distributedly large-scaly, for instance cartoon making , scientific caculation , database and file server ,etc..(3) As realization that is can under low platform fullness of Unix that operate , apply at all levels teaching and research work of universities and colleges extensively, if Mexico government announce middle and primary schools in the whole country dispose Linux and offer Internet service for student already.(4) Tabletop and handling official business appliedly. Application number of people of in this respect at present not so good as Windows of Microsoft far also, reason its lie in Lin ux quantity , desk-top of application software not so good as Windows application far not merely,because the characteristic of the freedom software makes it not almost have advertisement that support (though the function of Star Office is not second to MS Office at the same time, but there are actually few people knowing).3.Can Linux become a kind of major operating system?In the face of the pressure of coming from users that is strengthened day by day, more and more commercial companies transplant its application to Linux platform, comparatively important incident was as follows, in 1998 ①Compaq and HP determine to put forward user of requirement truss up Linux at their servers , IBM and Dell promise to offer customized Linux system to user too. ②Lotus announce, Notes the next edition include one special-purpose edition in Linux. ③Corel Company transplants its famous WordPerfect to on Linux, and free issue. Corel also plans to move the other figure pattern process products to Linux platform completely.④Main database producer: Sybase , Informix , Oracle , CA , IBM have already been transplanted one's own database products to on Linux, or has finished Beta edition, among them Oracle and Informix also offer technical support to their products.4.The gratifying one is, some farsighted domestic corporations have begun to try hard to change this kind of current situation already. Stone Co. not long ago is it invest a huge sum of money to claim , regard Linux as platform develop a Internet/Intranet solution, regard this as the core and launch Stone's system integration business , plan to set up nationwide Linux technical support organization at the same time , take the lead to promote the freedom software application and development in China. In addition domestic computer Company , person who win of China , devoted to Linux relevant software and hardware application of system popularize too. Is it to intensification that Linux know , will have more and more enterprises accede to the ranks that Linux will be used with domestic every enterprise to believe, more software will be planted in Linux platform. Meanwhile, the domestic university should regard Linux as the original version and upgrade already existing Unix content of courses , start with analysing the source code and revising the kernel and train a large number of senior Linux talents, improve our country's own operating system. Having only really grasped the operating system, the software industry of our country could be got rid of and aped sedulously at present, the passive state led by the nose byothers, create conditions for revitalizing the software industry of our country fundamentally.中文翻译Linux—网络时代的操作系统虽然对许多人来说,以Linux作为主要的操作系统组成庞大的工作站群,完成了《泰坦尼克号》的特技制作,已经算是出尽了风头。
计算机科学与技术 外文翻译 英文文献 中英对照

附件1:外文资料翻译译文大容量存储器由于计算机主存储器的易失性和容量的限制, 大多数的计算机都有附加的称为大容量存储系统的存储设备, 包括有磁盘、CD 和磁带。
相对于主存储器,大的容量储存系统的优点是易失性小,容量大,低成本, 并且在许多情况下, 为了归档的需要可以把储存介质从计算机上移开。
术语联机和脱机通常分别用于描述连接于和没有连接于计算机的设备。
联机意味着,设备或信息已经与计算机连接,计算机不需要人的干预,脱机意味着设备或信息与机器相连前需要人的干预,或许需要将这个设备接通电源,或许包含有该信息的介质需要插到某机械装置里。
大量储存器系统的主要缺点是他们典型地需要机械的运动因此需要较多的时间,因为主存储器的所有工作都由电子器件实现。
1. 磁盘今天,我们使用得最多的一种大量存储器是磁盘,在那里有薄的可以旋转的盘片,盘片上有磁介质以储存数据。
盘片的上面和(或)下面安装有读/写磁头,当盘片旋转时,每个磁头都遍历一圈,它被叫作磁道,围绕着磁盘的上下两个表面。
通过重新定位的读/写磁头,不同的同心圆磁道可以被访问。
通常,一个磁盘存储系统由若干个安装在同一根轴上的盘片组成,盘片之间有足够的距离,使得磁头可以在盘片之间滑动。
在一个磁盘中,所有的磁头是一起移动的。
因此,当磁头移动到新的位置时,新的一组磁道可以存取了。
每一组磁道称为一个柱面。
因为一个磁道能包含的信息可能比我们一次操作所需要得多,所以每个磁道划分成若干个弧区,称为扇区,记录在每个扇区上的信息是连续的二进制位串。
传统的磁盘上每个磁道分为同样数目的扇区,而每个扇区也包含同样数目的二进制位。
(所以,盘片中心的储存的二进制位的密度要比靠近盘片边缘的大)。
因此,一个磁盘存储器系统有许多个别的磁区, 每个扇区都可以作为独立的二进制位串存取,盘片表面上的磁道数目和每个磁道上的扇区数目对于不同的磁盘系统可能都不相同。
磁区大小一般是不超过几个KB; 512 个字节或1024 个字节。
Computer SCience English 翻译6_中文

第6章数据库第一部分阅读和翻译A部分分布式数据库介绍分布式数据库是受一个中央数据库管理系统控制的数据库,其中的控制存贮设备不全部受控于共同的CPU。
(1)它可以是位于同一个实际位置的多台计算机,也可以是被存放或者被分散在互联的计算机网络上。
数据的收集(在数据库中)可以横跨多个实际位置进行分布。
一个分布式数据库被分布入分开的不同部分。
一个分布式数据库的每个分开的片段可以被复制(即重复故障转移,像独立冗余磁盘阵列一样)。
除了分布式数据库复制和分散,还有许多其他分配数据库的设计技术。
例如自主式的,同步和异步分布式数据库技术。
这些技术的实施取决于事务和敏感性的数据的需要或者机密性要求,花费则是在数据保密、一贯性和正常花费上。
[1]基本的框架数据库用户访问分布式数据库:●本地应用—不要求其他站点的数据的应用。
●全球性应用—要求从其他站点的数据的应用。
要点采取分布式数据库的要求如下:●发布是透明的——用户一定能与系统互动,就像它是一个逻辑系统。
这适用于其他事之中通入系统性能和方法。
●交易是透明的——每种交易必须维护横跨多个数据库的正确性。
每个交易也划分成不同部分,各个部分保证整个数据库系统的运行。
分布式数据库的优点●反射式组织结构——数据库片段位于与他们相关的部分。
●本地独立性——可能控制与之相关的数据(因为他们较熟悉它)。
●被改进的好处——在一个数据库系统的一个错误只影响一个片段,而不是整个数据库。
●被改进的表现——数据极大的要求其附近的站点,并且数据库系统被并行化,数据库的装载可以在服务器之中平衡。
(2) (数据库中的一个模块装载在一个分布式数据库中不会影响数据库的其他模块)。
●经济——花费较少,用一台大规模计算机的力量创建小型计算机网络。
●模块化——系统可以从分布式数据库修改,增加和删除,不影响其他模块(系统)。
分布式数据库的缺点●复杂性——必须由DBAs完成额外劳动来保证系统分布的本质透明。
必须也完成额外劳动维护多个不同的系统,而不是一个大的。
计算机专业外文翻译--信息系统开发和数据库开发

外文原文Information System Development and Database DevelopmentIn many organizations, database development from the beginning of enterprise data modeling, data modeling enterprises determine the scope of the database and the general content. This step usually occurs in an organization's information system planning process, it aims to help organizations create an overall data description or explanation, and not the design of a specific database. A specific database for one or more information systems provide data and the corporate data model (which may involve a number of databases) described by the organization maintaining the scope of the data. Data modeling in the enterprise, you review of the current system, the need to support analysis of the nature of the business areas, the need for further description of the abstract data, and planning one or more database development project. Figure 1 shows Pine Valley furniture company's enterprise data model of a part.1.1 Information System ArchitectureAs shown in figure 1, senior data model is only general information system architecture (ISA) or a part of an organization's information system blueprint. In the information system planning, you can build an enterprise data model as a whole information system architecture part. According to Zachman (1987), Sowa and Zachman (1992) views of an information system architecture consists of the following six key components:Data (Figure 1 shows, but there are other methods that).Manipulation of data processing (of a data flow diagram can be used, with the object model methods, or other symbols that).Networks, which organizations and in organizations with its main transmission of data between business partners (it can connect through the network topology map and to demonstrate).People who deal with the implementation of data and information and is the source and receiver (in the process model for the data shows that the sender and the receiver).Implementation of the events and time points (they can use state transition diagram and other means.)The reasons for the incident and data processing rules (often in the form of text display, but there are also a number of charts for the planning tools such as decision tables).1.2 Information EngineeringInformation systems planners in accordance with the specific information system planning methods developed information system architecture. Information engineering is a popular and formal methods. Information engineering is a data-oriented creation and maintenance of the information system. Information engineering is because the data-oriented, so when you begin to understand how the database is defined by the logo and when information engineering a concise explanation is very helpful. Information Engineering follow top-down planning approach, in which specific information systems from a wide range of information needs in the understanding derived from (for example, we need about customers, products, suppliers, sales and processing of the data center), rather than merging many detailed information requested ( orders such as a screen or in accordance with the importation of geographical sales summary report). Top-down planning will enable developers to plan more comprehensive information system, consider system components provide an integrated approach to enhance the information system and the relationship between the business objectives of the understanding, deepen their understanding of information systems throughout the organization in understanding the impact.Information Engineering includes four steps: planning, analysis, design and implementation. The planning stage of project information generated information system architecture, includingenterprise data model.1.3 Information System PlanningInformation systems planning objective is to enable IT organizations and the business strategy closely integrated, such integration for the information systems and technology to make the most of the investment interest is very important. As the table as a description, information engineering approach the planning stage include three steps, we in the follow-up of three sections they discussed.1. Critical factors determining the planningPlanning is the key factor that organizational objectives, critical success factors and problem areas. These factors determine the purpose of the establishment of planning and environment planning and information systems linked to strategic business planning. Table 2 shows the Pine Valley furniture company's key planning a number of possible factors, these factors contribute to the information systems manager for the new information systems and databases clubs top priority to deal with the demand. For example, given the imprecise sales forecasts this problem areas, information systems managers in the organization may be stored in the database additional historical sales data, new market research data and new product test data.2. The planning organizations set targetsOrganizations planning targets defined scope of business, and business scope will limit the subsequent analysis and information systems may change places. Five key planning targets as follows:●organizational units in the various sectors.●organizations location of the place of business operations.●functions of the business support organizations handling mission of the relevant group. Unlike business organizations function modules, in fact a function can be assigned to various organizations modules (for example, product development function is the production and sale of the common responsibility of the Ministry).●types of entities managed by the organization on the people, places and things of the major types of data.