巴特沃斯带阻滤波器设计方法

合集下载

直接法设计巴特沃斯滤波器

直接法设计巴特沃斯滤波器

直接法设计巴特沃斯滤波器
巴特沃斯滤波器是一种常用的数字滤波器,其特点是具有平坦的频率响应和较陡的截止陡度。

直接法设计巴特沃斯滤波器的步骤如下:
1. 确定滤波器的类型和截止频率。

根据要求选择巴特沃斯低通、高通、带通或带阻滤波器,同时确定截止频率。

2. 根据截止频率计算模拟滤波器参数。

使用巴特沃斯滤波器的公式计算模拟滤波器的参数,包括截止频率、通带增益、极点和零点的位置等。

3. 将模拟滤波器转换为数字滤波器。

利用双线性变换或者抽样定理等方法将模拟滤波器转换为数字滤波器,得到数字滤波器的巴特沃斯系数。

4. 实现数字滤波器。

使用巴特沃斯系数和数字滤波器的递推公式实现数字滤波器,可以使用C语言、Matlab等编程工具实现。

需要注意的是,直接法设计的巴特沃斯滤波器虽然具有平坦的频率响应和较陡的截止陡度,但会产生时域波形失真和相位偏移。

如果需要更好的时域响应和相位特性,可以考虑其它设计方法,如零相位滤波器、IIR滤波器等。

巴特沃斯带阻IIR数字滤波器设计

巴特沃斯带阻IIR数字滤波器设计

2.巴特沃斯带阻IIR数字滤波器设计1.设计思路—基于冲激响应不变法的IIR数字滤波器设计冲激响应不变法的设计原理是利用数字滤波器的单位抽样响应序列H(z)来逼近模拟滤波器的冲激响应g(t)。

按照冲激响应不变法的原理,通过模拟滤波器的系统传递函数G(s),可以直接求得数字滤波器的系统函数H(z),其转换步骤如:(1) 利用ω=ΩT (可由关系式Z=e sT推导出),将ωp, ωs转换成Ωp, Ωs ,而αp,αs不变;(2)求解低通模拟滤波器的传递函数G(s);(3) 将模拟滤波器的传递函数G(s)转换为数字滤波器的传递函数H(z)。

尽管通过冲激响应不变法求取数字滤波器的系统传递函数比较方便,并具有良好的时域逼特性,但若G(s)不是带限的,或是抽样频率不高,那么在H(e jω)中将发生混叠失真,数字滤波器的频率响应不能重现模拟滤波器的频率响应。

只有当模拟滤波器的频率响应在超过折叠频率后的衰减很大时,混叠失真才很小,此时采样脉冲响应不变法设计的数字滤波器才能满足设计的要求,这是冲激响应不变法的一个严重的缺点。

