磁路的基本概念

合集下载

磁路设计的基本概念

磁路设计的基本概念

磁路设计的基本概念第一章磁路电机是一种机电能量转换装置,变压器是一种电能传递装置,它们的工作原理都以电磁感应原理为基础,且以电场或磁场作为其耦合场。

在通常情况下,由于磁场在空气中的储能密度比电场大很多,所以绝大多数电机均以磁场作为耦合扬。

磁场的强弱和分布,不仅关系到电机的性能,而且还将决定电机的体积和重量;所以磁场的分析扣计箅,对于认识电机是十分重要的。

由于电机的结构比校复杂,加上铁磁材料的非线性性质,很难用麦克斯韦方程直接解析求解;因此在实际工作中.常把磁场问题简化成磁路问题来处理。

从工程观点来说,准确度已经足够。

本章先说明磁路的基本定律,然后介绍常用铁磁材料及其性能,最后说明磁路的计算方法。

1-1 磁路的基本定律一、磁路的概念磁通所通过的路径称为磁路。

图1—1表示两种常见的磁路,其中图a为变压器的磁路,图b为两极直流电机的磁路。

在电机和变压器里,常把线圈套装在铁心上。

当线圈内通有电流时、在线圈周围的空间(包括铁心内、外)就会形成磁场。

由于铁心的导磁性能比空气要好得多,所以绝大部分磁通将在铁心内通过,并在能量传递或转换过程中起耦合场的作用,这部分磁通称为主磁通。

围绕裁流线圈、部分铁心和铁心周围的空间,还存在少量分散的磁通,这部分磁通称为漏磁通。

主磁通和漏磁通所通过的路径分别构成主磁路和漏磁路,图1—l中示意地表出了这两种磁路。

用以激励磁路中磁通的载流线圈称为励磁线圈(或称励磁绕组),励磁线圈中的电流称为励磁电流(或激磁电流)。

若励磁电流为直流,磁路中的磁通是恒定的,不随时间而变化,这种磁路称为直流磁路;直流电机的磁路就属于这一类。

若励磁电流为交流(为把交、直流激励区分开,本书中对文流情况以后称为激磁电流),磁路中的磁通随时间交变变化,这种磁路称为交流磁路;交流铁心线圈、变压器和感应电机的磁路都属于这一类。

二、磁路的基本定律进行磁路分析和计算时,往往要用到以下几条定律。

安培环路定律沿着任何一条闭合回线L,磁场强度H的线积分值恰好等于该闭合回线所包围的总电流值∑i,(代数和).这就是安培环路定律(图l—2)。

磁路欧姆定律

磁路欧姆定律

带负载后磁动势的平衡关系为:
铁芯中主磁通的最大值 在变压器空载或有负载
i1 N1 i2 N 2 i10 N
时基本不变 。
(3-31)
变压器工作原理
(变换电流作用)
由于变压器铁芯材料的导磁率高 、空载励磁电流 i10 很小,可忽略
i10 u1 e1
i2
e2
u20
原、2
(3-34)
阻抗变换举例:扬声器上如何得到最大输出功率?
(2)将负载通过变压器接到信号源上,使其阻抗匹配。 设变比 则:
RL 3.5 8 98
2
2
N1 K 3.5 : 1 N2
Rs U1
i1
N1 N 2
i2
u2 RL
输出功率为:
U 50 pL R R RL 100 98 98 6.25W L S (3-35)
(3-5)
二、铁磁材料的磁性能:
1、磁导率高
r
》1
磁畴结构
在物质内部电子绕原子核 旋转及电子本身自转形成 了分子电流,这个电流会 产生磁场。同时铁磁材料 内部的分子之间有一种相 互作用力,使得每个区域 内的分子磁场具有相同的 方向,组成许多小磁体, 具有磁性,这些小磁体称 为“磁畴”。
(3-6)
流一直很大,将会导致过热,把线圈烧坏。
磁路小结
直流磁路
U I R
(U不变,I不变)
IN Φ Rm
(Φ随Rm变化)
交流磁路
U Φm 4.44fN
( U不变时,
IN ΦRm
( I 随 Rm 变化)
(3-22)
Φ m基本不变)
§7-2 变压器