●Information System data set processing software applications and support procedures.3. To set up a business modelA comprehensive business model including the functions of each enterprise functional decomposition model, the enterprise data model and the various planning matrix. Functional decomposition is the function of the organization for a more detailed decomposition process, the functional decomposition is to simplify the analysis of the issue, distracted and identify components and the use of the classical approach. Pine Valley furniture company in order to function in the functional decomposition example in figure 2 below. In dealing with business functions and support functions of the full set, multiple databases, is essential to a specific database therefore likely only to support functions (as shown in Figure 2) provide a subset of support. In order to reduce data redundancy and to make data more meaningful, has a complete, high-level business view is very helpful.The use of specific enterprise data model to describe the symbol. Apart from the graphical description of this type of entity, a complete enterprise data model should also include a description of each entity type description of business operations and a summary of that business rules. Business rules determine the validity of the data.An enterprise data model includes not only the types of entities, including the link between thedata entities, as well as various other objects planning links. Showed that the linkage between planning targets a common form of matrix. Because of planning matrix need not be explicit modeling database can be clearly described business needs, planning matrix is an important function. Regular planning matrix derived from the operational rules, it will help social development activities that top priority will be sorting and development activities under the top-down view through an enterprise-wide approach for the development of these activities. There are many types of planning matrix is available, their commonalities are:●locations - features show business function in which the implementation of operational locations.●unit - functions which showed that business function or business unit responsible for implementation.●Information System - data entities to explain how each information system interact with each data entity (for example, whether or not each system in each entity have the data to create, retrieve, update and delete).●support functions - data in each functional entities in the data set for the acquisition, use, update and delete.●Information System - target indication for each information system to support business objectives.Figure 3 illustrate a possible functions - data entities matrix. Such a matrix can be used for a variety of purposes, including the following three objectives:1) identify gaps in the data entities to indicate the types of entities not use any function or functions which do not use any entity.2) found that the loss of each functional entities involved in the inspection staff through the matrix to identify any possible loss of the entity.3) The distinction between development activities if the priority to the top of a system development function for a high-priority (probably because it important organizational objectives related), then this area used by entities in the development of the database has a high priority. Hoffer, George and Valacich (2002) are the works of the matrix on how to use the planning and completion of the Information EngineeringThe planning system more complete description.2 database development processBased on information engineering information systems planning database is a source of development projects. These new database development projects is usually in order to meet the strategic needs of organizations, such as improving customer support, improve product and inventory management, or a more accurate sales forecast. However, many more database development project is the bottom-up approach emerging, such as information system user needs specific information to complete their work, thus beginning a project request, and as other information systems experts found that organizations need to improve data management and begin new projects. Bottom-up even in the circumstances, to set up an enterprise data model is also necessary to understand the existing database can provide the necessary data, otherwise, the new database, data entities and attributes can be added to the current data resources to the organization. Both the strategic needs or operational information needs of each database development projects normally concentrated in a database. Some projects only concentrated in the database definition, design and implementation of a database, as a follow-up to the basis of the development of information systems. However, in most cases, the database and associatedinformation processing function as a complete information systems development project was part of the development.2.1 System Development Life CycleGuide management information system development projects is the traditional process of system development life cycle (SDLC). System development life cycle is an organization of the database designers and programmers information system composed of the Panel of Experts detailed description, development, maintenance and replacement of the entire information system steps. This process is because Waterfall than for every step into the adjacent the next step, that is, the information system is a specification developed by a piece of land, every piece of the output is under an input. However shown in the figure, these steps are not purely linear, each of the steps overlap in time (and thus can manage parallel steps), but when the need to reconsider previous decisions, but also to roll back some steps ahead. (And therefore water can be put back in the waterfall!)Figure 4 on the system development life cycle and the purpose of each stage of the product can be delivered concise notes. The system development life cycle including each stage and database development-related activities, therefore, the question of database management systems throughout the entire development process. In Figure 5 we repeat of the system development life cycle stage of the seven, and outlines the common database at each stage of development activities. Please note that the systems development life cycle stages and database development steps一一对应exists between the relationship between the concept of modeling data in both systems development life cycle stages between.Enterprise ModelingDatabase development process from the enterprise modeling (system development life cycle stage of the project feasibility studies, and to choose a part), Organizations set the scope and general database content. Enterprise modeling in information systems planning and other activities, these activities determine which part of information systems need to change and strengthen the entire organization and outlines the scope of data. In this step, check the current database and information systems, development of the project as the main areas of the nature of the business, with a very general description of each term in the development of information systems when needed data. Each item only when it achieved the expected goals of organizations can be when the next step.Conceptual Data ModelingOne has already begun on the Information System project, the concept of data modeling phase of the information systems needs of all the data. It is divided into two stages. First, it began the project in the planning stage and the establishment of a plan similar to Figure 1. At the same time outlining the establishment of other documents to the existing database without considering the circumstances specific development projects in the scope of the required data. This category only includes high-level data (entities), and main contact. Then in the system development life-cycle analysis stage must have a management information system set the entire organization Details of the data model definition of all data attributes, listing all data types that all data inter-entity business linkages, defining description of the full data integrity rules. In the analysis phase, but also the concept of inspection data model (also called the concept behind the model) and the goal of information systems used to explain other aspects of the model of consistency categories, such as processing steps, rules and data processing time of timing. However, even if the concept is such detailed data model is only preliminary, because follow-up information system life cycle activities in the design of services, statements, display and inquiries may find that missing element ormistakes. Therefore, the concept of data often said that modeling is a top-down manner, its areas of operation from the general understanding of the driver, rather than the specific information processing activities by the driver.3. Logical Database DesignLogical database design from two perspectives database development. First, the concept of data model transform into relational database theory based on the criteria that means - between. Then, as the design of information systems, every computer procedures (including procedures for the input and output format), database support services, statements, and inquiries revealed that a detailed examination. In this so-called Bottom-up analysis, accurate verification of the need to maintain the database and the data in each affairs, statements and so on the needs of those in the nature of the data.For each separate statements, services, and so on the analysis must take into account a specific, limited but complete database view. When statements, services, and other analysis might be necessary to change the concept of data model. Especially in large-scale projects, the different analytical systems development staff and the team can work independently in different procedures or in a centralized, the details of their work until all the logic design stage may be displayed. In these circumstances, logic database design stage must be the original concept of data model and user view these independent or merged into a comprehensive design. In logic design information systems also identify additional information processing needs of these new demands at this time must be integrated into the logic of earlier identified in the database design.Logical database design is based on the final step for the formation of good data specifications and determine the rules, the combination, the data after consultation specifications or converted into basic atomic element. Most of today's database, these rules from the relational database theory and the process known as standardization. This step is the result of management of these data have not cited any database management system for a complete description of the database map. Logical database design completed, we began to identify in detail the logic of the computer program and maintenance, the report contents of the database for inquiries.4. Physical database design and definitionPhysical database design and definition phase decisions computer memory (usually disk) database in the organization, definition of According to the library management system for physical structure, the procedures outlined processing services, produce the desired management information and decision support statements. The objective of this stage is to design an effective and safe management of all data-processing database, the physical database design to closely integrate the information systems of other physical aspects of the design, including procedures, computer hardware, operating systems and data communications networks.5. Database ImplementationThe database prepared by the realization stage, testing and installation procedures for handling databases. Designers can use the standard programming language (such as COBOL, C or Visual Basic), the dedicated database processing languages (such as SQL), or the process of the non-exclusive language programming in order to produce a statement of the fixed format, the result will be displayed, and may also include charts. In achieving stage, but