2.设计要求及方案设计一带阻巴斯沃特IIR滤波器,要求如下:带纹波为Rp=1dB,通带上、下限角频率为0.11π、0.81π,阻带上、下限角频率为0.31π、0.61π,阻带最小衰减αs=40dB,采样频率f s=15000Hz3.用MTALAB算法设计巴特沃斯带阻IIR数字滤波器fs=15000;T=1/fs;rp=1;rs=40;wp1=0.11*pi;wp2=0.81*pi;ws1=0.31*pi;ws2=0.61*pi; %数字带阻滤波器技术指标wc1=(2/T)*tan(wp1/2); %频率预畸变wc2=(2/T)*tan(wp2/2);wr1=(2/T)*tan(ws1/2);wr2=(2/T)*tan(ws2/2);w0=sqrt(wc1*wc2);B=wc2-wc1;wp=1; %归一化通带截止频率ws=wp*(wr1*B)/(w0^2-wr1^2); %归一化阻带截止频率[N,wc]=buttord(wp,ws,rp,rs,'s'); %求滤波器阶数和3dB截止频率[Z,P,K]=buttap(N);[Md,Nd]=zp2tf(Z,P,K); %将零极点形式转换为传输形式[M,N]=lp2bs(Md,Nd,w0,B); %对低通滤波器进行频率变换,转换为带阻滤波器[h,w]=freqs(M,N); %模拟带阻滤波器的幅频响应plot(w/(2*pi,abs(h)));grid; >> xlabel('频率/Hz');ylabel('幅度');title('模拟带阻滤波器');[b,a]=bilinear(M,N,15000); %对模拟滤波器双线性变换figure(1);freqz(b,a);[H,W]=freqz(b,a); %绘出频率响应axis([0,1,-100,20]);figure(2);plot(W*fs/(2*pi),abs(H));grid on;xlabel('频率/Hz');ylabel('幅值');title('数字滤波器幅频响应|H(ejOmega)| ');仿真出的幅频响应曲线图如下图2.1所示:图2.1:幅频响应曲线相频特性及幅度特性曲线如下图2.2所示:图2.2:相频特性与幅度特性曲线fs=15000;T= 1/fs; rp=1;rs=40;wp1=0.11*pi;wp2=0.81*pi;ws1=0.31*pi;ws2=0.61*pi;%数字带阻滤波器技术指标wc1=(2/T)*tan(wp1/2);%频率预畸变wc2=(2/T)*tan(wp2/2);wr1=(2/T)*tan(ws1/2);wr2=(2/T)*tan(ws2/2);w0=sqrt(wc1*wc2);B=wc2-wc1;wp=1;%归一化通带截止频率ws=wp*(wr1*B) / (w0^2-wr1^2) %归一化阻带截止频率[N,wc]=buttord(wp,ws,rp,rs,'s')%求滤波器阶数和3dB截止频率[Z,P,K]=buttap(N)%设计模拟低通滤波器[Md,Nd]=zp2tf(Z,P,K)%将零极点形式转换为传输函数形式[M,N]=lp2bs(Md,Nd,w0,B)%对低通滤波器进行频率变换,转换为带阻滤波器[h,w]=freqs(M,N);%模拟带阻滤波器的幅频响应plot(w/(2*pi),abs(h));grid;xlabel('频率Hz');ylabel('幅度');title('模拟带阻滤波器');[b,a]=bilinear(M,N,15000)%对模拟滤波器双线性变换figure(1);reqz(b,a);[H,W]=freqz(b,a); %绘出频率响应;axis([0,1,-100,20]);figure(2);plot(W*fs/(2*pi),abs(H));grid on;xlabel('频率/Hz');ylabel('幅值');n=0:199;t=n/fs;x=sin(2*pi*400*t)+3*sin(2*pi*3000*t)+2*sin(2*pi*5000*t);figure(3);subplot(311);plot(t,x);axis([0,0.01,-5,5]);title('输入信号');grid on;y=filter(b,a,x);subplot(312);stem(y,'.');title('输出序列');grid on;ya=y*sinc(fs*(ones(length(n),1)*t-(n/fs)'*ones(1,length(t))));subplot(313);plot(t,ya);axis([0,0.01,-3,3]);title('输出波形');grid on;t=(0:100)/fs;figure(4);fs=1.5*10000;n=(0:100)/fs;f=sin(2*pi*400*t)+3*sin(2*pi*3000*t)+2*sin(2*pi*5000*t);y=fftfilt(b,x);[H1,f1]=freqz(f,[1]);[H2,f2]=freqz(y,[1]);f1=f1/pi*fs/2;f2=f2/pi*fs/2;subplot(2,1,1);plot(f1,abs(H1));title('输入信号的频谱'); subplot(2,1,2);plot(f2,abs(H2));title('输出信号的频谱');。