磁路与磁路的欧姆定律

磁路与磁路的欧姆定律

例题:铸钢圆环上绕有线圈800匝,通有2A电流,环
平均周长为0.5m,截面积3.25×10-4m2,求线
圈磁动势、磁阻和磁通。(硅钢片的磁导率 为7500H/m)
Fm NI
Rm
l
S
Fm Rm
几点说明:
1. 磁阻Rm 的大小取决于磁路的尺寸和材料的磁导率。
Rm
l
S
2. 很大,但不是常数,因此 Rm 也不是常数。所以磁
#
返回
磁路基础知识
磁路基础知识
磁路基础知识
磁路基础知识
磁路基础知识
磁路基础知识
磁路基础知识
磁路基础知识
磁路欧姆定律
磁通所通过的路径称为磁路。
磁路欧姆定律
磁路欧姆定律
磁路欧姆定律
磁路欧姆定律
磁路欧姆定律
磁路欧姆定律
磁路与电路的比较
电磁铁
电磁铁
电磁铁
电磁铁的实际应用

不变
整块铸钢或工业纯铁 组成
交流电磁铁
交流电磁铁
励磁电流随空气间隙的增 大而增大 有 脉动变化
由多层彼此绝缘的硅钢片 叠成
注意:即使是额定电压相同的交、直流电磁铁,也决不能互换使用
电磁铁的特点
1. 励磁电流是由励磁线圈的外加电压U 和线圈电阻R 决定的
I
U R
电流是恒定的,无感应电动势产生。
2. 无磁滞和涡流损耗,铁心可以使用整块的铸钢、软铁。
线圈 衔铁
铁心中的磁通是交变的,空气隙处的磁感应强度为:
B0 Bm sin t
吸力
f 4B02S 105 4Bm2 sin 2 tS0 105
Fm
1 2
(1 cos 2t)

电机学第五版第1章 磁路

电机学第五版第1章 磁路
可得一系列大小不同的磁滞回线,再将各磁滞回线的顶点联接起来,所得的 曲线。
图1-9 基本磁化曲线
1.2 常用的铁磁材料及其特性
2.磁化曲线和磁滞回线
图1-10 电机中常用铁磁材料的基本磁化曲线 (图中的×0.1、×10、×100等分别表示把横坐标的读数乘0.1、乘10、乘100)
1.2 常用的铁磁材料及其特性
主磁路:主磁通所通过的路径。 漏磁路:漏磁通所通过的路径。 励磁线圈:用以激励磁路中磁通的载流线圈。 励磁电流:励磁线圈中的电流(若为交流,称为激磁电流)。
直流:直流磁路(例如:直流电机) 按电流性质分类
交流:交流磁路(例如:变压器 )
1.1 磁路的基本定律
2.磁路的基本定律
分析和计算磁场时,常常要用到两条基本定律,一条是安 培环路定律,另一条是磁通连续性定律。把这两条定律应用到 磁路,可得磁路的欧姆定律和磁路的基尔霍夫第一和第二定律, 下面对这些定律作一说明。
1.1 磁路的基本定律
2.磁路的基本定律 安培环路定律 沿着任何一 条闭合回线L,磁场强度H的 线积分值∲LH·dl恰好等于该 闭合回线所包围的总电流值 ∑i(代数和) 。
附图1-2,有:
图1-2 安培环路定律
1.1 磁路的基本定律
2.磁路的基本定律
磁路的欧姆定律 作用在磁路上的磁动 势等于磁路内的磁通量乘以磁阻。
矫顽力 要使B值从减小到零,必须加上 相应的反 向外磁场,此反向磁场强度Hc 称为矫顽力。
磁滞 铁磁材料所具有的这种磁通密度B 的变化滞后于磁场强度H变化的现象。源自图1-8 铁磁材料的磁滞回线
1.2 常用的铁磁材料及其特性
2.磁化曲线和磁滞回线 基本磁化曲线 对同一铁磁材料,选择不同的磁场强度进行反复磁化,