also the completion of all the database files, training users for information systems (database) user setup program. The final step is to use existing sources of information (documents legacy applications and databases and now needs new data) loading data. Loading data is often the first step in data from existing files and databases to an intermediate format (such as binary or text files) and then to turn intermediate loading data to a new database. Finally, running databases and related applicationsfor the actual user maintenance and retrieval of data. In operation, the regular backup database and the database when damaged or affected resume database.6. Database maintenanceDuring the database in the progressive development of database maintenance. In this step, in order to meet changing business conditions, in order to correct the erroneous database design, database applications or processing speed increase, delete or change the structure of the database. When a procedure or failure of the computer database affect or damage the database may also be reconstruction. This step usually is the longest in the database development process step, as it continued to databases and related applications throughout the life cycle, the development of each database can be seen as a brief database development process and data modeling concepts arise, logical and physical database design and database to achieve dealing with the changes.2.2 Information System developed by other meansSystem Development Life Cycle minor changes in law or its variant of the often used to guide information systems and database development. Information System is a life-cycle methodology, it is highly structured approach, which includes many checks and balances to ensure that every step of produce accurate results, and new or alternative information system and it must communications or data definitions consistent existing system needs consistency. System development life cycle because of the regular need to have a working system for a long time been criticized because only work in the system until the end of the whole process generated. More and more organizations now use rapid application development method, it is a includes analysis, design and implementation of steps to repeat the rapid iterative process until convergence to users the system so far. Rapid Application Development Act required the database has been in existence, and enhance system is mainly to the application of data retrieval application, but not to those who generate and modify database applications.The most widely used method of rapid application development is one of the prototype. The prototype system is a method of iterative development process, analysts and users through close co-operation, continuing to revise the system will eventually convert all the needs of a working system. Figure 6 shows prototype of the process. In this diagram we contains notes, briefly describes each stage of the prototype of the database development activities. Normally, when information systems problems were identified, tried only a rough concept of data modeling. In the development of the initial prototype, the design of the user wants to display and statements, and that any new database needs and define a term prototype database. This is usually a new database, copy the part of the existing system, but might also added some new content. When the need for new content, these elements are usually from external data sources, such as market research data, the general economic indicators or industry standards.When a prototype of a new version to repeat the achievement and maintenance of database activities. Usually only a minimum level of security and integrity control, because at this time the focus is as soon as possible to produce a prototype version can be used. But document management project also deferred to the final, only be used in the delivery of user training. Finally, once constructed an acceptable prototype, developers, and users will be the final decision of whether to prototype delivery and the use of the database. If the system (including database) efficiency is very low, then the system and database will be re-programming and re-organization in order to achieve the desired performance.Along with visual programming tools (such as Visual Basic, Java, Visual C + + and fourth generation language) increasingly popular use of visual programming tools can easily change the user interface with the system, the prototype is becoming the choice of system developmentmethodology. Customers using the prototype method statements and show changes to the content and layout is quite easy. In the process, the new database needs were identified, so it is the development of the use of the existing database should be amended. There is even the possibility of a need for a new database system prototype method, in such circumstances, when the system demand in the iterative process of development in the ever-changing needs access to sample data, the construction or reconstruction of the database prototype.3 database development of the three-tier architecture modelIn this article on the front of the database development process mentioned in the interpretation of a system development project on the establishment of the several different, but related database view or model:●conceptual model (in the analysis stage of the establishment).●external model or user view (in the analysis phase and the establishment of logical design phase).●physical model or internal model (in the physical design phase of the establishment). Figure 7 describes the database view that the relationship between the three, it is important to remember that they are the same organizations database view or model. In other words, each organization has a database of the physical model, a concept model and one or more users view. Therefore, the three-tier architecture model using the same data set observe the different ways definition database.Concept models on the full database structure, has nothing to do with the technical specifications. Conceptual model definition do not involve the entire database data stored in the computer how the secondary memory. Usually, the conceptual model by entities - links (E-R) map or object modeling symbols such a graphical format to describe, we have this type of concept model called the data model. In addition, the conceptual model specification as a metadata stored in the database or data dictionary.Physical models including conceptual model of how data stored in computer memory in the two specifications. Analysts and the database design is as important to the physical database (physical mode) definition, it provides information on the distribution and management of data storage and access of the physical memory space of two full database technology specifications.Database development and database technology database is among the three models divided into basis. Database development projects may have a role to only deal with these three views of a related work. For example, a beginner may be designed for one or more procedures external model, and an experienced developer will design the physical model or conceptual model. Database design issues at different levels are quite different.4 three-tier structure of the database positioning systemObviously, all the good things in the database are, and the "three"!When designing a database, you have to choose where to store data. This option in the physical database design stage. Database is divided into individual databases, the Working Group database, departmental databases, corporate databases and the Internet database. Individuals often by the end-user database design and development of their own, just by database experts to give training and advice to help, it only contains individual end-users interested in the data. Sometimes, personal database from the database or enterprise Working Group extracted from the database, such circumstances database prepared by some experts from the regular routine to create local database. Sector Working Group database and the database is often the end-user, business experts and the central database system experts development. The collaborative work of these officers is necessary because in the design of the database to be shared by a large number of issues weigh:processing speed, ease of use, data definition differences and other similar problems. Due to corporate databases and the Internet database broad impact, large-scale, it is normally concentrated in the database development team has received professional training to develop a database of experts.1. Customers layerA desktop or notebook also known as that layer, which specialized management user interface and system localization data in this layer can be implemented on the Web scripting tasks.2. Server / Web serverHTTP protocol handling, scripting tasks, the implementation of computing and provide data access, the layer known as processing services layer.3. Enterprise Server (Minicomputer or mainframe) layerThe implementation of complex computing and inter-organizational management from multiple data sources of data integration, also known as data services layer.In an organization, hierarchical database and information system architecture for distributed computing and the client / server architecture of the concept of correlation. Client / server architecture based on a LAN environment, including servers (referred to as database server or database engine) database software implementation from the client workstation database orders, each customer applications focus on their user interface functions. In fact, the whole concept of the database (as well as the application of these databases to handle routine) as a distributed database or the separate but related physical database distribution in the local PC workstation, server intermediate (working group or sector) and one center server (departments or enterprises ). Simply said that the use of client / server architecture for:●it can handle multiple processors on the same application at the same time, improve application response time and data processing speed.●It can use each computer platform of the best data processing (such as PC Minicom Advanced user interface with the mainframe and computing speed).●can mix various client technology (Intel or Motorola processor assembly of personal computers, computer networks, information kiosks, etc.) and public data sharing. In addition, you can change the technology at any layer and other layers only a small influence on the system module.●able to handle close to the data source to be addressed to improve response time and reduce network traffic.●accept it to allow and encourage open systems standards.For database development, the use of a multi-layered client / server database architecture development is the most meaningful of the database will be easy to develop and maintain database module to the end-user and that the contents of the database information system module separated. That routine can be used as PowerBuilder, Java, and Visual Basic language to provide this easy-to-use graphical user interface. Through middleware that routine interaction between layers can be passed to access routine, the routine visit to the necessary data and analysis of these data in order to form the required information. As a database developers and programmers, you can in this three-tier level of any of the work, developing the necessary software.外文来源Modern Database Management7 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden。