二阶巴特沃斯滤波器电路设计

二阶巴特沃斯滤波器电路设计

二阶巴特沃斯滤波器电路设计
二阶巴特沃斯滤波器可以通过使用电容器和电感器来实现。

下面是一个常见的二阶巴特沃斯低通滤波器的电路设计:
1. 选择合适的电容和电感。

根据要求的截止频率和阻带衰减率选择合适的电容和电感。

截止频率是滤波器开始衰减的频率,阻带衰减率是滤波器在截止频率之上的衰减量。

2. 设计RC网络。

使用一个电阻和一个电容构建一个RC网络。

这个网络是滤
波器的一部分,用于控制截止频率。

3. 设计RL网络。

使用一个电阻和一个电感构建一个RL网络。

这个网络也是
滤波器的一部分,用于增加滤波器的阻带衰减率。

4. 连接RC和RL网络。

将RC网络和RL网络连接起来,形成一个二阶巴特沃斯低
通滤波器。

5. 使用操作放大器。

如果需要,可以使用操作放大器来增强滤波器的增益和带宽。

6. 测试及调整。

连接信号源和输出设备,对滤波器进行测试,并根据需要调
整电路参数。

需要注意的是,这只是一个基本的二阶巴特沃斯滤波器电路设计步骤的概述。

具体的设计取决于所需的截止频率、阻带衰减率和其他特定需求。

(完整word版)巴特沃斯带阻数字滤波器设计matlab程序及仿真图 - 副本

(完整word版)巴特沃斯带阻数字滤波器设计matlab程序及仿真图 - 副本

fs=15000;T= 1/fs;rp=1;rs=40;wp1=0.11*pi;wp2=0.81*pi;ws1=0.31*pi;ws2=0.61*pi;%数字带阻滤波器技术指标wc1=(2/T)*tan(wp1/2);%频率预畸变wc2=(2/T)*tan(wp2/2);wr1=(2/T)*tan(ws1/2);wr2=(2/T)*tan(ws2/2);w0=sqrt(wc1*wc2);B=wc2-wc1;wp=1;%归一化通带截止频率ws=wp*(wr1*B) / (w0^2-wr1^2) ; %归一化阻带截止频率[N,wc]=buttord(wp,ws,rp,rs,'s')%求滤波器阶数和3dB截止频率[Z,P,K]=buttap(N)%设计模拟低通滤波器[Md,Nd]=zp2tf(Z,P,K)%将零极点形式转换为传输函数形式[M,N]=lp2bs(Md,Nd,w0,B)%对低通滤波器进行频率变换,转换为带阻滤波器[h,w]=freqs(M,N);%模拟带阻滤波器的幅频响应plot(w/(2*pi),abs(h));grid;xlabel('频率Hz');ylabel('幅度');title('模拟带阻滤波器');[b,a]=bilinear(M,N,15000)%对模拟滤波器双线性变换figure(1);freqz(b,a);[H,W]=freqz(b,a); %绘出频率响应;axis([0,1,-100,20]);figure(2);plot(W*fs/(2*pi),abs(H));grid on;xlabel('频率/Hz');ylabel('幅值');n=0:199;t=n/fs;x=sin(2*pi*400*t)+3*sin(2*pi*3000*t)+2*sin(2*pi*5000*t);figure(3);subplot(311);plot(t,x);axis([0,0.01,-5,5]);title('输入信号');grid on;y=filter(b,a,x);subplot(312);stem(y,'.');title('输出序列');grid on;ya=y*sinc(fs*(ones(length(n),1)*t-(n/fs)'*ones(1,length(t))));subplot(313);plot(t,ya);axis([0,0.01,-3,3]);title('输出波形');grid on;t=(0:100)/fs;figure(4)fs=1.5*10000;n=(0:100)/fs;f=sin(2*pi*400*t)+3*sin(2*pi*3000*t)+2*sin(2*pi*5000*t);y=fftfilt(b,x);[H1,f1]=freqz(f,[1]);[H2,f2]=freqz(y,[1]);f1=f1/pi*fs/2;f2=f2/pi*fs/2;subplot(2,1,1);plot(f1,abs(H1));title('输入信号的频谱');subplot(2,1,2);plot(f2,abs(H2));title('输出信号的频谱');基于Matlab 的带阻滤波器设计.10.20.30.40.50.60.70.80.91-800-600-400-2000N o r m a l i z e d Fre q u⨯π r a d /s a m p l e Ph a se(d e g r e e s )00.10.20.30.40.50.60.70.80.91-100-50N o r m a l i z e d Fr e q u⨯π r a d /s a m p l e M a g n i tu d e1000200030004000500060007000800000.20.40.60.811.21.4频率/Hz幅值00.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-505输入信号020406080100120140160180200-22输出序列0.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-202输出波形01000200030004000500060007000800050100150200输入信号的频谱010002000300040005000600070008000102030输出信号的频谱N =4wc =1.7947b =0.0186 -0.0410 0.1082 -0.1355 0.1810 -0.1355 0.1082 -0.0410 0.0186a =1.0000 -0.6707 -1.3750 0.5678 1.1964 -0.2996 -0.4631 0.0496 0.0762>。

巴特沃斯低通滤波器课程设计

巴特沃斯低通滤波器课程设计

电路基础课程设计巴特沃斯低通滤波器设计目标:通带边界频率ωc=4396rad/s (f c=700Hz);通带最大衰减αmax=3dB;阻带边界频率ωs=26376rad/s(f s=4200Hz); 阻带最小衰减αmin=30dB;1.设计步骤⑴设计电压转移函数①将给定的电压衰减技术指标进行频率归一化选取归一化角频率ωr=ωc,这样通带边界频率Ωc=ωc/ ωr=1,阻带边界频率Ωs=ωs/ ωr=ωs/ωc。