计算机外文翻译(完整)

计算机外⽂翻译(完整)毕业设计(论⽂)外⽂资料翻译专业:计算机科学与技术姓名:王成明学号:06120186外⽂出处:The History of the Internet附件: 1.外⽂原⽂ 2.外⽂资料翻译译⽂;附件1:外⽂原⽂The History of the InternetThe Beginning - ARPAnetThe Internet started as a project by the US government. The object of the project was to create a means of communications between long distance points, in the event of a nation wide emergency or, more specifically, nuclear war. The project was called ARPAnet, and it is what the Internet started as. Funded specifically for military communication, the engineers responsible for ARPANet had no idea of the possibilities of an "Internet."By definition, an 'Internet' is four or more computers connected by a network.ARPAnet achieved its network by using a protocol called TCP/IP. The basics around this protocol was that if information sent over a network failed to get through on one route, it would find another route to work with, as well as establishing a means for one computer to "talk" to another computer, regardless of whether it was a PC or a Macintosh.By the 80's ARPAnet, just years away from becoming the more well known Internet, had 200 computers. The Defense Department, satisfied with ARPAnets results, decided to fully adopt it into service, and connected many military computers and resources into the network. ARPAnet then had 562 computers on its network. By the year 1984, it had over 1000 computers on its network.In 1986 ARPAnet (supposedly) shut down, but only the organization shut down, and the existing networks still existed between the more than 1000 computers. It shut down due to a failied link up with NSF, who wanted to connect its 5 countywide super computers into ARPAnet.With the funding of NSF, new high speed lines were successfully installed at line speeds of 56k (a normal modem nowadays) through telephone lines in 1988. By that time, there were 28,174 computers on the (by then decided) Internet. In 1989 there were 80,000 computers on it. By 1989, there were290,000.Another network was built to support the incredible number of people joining. It was constructed in 1992.Today - The InternetToday, the Internet has become one of the most important technological advancements in the history of humanity. Everyone wants to get 'on line' to experience the wealth of information of the Internet. Millions of people now use the Internet, and it's predicted that by the year 2003 every single person on the planet will have Internet access. The Internet has truly become a way of life in our time and era, and is evolving so quickly its hard to determine where it will go next, as computer and network technology improve every day.HOW IT WORKS:It's a standard thing. People using the Internet. Shopping, playing games,conversing in virtual Internet environments.The Internet is not a 'thing' itself. The Internet cannot just "crash." It functions the same way as the telephone system, only there is no Internet company that runs the Internet.The Internet is a collection of millioins of computers that are all connected to each other, or have the means to connect to each other. The Internet is just like an office network, only it has millions of computers connected to it.The main thing about how the Internet works is communication. How does a computer in Houston know how to access data on a computer in Tokyo to view a webpage?Internet communication, communication among computers connected to the Internet, is based on a language. This language is called TCP/IP. TCP/IP establishes a language for a computer to access and transmit data over the Internet system.But TCP/IP assumes that there is a physical connecetion between onecomputer and another. This is not usually the case. There would have to be a network wire that went to every computer connected to the Internet, but that would make the Internet impossible to access.The physical connection that is requireed is established by way of modems,phonelines, and other modem cable connections (like cable modems or DSL). Modems on computers read and transmit data over established lines,which could be phonelines or data lines. The actual hard core connections are established among computers called routers.A router is a computer that serves as a traffic controller for information.To explain this better, let's look at how a standard computer might viewa webpage.1. The user's computer dials into an Internet Service Provider (ISP). The ISP might in turn be connected to another ISP, or a straight connection into the Internet backbone.2. The user launches a web browser like Netscape or Internet Explorer and types in an internet location to go to.3. Here's where the tricky part comes in. First, the computer sends data about it's data request to a router. A router is a very high speed powerful computer running special software. The collection of routers in the world make what is called a "backbone," on which all the data on the Internet is transferred. The backbone presently operates at a speed of several gigabytes per-second. Such a speed compared to a normal modem is like comparing the heat of the sun to the heat of an ice-cube.Routers handle data that is going back and forth. A router puts small chunks of data into packages called packets, which function similarly to envelopes. So, when the request for the webpage goes through, it uses TCP/IP protocols to tell the router what to do with the data, where it's going, and overall where the user wants to go.4. The router sends these packets to other routers, eventually leadingto the target computer. It's like whisper down the lane (only the information remains intact).5. When the information reaches the target web server, the webserver then begins to send the web page back. A webserver is the computer where the webpage is stored that is running a program that handles requests for the webpage and sends the webpage to whoever wants to see it.6. The webpage is put in packets, sent through routers, and arrive at the users computer where the user can view the webpage once it is assembled.The packets which contain the data also contain special information that lets routers and other computers know how to reassemble the data in the right order.With millions of web pages, and millions of users, using the Internet is not always easy for a beginning user, especially for someone who is not entirely comfortale with using computers. Below you can find tips tricks and help on how to use main services of the Internet.Before you access webpages, you must have a web browser to actually be able to view the webpages. Most Internet Access Providers provide you with a web browser in the software they usually give to customers; you. The fact that you are viewing this page means that you have a web browser. The top two use browsers are Netscape Communicator and Microsoft Internet Explorer. Netscape can be found at /doc/bedc387343323968011c9268.html and MSIE can be found at /doc/bedc387343323968011c9268.html /ie.The fact that you're reading this right now means that you have a web browser.Next you must be familiar with actually using webpages. A webpage is a collection of hyperlinks, images, text, forms, menus, and multimedia. To "navigate" a webpage, simply click the links it provides or follow it's own instructions (like if it has a form you need to use, it will probably instruct you how to use it). Basically, everything about a webpage is made to be self-explanetory. That is the nature of a webpage, to be easily navigatable."Oh no! a 404 error! 'Cannot find web page?'" is a common remark made by new web-users.Sometimes websites have errors. But an error on a website is not the user's fault, of course.A 404 error means that the page you tried to go to does not exist. This could be because the site is still being constructed and the page hasn't been created yet, or because the site author made a typo in the page. There's nothing much to do about a 404 error except for e-mailing the site administrator (of the page you wanted to go to) an telling him/her about the error.A Javascript error is the result of a programming error in the Javascript code of a website. Not all websites utilize Javascript, but many do. Javascript is different from Java, and most browsers now support Javascript. If you are using an old version of a web browser (Netscape 3.0 for example), you might get Javascript errors because sites utilize Javascript versions that your browser does not support. So, you can try getting a newer version of your web browser.E-mail stands for Electronic Mail, and that's what it is. E-mail enables people to send letters, and even files and pictures to each other.To use e-mail, you must have an e-mail client, which is just like a personal post office, since it retrieves and stores e-mail. Secondly, you must have an e-mail account. Most Internet Service Providers provide free e-mail account(s) for free. Some services offer free e-mail, like Hotmail, and Geocities.After configuring your e-mail client with your POP3 and SMTP server address (your e-mail provider will give you that information), you are ready to receive mail.An attachment is a file sent in a letter. If someone sends you an attachment and you don't know who it is, don't run the file, ever. It could be a virus or some other kind of nasty programs. You can't get a virus justby reading e-mail, you'll have to physically execute some form of program for a virus to strike.A signature is a feature of many e-mail programs. A signature is added to the end of every e-mail you send out. You can put a text graphic, your business information, anything you want.Imagine that a computer on the Internet is an island in the sea. The sea is filled with millions of islands. This is the Internet. Imagine an island communicates with other island by sending ships to other islands and receiving ships. The island has ports to accept and send out ships.A computer on the Internet has access nodes called ports. A port is just a symbolic object that allows the computer to operate on a network (or the Internet). This method is similar to the island/ocean symbolism above.Telnet refers to accessing ports on a server directly with a text connection. Almost every kind of Internet function, like accessing web pages,"chatting," and e-mailing is done over a Telnet connection.Telnetting requires a Telnet client. A telnet program comes with the Windows system, so Windows users can access telnet by typing in "telnet" (without the "'s) in the run dialog. Linux has it built into the command line; telnet. A popular telnet program for Macintosh is NCSA telnet.Any server software (web page daemon, chat daemon) can be accessed via telnet, although they are not usually meant to be accessed in such a manner. For instance, it is possible to connect directly to a mail server and check your mail by interfacing with the e-mail server software, but it's easier to use an e-mail client (of course).There are millions of WebPages that come from all over the world, yet how will you know what the address of a page you want is?Search engines save the day. A search engine is a very large website that allows you to search it's own database of websites. For instance, if you wanted to find a website on dogs, you'd search for "dog" or "dogs" or "dog information." Here are a few search-engines.1. Altavista (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed2. Yahoo (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed Collection3. Excite (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed4. Lycos (/doc/bedc387343323968011c9268.html ) - Web spider & Indexed5. Metasearch (/doc/bedc387343323968011c9268.html ) - Multiple searchA web spider is a program used by search engines that goes from page to page, following any link it can possibly find. This means that a search engine can literally map out as much of the Internet as it's own time and speed allows for.An indexed collection uses hand-added links. For instance, on Yahoo's site. You can click on Computers & the Internet. Then you can click on Hardware. Then you can click on Modems, etc., and along the way through sections, there are sites available which relate to what section you're in.Metasearch searches many search engines at the same time, finding the top choices from about 10 search engines, making searching a lot more effective.Once you are able to use search engines, you can effectively find the pages you want.With the arrival of networking and multi user systems, security has always been on the mind of system developers and system operators. Since the dawn of AT&T and its phone network, hackers have been known by many, hackers who find ways all the time of breaking into systems. It used to not be that big of a problem, since networking was limited to big corporate companies or government computers who could afford the necessary computer security.The biggest problem now-a-days is personal information. Why should you be careful while making purchases via a website? Let's look at how the internet works, quickly.The user is transferring credit card information to a webpage. Looks safe, right? Not necessarily. As the user submits the information, it is being streamed through a series of computers that make up the Internet backbone.The information is in little chunks, in packages called packets. Here's the problem: While the information is being transferred through this big backbone, what is preventing a "hacker" from intercepting this data stream at one of the backbone points?Big-brother is not watching you if you access a web site, but users should be aware of potential threats while transmitting private information. There are methods of enforcing security, like password protection, an most importantly, encryption.Encryption means scrambling data into a code that can only be unscrambled on the "other end." Browser's like Netscape Communicator and Internet Explorer feature encryption support for making on-line transfers. Some encryptions work better than others. The most advanced encryption system is called DES (Data Encryption Standard), and it was adopted by the US Defense Department because it was deemed so difficult to 'crack' that they considered it a security risk if it would fall into another countries hands.A DES uses a single key of information to unlock an entire document. The problem is, there are 75 trillion possible keys to use, so it is a highly difficult system to break. One document was cracked and decoded, but it was a combined effort of14,000 computers networked over the Internet that took a while to do it, so most hackers don't have that many resources available.附件2:外⽂资料翻译译⽂Internet的历史起源——ARPAnetInternet是被美国政府作为⼀项⼯程进⾏开发的。
计算机科学与技术专业 外文翻译 外文文献 英文文献 记录

外文文献原稿和译文原稿IntroductionThe creation and maintenance of records relating to the students of an institution are essential to:. managing the relationship between the institution and the student;. providing support and other services and facilities to the student;. controlling the student’s academic progress and measuring their achievement, both at the institution and subsequently;. providing support to the student after they leave the institution.In addition, student records contain data which the institution can aggregate and analyse to inform future strategy, planning and service provision.The number of students in HEIs has increased rapidly in the last twenty years. An institution’s relationship with an individual student has also become increasingly complex because of the range of support services institutions now provide to students and life long learning initiatives. Consequently, the volume and complexity of student records have also increased, as have the resources required to create, maintain, use, retain and dispose of them, irrespective of the format in which they are kept. Ensuring that the personal data contained in student records is controlled and managed in line with the principles of the Data Protection Act 1998 creates an additional complication.Institutions should, therefore, establish a policy on managing student records to ensure that they are handled consistently and effectively wherever they are held and whoever holds them. This policy should ensure that:. records relating to an individual student are complete, accurate and up to date;. duplication of student data is deliberate rather than uncontrolled and kept to the minimum needed to support effective administration;. records are held and stored securely to prevent unauthorised access to them;. records relating to the academic aspects of the student’s relationship with the institution are clearly segregated from those dealing with financial, disciplinary, social, support and contractual aspects of that relationship. This will enable differential retention periods to be applied to each of these to meet business and regulatory requirements.What are student records?Records are documents or other items which:. contain recorded information;. are produced or received in the initiation, conduct or completion of an activity;. are retained as evidence of that activity, or because they have other informational value.The recorded information may be in any form (e.g. text, image, sound) and the records may be in any medium or format.Student records –records associated with managing the relationship between an institution and its students –can be organised into three broad categories, each of which may be additionally divided:1. Records documenting the contractual relationship between the student and the institutione.g. records documenting admission and enrolment, payment of tuition fees, non-academic disciplinary proceedings.2. Records documenting the student as a learnere.g. records documenting programmes undertaken, academic progress and performance, awards.3. Records documenting the student as an individual and consumer of services provided by the institutione.g. records documenting use of accommodation services, counseling services, library and IT support services, careers and employment services.Most records in categories 1 and 3 have specific retention periods triggered by the formal end of a student’s direct relationship with an institution, although the information they contain may be aggregated and analyzed to provide data requested by third parties1 orto support the institution’s planning and development activities. An institution will need to retain some of the records in category 2 to provide confirmatory information to potential employers, professional bodies and associations, and to bodies which regulate entry to medical and other professions and which assess and maintain evidence of fitness to practice in those professions.Who is responsible for managing student records?HEI organizational structures vary considerably. As a result, it is difficult to specify exactly where these responsibilities should lie in any one institution.Responsibility for managing student records should be clearly defined and documented. It is important to define the responsibilities of staff involved in: . managing the institution’s general, contractual relationship with the student;. managing the institution’s relationship with the student as a learner;. providing technical and personal support services to the student;for creating, maintaining, using, retaining and disposing of records documenting those activities during the student’s time at the institution.Institutions should also designate one clear point of responsibility for maintaining complete, accurate and up to date records on every student, covering all aspects of the relationship. They should also define the minimum content of the core student record so that the institution can, if required:. demonstrate, within the provisions of limitation statutes, that its implied contract with the student has been fulfilled;. provide information on the student’s academic performance and award(s) to potential employers, to licensing/regulatory bodies (normally first registration only)which control entry to professions and to other organizations (e.g. those providing chartered status) as well as to the student;. provide information on the student as an individual as a means of enabling the institution, or others acting on its behalf, to analyse and aggregate student data for planning and developing its future programmes, recruitment activities and the facilities and services required to support future students.Where and how should student records be stored?The nature of student records and the personal information they contain demands that they should be stored in facilities and equipment (‘hard copy’ records) or electronic systems (digital records) which are, above all, secure and accessible only to authorized staff whose work requires them to have access. In addition, the facilities and equipment should provide: . adequate space for all the records which need to be produced and retained;. appropriate environmental conditions for the record media used.Storage facilities and systems should meet the same standards irrespective of where they are located and who is responsible for managing them.Authorized staff should maintain a record of:. the content, format and location of all student records;. the names and designations of all staff with access to student records, and any limitations on that access;. student records which have been transferred to another part of the institution, particularly after the student has left;. organizations, professional bodies, statutory regulators to whom personal data relating to the student has been provided.Student records should be stored and indexed so that they can be identified and retrieved quickly and easily.. Paper records should be housed in durable containers which carry only an impersonal code number related to a restricted-access list or index to prevent casual, unauthorised access. These containers should be stored in locked equipment or rooms when they are not being used to ensure that the personal data they contain is protected in line with the requirements of the Data Protection Act 1998.. Digital records should be uniquely identified and protected with passwords and other electronic security measures. In all cases, access should be limited to those staff who have ‘a need to know’. If ele ctronic systems are not centrally managed, designated staff should make back-up copies to prevent loss of records through accidental or intentional damage.Whatever its format, the ‘core student record’ shou ld be treated as a vital record and action taken to protect it from disaster or systems failure by copying and dispersal.Student records will become relatively inactive once the student leaves the institution.They may then be transferred to other storage facilities or systems. At this point, duplicates of records created for administrative convenience should be destroyed so that only the designated official records survive.Who should have access to student records?Institutions should tightly control access to student records to prevent unauthorised use, alteration, removal