②根据归一化的技术指标求出电压转移函数巴特沃斯低通滤波器的阶数n=Log(100.1αmin−1) 2Log(Ωs)带入数据求得n=1.93 取整得n=2由a k=2sin(2k−1)π2n,b k=1和H(s)=U out(s)U in(s)=∏A ks2+a k s+b kn2k=1可得到电压转移函数H(s)=U out(s)U in(s)=1s2+√2s+1将转移函数进行反归一化,即另s=sωc 得到实际转移函数H(s)=U out(s)U in(s)=1s243962+√2s4396+1⑵转移函数的实现选取下图作为实现转移函数的具体电路:列节点方程求解转移函数节点1 U1(1R1+1R2+s∗C1)−1R1U in−1R2−s∗C1∗U2=0节点2 (1R2+s∗C2)U2−1R2U1=0又有U out=U3解得H(s)=U outU in=11+(R2+R2)s∗C2+C1C2R1R2s2对比解得的电压转移函数和推得的电压转移函数里各项的系数并且令R1= R2,C1=1μF,可以得到C1=11000000F=1μFR1=250000√21099Ω=321.705ΩR2=250000√21099Ω==321.705ΩC2=12000000F=0.5μF因实验室没有0.5μF的电容因此取C2=0.47μF2.计算机仿真⑴软件环境:Multisim 10⑵电路图:⑶仿真结果:①700Hz下的波形图②4200Hz下的波形图③波特图◎700Hz下衰减2.673dB◎4200Hz下衰减30.491dB3.实验室实际操作因实验室没有0.5μF的电容和321.705Ω的电阻,因此取C2=0.47μFR1=R2=330Ω实际连电路时,选取集成电路块的第1、2、3引脚分别作为放大器的输出端、负端和正端,第4和11引脚作为供电端,C2一端连接电压源的接地线。

Butterworth (巴特沃斯)滤波器设计参考

Butterworth (巴特沃斯)滤波器设计参考

可以看出 fc@1000Hz 有-3dB 的衰减。
6
3. 1 阶 Butterworth HPF 设计
1 z 1 s C1 1 z 1 1 z 1 1 H ( z) , set G (C1 1) (C1 1) z 1 C1 1 1 H (s) , s 1 G Gz 1 H ( z) 1 G (C1 1) z 1 B0 G, A0 1, B1 B0 , B2 0 A2 0
多项式因子
1 2 3 4 5 6 7 8
(Note: 参考 维基百科 “巴特沃斯滤波器”)
1
由此得到 d0=a0=aN=1 情况下的 Butterworth 多项式展开的系数表:
H (s)
d0 , a0 a N d 0 1 a 0 a1 s a 2 s 2 a N s N
Butterworth (巴特沃斯)滤波器设计参考
-- By Water 在嵌入式音频产品开发过程中经常会到 LPF(Low Pass Filter 低通滤波器)和 HPF(High Pass Filter 高通滤 波器),一般情况下都是离线用工具(如: Matlab)设计好滤波器的参数(Filter Coefficients)再应用到产品中 去。但有些状况下需要用户自己根据需求来实时(Real-time)调整 Filter Frequency Response (滤波器频率响应), 这种情形下就需要在嵌入式系统中实时根据客户的设定需求来产生相应的 Filter Coefficients。 下文就汇总出了 N 阶 IIR LPF & HPF Butterworth 滤波器系数的设计方法, 具体的算法原理推导可以参考陈佩 青《数字信号处理教程》一书,此处只给出工程上可以应用的结论。

巴特沃斯数字带阻滤波器讲解

巴特沃斯数字带阻滤波器讲解

《数字信号处理》课程设计报告设计课题滤波器设计与实现专业班级姓名学号报告日期 2012年12月目录1. 课题描述 (2)2. 设计原理 (2)2.1 滤波器的分类 (3)2.2 数字滤波器的设计指标 (3)2.3 巴特沃斯数字带阻模拟滤波器 (3)2.3.1 巴特沃斯数字带阻滤波器的设计原理 (4)2.3.2 巴特沃斯数字带阻滤波器的设计步骤 (7)3. 设计内容 (8)3.1 用MATLAB编程实现 (10)3.2 设计结果分析 (10)4. 总结 (10)5. 参考文献 (11)课程设计任务书题目滤波器设计与实现学生姓名学号专业班级设计内容与要求一、设计内容:设计巴特沃斯数字带阻滤波器,阻带频率200~500hz,通带上限频率600hz, 通带下限频率150hz,通带衰减为0.5dB,阻带最大衰减20dB,采样频率2000hz,画出幅频、相频响应曲线,并设计信号验证滤波器设计的正确性二、设计要求1 设计报告一律按照规定的格式,使用A4纸,格式、封面统一给出模版。