or destruction of the records themselves and unauthorised disclosure of the information they contain. Only those members of staff who need them to do their work should have access to student records and, their access should be restricted to records of the direct relationship and not to the content of the whole file.Student records contain personal data and are therefore subject to the provisions of the Data Protection Act 1998, including the provision that the student, as the data subject, should be given access to personal data held, whether in digital or hard copy form. In addition, the ‘core student record’ as defined by the KCL study includes personal data on the student’s parents which is also subject to the provisions of th e Act.How long should student records be kept?In general, student records should be kept only for as long as is necessary to:. fulfill and discharge the contractual obligations established between the institution and the student, including the completion of any non-academic disciplinary action;. provide information on the academic career and achievements of the student to employers, licensing/regulatory bodies and other organizations, as well as to the student as part of their lifelong learning record;. record the activities of the student as an individual and as a consumer of student support and other institutional services as a means of managing those services and planning and developing them in the future.The nature of the activities which give rise to these categories of records drives their retention.. The contractual relationship between the institution and the student is subject to the same statutory limitations on action as any other contract. This will include records of disciplinary action taken against the student. The records should be disposed of accordingly. The date at which the student leaves the institution normally provides the retention‘trigger’.. The records relating to the student as a learner need to be retained for longer than other student records. Institutions accept that they have an obligation, during a student’s working life, to provide factual information on what they have studied and achieved, i.e. a Transcript. The proposed lifelong learning record or progress file would also include additional data on relevant non-academic achievements and activities (e.g. voluntary work). The retention period for these records should reflect the need to fulfill this obligation over long periods of time, perhaps for the lifetime of the student. It is important to segregate these records from those relating to other aspects of the relationship so that non-academic records are not retained for unnecessarily long periods, consuming storage resources and creating potential breaches of the Data Protection Act 1998.. Records relating to the student as an individual and as a user of student support and institutional services are relatively short term and should be retained for a short finite period once the student leaves the institution. This period should be shorter than for records relating to the wider contractual arrangements.The KCL study proposed the development of a ‘core student record’ which would contain, in addition to the formal transcript, data relating to the background of the student, including parents’ address and occupation, schools attended, first employment, etc. In addition to providing academic information on the individual student, KCL suggested that the availability of this data facilitates its analysis for institutional business planning and development purposes, as well as supporting subsequent academic historical, sociological and demographic research.Individual institutions should decide whether they wish to retain this data for research purposes once immediate institutional business needs have been met. In doing so they will need to take account of:. the cost and technical difficulty of maintaining records, even in summary form, permanently;. the security and subject access implications of retaining personal data relating to named individuals;. the need to create and maintain finding aids so that individual records can be easilyand quickly retrieved when required, particularly to meet subject access requests.How should student records be destroyed?Student records should be destroyed in line with agreed retention periods. Destruction should be authorized by staff with appropriate authority and it should be carried out in accordance with the institution’s procedures for the destruction of redundant rec ords containing personal data.The authority for destruction and the date of destruction should be recorded and held by the section of the institution with final responsibility for the student record.译文介绍创建与维护和学生相关的记录对一个公共机构来说是十分重要的:处理机关和学生之间的关系;提供支持和其他服务以及便利给学生;在机关,控制学生学术进展和测量他们的成就;随后提供支持给学生,在他们离开机关之后。
计算机专业外文翻译+原文-数据库管理系统介绍

外文资料Database Management SystemsA database (sometimes spelled data base) is also called an electronic database , referring to any collection of data, or information, that is specially organized for rapid search and retrieval by a computer. Databases are structured to facilitate the storage, retrieval , modification, and deletion of data in conjunction with various data-processing operations .Databases can be stored on magnetic disk or tape, optical disk, or some other secondary storage device.A database consists of a file or a set of files. The information in these files may be broken down into records, each of which consists of one or more fields. Fields are the basic units of data storage , and each field typically contains information pertaining to one aspect or attribute of the entity described by the database . Using keywords and various sorting commands, users can rapidly search , rearrange, group, and select the fields in many records to retrieve or create reports on particular aggregate of data.Complex data relationships and linkages may be found in all but the simplest databases .The system software package that handles the difficult tasks associated with creating ,accessing, and maintaining database records is called a database management system(DBMS).The programs in a DBMS package establish an interface between the database itself and the users of the database.. (These users may be applications programmers, managers and others with information needs, and various OS programs.)A DBMS can organize, process, and present selected data elements form the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or poorly defined ,but people can “browse” through the database until they have the needed information. In short, the DBMS will “manage” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers.A database management system (DBMS) is composed of three major parts:(1)a storage subsystem that stores and retrieves data in files;(2) a modeling and manipulation subsystem that provides the means with which to organize the data and to add , delete, maintain, and update the data;(3)and an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems;Managers: who require more up-to-data information to make effective decisionCustomers: who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.Users: who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.Organizations : that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.The Database ModelA data model describes a way to structure and manipulate the data in a database. The structural part of the model specifies how data should be represented(such as tree, tables, and so on ).The manipulative part of the model specifies the operation with which to add, delete, display, maintain, print, search, select, sort and update the data.Hierarchical ModelThe first database management systems used a hierarchical model-that is-they arranged records into a tree structure. Some records are root records and all others have unique parent records. The structure of the tree is designed to reflect the order in which the data will be used that is ,the record at the root of a tree will be accessed first, then records one level below the root ,and so on.The hierarchical model was developed because hierarchical relationships are commonly found in business applications. As you have known, an organization char often describes a hierarchical relationship: top management is at the highest level, middle management at lower levels, and operational employees at the lowest levels. Note that within a strict hierarchy, each level of management may have many employees or levels of employees beneath it, but each employee has only one manager. Hierarchical data are characterized by this one-to-many relationship among data.In the hierarchical approach, each relationship must be explicitly defined when the database is created. Each record in a hierarchical database can contain only one key field and only one relationship is allowed between any two fields. This can create a problem because data do not always conform to such a strict hierarchy.Relational ModelA major breakthrough in database research occurred in 1970 when E. F. Codd proposed a fundamentally different approach to database management called relational model ,which uses a table as its data structure.The relational database is the most widely used database structure. Data is organized into related tables. Each table is made up of rows called and columns called fields. Each record contains fields of data about some specific item. For example, in a table containing information on employees, a recordwould contain fields of data such as a person’s last name ,first name ,and street address.Structured query language(SQL)is a query language for manipulating data in a relational database .It is nonprocedural or declarative, in which the user need only specify an English-like description that specifies the operation and the described record or combination of records. A query optimizer translates the description into a procedure to perform the database manipulation.Network ModelThe network model creates relationships among data through a linked-list structure in which subordinate records can be linked to more than one parent record. This approach combines records with links, which are called pointers. The pointers are addresses that indicate the location of a record. With the network approach, a subordinate record can be linked to a key record and at the same time itself be a key record linked to other sets of subordinate records. The network mode historically has had a performance advantage over other database models. Today , such performance characteristics are only important in high-volume ,high-speed transaction processing such as automatic teller machine networks or airline reservation system.Both hierarchical and network databases are application specific. If a new application is developed ,maintaining the consistency of databases in different applications can be very difficult. For example, suppose a new pension application is developed .The data are the same, but a new database must be created.Object ModelThe newest approach to database management uses an object model , in which records are represented by entities called objects that can both store data and provide methods or procedures to perform specific tasks.The query language used for the object model is the same object-oriented programming language used to develop the database application .This can create problems because there is no simple , uniform query language such as SQL . The object model is relatively new, and only a few examples of object-oriented database exist. It has attracted attention because developers who choose an object-oriented programming language want a database based on an object-oriented model. Distributed DatabaseSimilarly , a distributed database is one in which different parts of the database reside on physically separated computers . One goal of distributed databases is the access of information without regard to where the data might be stored. Keeping in mind that once the users and their data are separated , the communication and networking concepts come into play .Distributed databases require software that resides partially in the larger computer. This software bridges the gap between personal and large computers and resolves the problems of incompatible dataformats. Ideally, it would make the mainframe databases appear to be large libraries of information, with most of the processing accomplished on the personal computer.A drawback to some distributed systems is that they are often based on what is called a mainframe-entire model , in which the larger host computer is seen as the master and the terminal or personal computer is seen as a slave. There are some advantages to this approach . With databases under centralized control , many of the problems of data integrity that we mentioned earlier are solved . But today’s personal computers, departmental computers, and distributed processing require computers and their applications to communicate with each other on a more equal or peer-to-peer basis. In a database, the client/server model provides the framework for distributing databases.One way to take advantage of many connected computers running database applications is to distribute the application into cooperating parts that are independent of one anther. A client is an end user or computer program that requests resources across a network. A server is a computer running software that fulfills those requests across a network . When the resources are data in a database ,the client/server model provides the framework for distributing database.A file serve is software that provides access to files across a network. A dedicated file server is a single computer dedicated to being a file server. This is useful ,for example ,if the files are large and require fast access .In such cases, a minicomputer or mainframe would be used as a file server. A distributed file server spreads the files around on individual computers instead of placing them on one dedicated computer.Advantages of the latter server include the ability to store and retrieve files on other computers and the elimination of duplicate files on each computer. A major disadvantage , however, is that individual read/write requests are being moved across the network and problems can arise when updating files. Suppose a user requests a record from a file and changes it while another user requests the same record and changes it too. The solution to this problems called record locking, which means that the first request makes others requests wait until the first request is satisfied . Other users may be able to read the record, but they will not be able to change it .A database server is software that services requests to a database across a network. For example, suppose a user types in a query for data on his or her personal computer . If the application is designed with the client/server model in mind ,the query language part on the personal computer simple sends the query across the network to the database server and requests to be notified when the data are found.Examples of distributed database systems can be found in the engineering world. Sun’s Network Filing System(NFS),for example, is used in computer-aided engineering applications to distribute data among the hard disks in a network of Sun workstation.Distributing databases is an evolutionary step because it is logical that data should exist at thelocation where they are being used . Departmental computers within a large corporation ,for example, should have data reside locally , yet those data should be accessible by authorized corporate management when they want to consolidate departmental data . DBMS software will protect the security and integrity of the database , and the distributed database will appear to its users as no different from the non-distributed database .In this information age, the data server has become the heart of a company. This one piece of software controls the rhythm of most organizations and is used to pump information lifeblood through the arteries of the network. Because of the critical nature of this application, the data server is also the one of the most popular targets for hackers. If a hacker owns this application, he can cause the company's "heart" to suffer a fatal arrest.Ironically, although most users are now aware of hackers, they still do not realize how susceptible their database servers are to hack attacks. Thus, this article presents a description of the primary methods of attacking database servers (also known as SQL servers) and shows you how to protect yourself from these attacks.You should note this information is not new. Many technical white papers go into great detail about how to perform SQL attacks, and numerous vulnerabilities have been posted to security lists that describe exactly how certain database applications can be exploited. This article was written for the curious non-SQL experts who do not care to know the details, and as a review to those who do use SQL regularly.What Is a SQL Server?A database application is a program that provides clients with access to data. There are many variations of this type of application, ranging from the expensive enterprise-level Microsoft SQL Server to the free and open source mySQL. Regardless of the flavor, most database server applications have several things in common.First, database applications use the same general programming language known as SQL, or Structured Query Language. This language, also known as a fourth-level language due to its simplistic syntax, is at the core of how a client communicates its requests to the server. Using SQL in its simplest form, a programmer can select, add, update, and delete information in a database. However, SQL can also be used to create and design entire databases, perform various functions on the returned information, and even execute other programs.To illustrate how SQL can be used, the following is an example of a simple standard SQL query and a more powerful SQL query:Simple: "Select * from dbFurniture.tblChair"This returns all information in the table tblChair from the database dbFurniture.Complex: "EXEC master..xp_cmdshell 'dir c:\'"This short SQL command returns to the client the list of files and folders under the c:\ directory of the SQL server. Note that this example uses an extended stored procedure that is exclusive to MS SQL Server.The second function that database server applications share is that they all require some form of authenticated connection between client and host. Although the SQL language is fairly easy to use, at least in its basic form, any client that wants to perform queries must first provide some form of credentials that will authorize the client; the client also must define the format of the request and response.This connection is defined by several attributes, depending on the relative location of the client and what operating systems are in use. We could spend a whole article discussing various technologies such as DSN connections, DSN-less connections, RDO, ADO, and more, but these subjects are outside the scope of this article. If you want to learn more about them, a little Google'ing will provide you with more than enough information. However, the following is a list of the more common items included in a connection request.Database sourceRequest typeDatabaseUser IDPasswordBefore any connection can be made, the client must define what type of database server it is connecting to. This is handled by a software component that provides the client with the instructions needed to create the request in the correct format. In addition to the type of database, the request type can be used to further define how the client's request will be handled by the server. Next comes the database name and finally the authentication information.All the connection information is important, but by far the weakest link is the authentication information—or lack thereof. In a properly managed server, each database has its own users with specifically designated permissions that control what type of activity they can perform. For example, a user account would be set up as read only for applications that need to only access information. Another account should be used for inserts or updates, and maybe even a third account would be used for deletes. This type of account control ensures that any compromised account is limited in functionality. Unfortunately, many database programs are set up with null or easy passwords, which leads to successful hack attacks.译文数据库管理系统介绍数据库(database,有时拼作data base)又称为电子数据库,是专门组织起来的一组数据或信息,其目的是为了便于计算机快速查询及检索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文原文:Database1.1Database conceptThe database concept has evolved since the 1960s to ease increasing difficulties in designing, building, and maintaining complex information systems (typically with many concurrent end-users, and with a large amount of diverse data). It has evolved together with database management systems which enable the effective handling of databases. Though the terms database and DBMS define different entities, they are inseparable: a database's properties are determined by its supporting DBMS and vice-versa. The Oxford English dictionary cites[citation needed] a 1962 technical report as the first to use the term "data-base." With the progress in technology in the areas of processors, computer memory, computer storage and computer networks, the sizes, capabilities, and performance of databases and their respective DBMSs have grown in orders of magnitudes. For decades it has been unlikely that a complex information system can be built effectively without a proper database supported by a DBMS. The utilization of databases is now spread to such a wide degree that virtually every technology and product relies on databases and DBMSs for its development and commercialization, or even may have such embedded in it. Also, organizations and companies, from small to large, heavily depend on databases for their operations.No widely accepted exact definition exists for DBMS. However, a system needs to provide considerable functionality to qualify as a DBMS. Accordingly its supported data collection needs to meet respective usability requirements (broadly defined by the requirements below) to qualify as a database. Thus, a database and its supporting DBMS are defined here by a set of general requirements listed below. Virtually all existing mature DBMS products meet these requirements to a great extent, while less mature either meet them or converge to meet them.1.2Evolution of database and DBMS technologyThe introduction of the term database coincided with the availability of direct-access storage (disks and drums) from the mid-1960s onwards. The term represented a contrast with the tape-based systems of the past, allowing shared interactive use rather than daily batch processing.In the earliest database systems, efficiency was perhaps the primary concern, but it was already recognized that there were other important objectives. One of the key