2 报告内容(1)设计题目及要求(2)设计原理 (包括滤波器工作原理、涉及到的MATLAB函数的说明)(3)设计内容(设计思路,设计流程、仿真结果)(4)设计总结(收获和体会)(5)参考文献(6)程序清单起止时间2012年 12 月 3日至 2011年 12月11 日指导教师签名2011年 12月 2日系(教研室)主任签名年月日学生签名年月日1 .课题描述数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置。

数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。

由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。

使用MATLAB信号处理箱和BW(巴特沃斯)设计低通数字滤波器。

2.设计原理2.1 滤波器的分类数字滤波器有低通、高通、带通、带阻和全通等类型。

巴特沃斯数字带阻滤波器讲解

巴特沃斯数字带阻滤波器讲解

《数字信号处理》课程设计报告设计课题__________ 滤波器设计与实现专业班级____________________________姓名_______________________________学号 ______________________________报告日期 目录1. 课题描述 (2)2. 设计原理 (2)2.1 滤波器的分类 (3)2.2 数字滤波器的设计指标 (3)2.3 巴特沃斯数字带阻模拟滤波器 (3)2.3.1 巴特沃斯数字带阻滤波器的设计原理 .....................4 2.3.2 巴特沃斯数字带阻滤波器的设计步骤 ....................73. 设计内容 (8)3.1 用 MATLAB^程实现 (10)3.2 设计结果分析 (10)4. 总结 (10)5. 参考文献 ................... 11年12月2012课程设计任务书1 .课题描述数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置。

数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。

由于电子计算机技术和大规模集成电路的发展,数字滤波器已可用计算机软件实现,也可用大规模集成数字硬件实时实现。

使用MATLAB信号处理箱和BW(巴特沃斯)设计低通数字滤波器。

2. 设计原理2.1滤波器的分类数字滤波器有低通、高通、带通、带阻和全通等类型。

它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。

如果数字滤波器的内部参数不随时间而变化,则称为时不变的,否则为时变的。

如果数字滤波器在某一给定时刻的响应与在此时刻以后的激励无关,则称为因果的,否则为非因果的。

如果数字滤波器对单一或多个激励信号的响应满足线性条件,贝帰为线性的,否则为非线性的。

应用最广的是线性、时不变数字滤波器。

数字滤波器也可以按所处理信号的维数分为一维、二维或多维数字滤波器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巴特沃斯带阻滤波器设计方法
巴特沃斯滤波器是一种常用的电子滤波器,用于滤除特定频率范围内的信号。

带阻滤波器是巴特沃斯滤波器的一种特殊类型,用于在特定频率范围内阻止信号通过。

设计带阻滤波器需要考虑一些关键因素,包括滤波器的阶数、截止频率、通带和阻带的衰减等。

首先,确定滤波器的阶数。

巴特沃斯滤波器的阶数决定了滤波器的斜率和衰减率。

一般来说,阶数越高,滤波器的性能越好,但相应的设计和实现也更复杂。

根据实际需求和可实现的复杂度,选择适当的阶数。

其次,确定滤波器的截止频率。

带阻滤波器需要指定两个截止频率,即通带截止频率和阻带截止频率。

通带是允许信号通过的频率范围,而阻带则是需要被滤除的频率范围。

根据应用需求和信号特性,确定这两个截止频率的数值。

然后,计算滤波器的元件数值。

根据巴特沃斯滤波器的设计公式,计算出滤波器的元件数值,包括电容和电感的数值。

这些数值决定了滤波器的实际工作特性,需要精确计算和选择。

接下来,进行滤波器的电路设计和实现。

根据计算得到的元件
数值,设计滤波器的电路图并选择合适的元件进行实现。

在设计过
程中需要注意元件的精度、稳定性和可获得性,确保设计的可实现
性和稳定性。

最后,进行滤波器的调试和性能验证。

实现滤波器电路后,需
要进行调试和性能验证。

通过实际测试和测量,验证滤波器的性能
是否符合设计要求,如通带衰减、阻带衰减、相位特性等。

总的来说,设计巴特沃斯带阻滤波器需要考虑阶数、截止频率、元件数值、电路设计和性能验证等多个方面。

综合考虑这些因素,
可以设计出满足特定要求的带阻滤波器电路。

相关文档
最新文档