aims was to make the data independent of the logic of application programs, so that the same data could be made available to different applications.The first generation of database systems were navigational,[2] applications typically accessed data by following pointers from one record to another. The two main data models at this time were the hierarchical model, epitomized by IBM's IMS system, and the Codasyl model (Network model), implemented in a number ofproducts such as IDMS.The Relational model, first proposed in 1970 by Edgar F. Codd, departed from this tradition by insisting that applications should search for data by content, rather than by following links. This was considered necessary to allow the content of the database to evolve without constant rewriting of applications. Relational systems placed heavy demands on processing resources, and it was not until the mid 1980s that computing hardware became powerful enough to allow them to be widely deployed. By the early 1990s, however, relational systems were dominant for all large-scale data processing applications, and they remain dominant today (2012) except in niche areas. The dominant database language is the standard SQL for the Relational model, which has influenced database languages also for other data models.Because the relational model emphasizes search rather than navigation, it does not make relationships between different entities explicit in the form of pointers, but represents them rather using primary keys and foreign keys. While this is a good basis for a query language, it is less well suited as a modeling language. For this reason a different model, the Entity-relationship model which emerged shortly later (1976), gained popularity for database design.In the period since the 1970s database technology has kept pace with the increasing resources becoming available from the computing platform: notably the rapid increase in the capacity and speed (and reduction in price) of disk storage, and the increasing capacity of main memory. This has enabled ever larger databases and higher throughputs to be achieved.The rigidity of the relational model, in which all data is held in tables with a fixed structure of rows and columns, has increasingly been seen as a limitation when handling information that is richer or more varied in structure than the traditional 'ledger-book' data of corporate information systems: for example, document databases, engineering databases, multimedia databases, or databases used in the molecular sciences. Various attempts have been made to address this problem, many of them gathering under banners such as post-relational or NoSQL. Two developments of note are the Object database and the XML database. The vendors of relational databases have fought off competition from these newer models by extending the capabilities of their own products to support a wider variety of data types.1.3General-purpose DBMSA DBMS has evolved into a complex software system and its development typically requires thousands of person-years of development effort.[citation needed] Some general-purpose DBMSs, like Oracle, Microsoft SQL Server, and IBM DB2, have been undergoing upgrades for thirty years or more. General-purpose DBMSs aim to satisfy as many applications as possible, which typically makes them even more complex than special-purpose databases. However, the fact that they can be used "off the shelf", as well as their amortized cost over many applications and instances, makes them an attractive alternative (Vsone-time development) whenever they meet an application's requirements.Though attractive in many cases, a general-purpose DBMS is not always the optimal solution: When certain applications are pervasive with many operating instances, each with many users, a general-purpose DBMS may introduce unnecessary overhead and too large "footprint" (too large amount of unnecessary, unutilized software code). Such applications usually justify dedicated development.Typical examples are email systems, though they need to possess certain DBMS properties: email systems are built in a way that optimizes email messages handling and managing, and do not need significant portions of a general-purpose DBMS functionality.1.4Database machines and appliancesIn the 1970s and 1980s attempts were made to build database systems with integrated hardware and software. The underlying philosophy was that such integration would provide higher performance at lower cost. Examples were IBM System/38, the early offering of Teradata, and the Britton Lee, Inc. database machine. Another approach to hardware support for database management was ICL's CAFS accelerator, a hardware disk controller with programmable search capabilities. In the long term these efforts were generally unsuccessful because specialized database machines could not keep pace with the rapid development and progress of general-purpose computers. Thus most database systems nowadays are software systems running on general-purpose hardware, using general-purpose computer data storage. However this idea is still pursued for certain applications by some companies like Netezza and Oracle (Exadata).1.5Database researchDatabase research has been an active and diverse area, with many specializations, carried out since the early days of dealing with the database concept in the 1960s. It has strong ties with database technology and DBMS products. Database research has taken place at research and development groups of companies (e.g., notably at IBM Research, who contributed technologies and ideas virtually to any DBMS existing today), research institutes, and Academia. Research has been done both through Theory and Prototypes. The interaction between research and database related product development has been very productive to the database area, and many related key concepts and technologies emerged from it. Notable are the Relational and the Entity-relationship models, the Atomic transaction concept and related Concurrency control techniques, Query languages and Query optimization methods, RAID, and more. Research has provided deep insight to virtually all aspects of databases, though not always has been pragmatic, effective (and cannot and should not always be: research is exploratory in nature, and not always leads to accepted or useful ideas). Ultimately market forces and real needs determine the selection of problem solutions and related technologies, also among those proposed by research. However, occasionally, not the best and most elegant solution wins (e.g., SQL). Along their history DBMSs and respective databases, to a great extent, have been the outcome of such research, while real product requirements and challenges triggered database research directions and sub-areas.The database research area has several notable dedicated academic journals (e.g., ACM Transactions on Database Systems-TODS, Data and Knowledge Engineering-DKE, and more) and annual conferences (e.g., ACM SIGMOD, ACM PODS, VLDB, IEEE ICDE, and more), as well as an active and quite heterogeneous (subject-wise) research community all over the world.1.6Database architectureDatabase architecture (to be distinguished from DBMS architecture; see below) may be viewed, to some extent, as an extension of Data modeling. It is used to conveniently answer requirements of different end-users from a same database, as well as for other benefits. For example, a financial department of a company needs the payment details of all employees as part of the company's expenses, but not other many details about employees, that are the interest of the human resources department. Thus different departments need different views of the company's database, that both include the employees' payments, possibly in a different level of detail (and presented in different visual forms). To meet such requirement effectively database architecture consists of three levels: external, conceptual and internal. Clearly separating the three levels was a major feature of the relational database model implementations that dominate 21st century databases.[13]The external level defines how each end-user type understands the organization of its respective relevant data in the database, i.e., the different needed end-user views.A single database can have any number of views at the external level.The conceptual level unifies the various external views into a coherent whole, global view.[13] It provides the common-denominator of all the external views. It comprises all the end-user needed generic data, i.e., all the data from which any view may be derived/computed. It is provided in the simplest possible way of such generic data, and comprises the back-bone of the database. It is out of the scope of the various database end-users, and serves database application developers and defined by database administrators that build the database.The Internal level (or Physical level) is as a matter of fact part of the database implementation inside a DBMS (see Implementation section below). It is concerned with cost, performance, scalability and other operational matters. It deals with storage layout of the conceptual level, provides supporting storage-structures like indexes, to enhance performance, and occasionally stores data of individual views (materialized views), computed from generic data, if performance justification exists for such redundancy. It balances all the external views' performance requirements, possibly conflicting, in attempt to optimize the overall database usage by all its end-uses according to the database goals and priorities.All the three levels are maintained and updated according to changing needs by database administrators who often also participate in the database design.The above three-level database architecture also relates to and being motivated by the concept of data independence which has been described for long time as a desired database property and was one of the major initial driving forces of the Relational model. In the context of the above architecture it means that changes made at a certain level do not affect definitions and software developed with higher level interfaces, and are being incorporated at the higher level automatically. For example, changes in the internal level do not affect application programs written using conceptual level interfaces, which saves substantial change work that would be needed otherwise.In summary, the conceptual is a level of indirection between internal and external. On one hand it provides a common view of the database, independent of different external view structures, and on the other hand it is uncomplicated by details of how the data is stored or managed (internal level). In principle every level, and even every external view, can be presented by a different data model. In practice usually a given DBMS uses the same data model for both the external and the conceptual levels (e.g., relational model). The internal level, which is hidden inside the DBMS and depends on its implementation (see Implementation section below), requires a different levelof detail and uses its own data structure types, typically different in nature from the structures of the external and conceptual levels which are exposed to DBMS users (e.g., the data models above): While the external and conceptual levels are focused on and serve DBMS users, the concern of the internal level is effective implementation details.中文译文:数据库1.1 数据库的概念数据库的概念已经演变自1960年以来,以缓解日益困难,在设计,建设,维护复杂的信息系统(通常与许多并发的最终用户,并用大量不同的数据)。