电工电子技术基础2.3 磁路的基本概念

电工电子技术基础2.3 磁路的基本概念

Rm

l
S
式中, 为磁导率,单位 H/m;长度 l 和截面积 S 的单位
分别为 m 和 m2 。因此,磁阻 Rm 的单位为 1/亨(H1)。由于磁
导率 不是常数,所以 Rm 也不是常数。
3.磁路欧姆定律 (1) 磁路欧姆定律
通过磁路的磁通与磁动势成正比,与磁阻成反比,即
Em
Rm
上式与电路的欧姆定律相似,磁通 对应于电流 I ,磁动势
1.磁场对放置于其中的直线电流有力的作用,其大小为F =
BIl sin,方向可用左手定则判断。
2.通电线圈放在磁场中将受到磁力矩的作用。
五、铁磁性物质的磁化
1.铁磁性物质都能够磁化。铁磁性物质在反复磁化过程中, 有饱和、剩磁、磁滞现象,并且有磁滞损耗。
2.铁磁性物质的 B 随 H 而变化的曲线称为磁化曲线,它表示 了铁磁性物质的磁性能。磁滞回线常用来判断铁磁性物质的性质和 作为选择材料的依据。
六、磁路
1. 磁通经过的闭合路径称为磁路。磁路中的磁通、磁动势 和磁阻的关系,可用磁路欧姆定律来表示,即
Em
Rm
其中,Rm

l
S
,Em = NI
2. 由于铁磁性物质的磁导率 不是常数,因此磁路欧姆
定律一般不能直接用来进行磁路计算,只用于定性分析。
2.磁路
磁通经过的闭合路径叫磁路。磁路和电路一样,分为有分支磁 路和无分支磁路两种类型。
图 5-12 给出了无分支磁路,图 5-13 给出了有分支磁路。在无 分支磁路中,通过每一个横截面的磁通都相等。
图 5-12 主磁通和漏磁通
图 5-13 有分支磁路
二、磁路的欧姆定律
1.磁动势
通电线圈产生的磁通 与线圈的匝数 N 和线圈中所通过

电机学讲义-磁路

电机学讲义-磁路

i F / N 47.7 A 9.54102 A 500
3、磁路的基尔霍夫定律
(1)磁路的基尔霍夫电流定律(磁通
是连续的) 1 2 3 0

0
(2)磁路的基尔霍夫电压定律(实质 是安培环路定律)
3
Ni H klk H1l1 H 2l2 H 1Rm1 2Rm2 Rm k 1
磁滞回线——当H在Hm和- Hm之间反复变化时,呈现磁
滞现象的B-H闭合曲线,称
为磁滞回线。磁滞回线是逆 时针旋转的,要消耗能量。
3、基本磁化曲线
对同一铁磁材料,选择不同的Hm反复磁化,得到不同的 磁滞回线。将各条回线的顶点连接起来,所得曲线称为基 本磁化曲线。
总结:熟悉三 种磁化曲线的 图形。剩磁Br, 矫顽力Hc。
[补]电机的铁心为什么常常用硅钢板叠成?
【补】两个电感的尺寸、形状和线圈匝数均相同,一 个是铝心,一个是铁心,当它们并联接在同一个交流 电源上时,电流是否相同?
第三节 直流磁路的计算
磁路计算正问题——给定磁通量,计算所需的励磁磁动势 磁路计算逆问题——给定励磁磁势,计算磁路内的磁通量
磁路计算正问题的步骤: 1)将磁路按材料性质和不同截面尺寸分段; 2)计算各段磁路的有效截面积Ak和平均长度lk; 3)计算各段磁路的平均磁通密度Bk ,Bk=Φk/Ak; 4)根据Bk求出对应的Hk; 5)计算各段磁位降Hklk,最后求出 F=∑ Hklk。
有关交流磁路和铁心线圈的计算,将在变压器一章讨论。
第五节 电机的绝缘材料
绝缘纸、塑料薄膜、无纺布、云母、绝缘漆等。
电机的绝缘等级按照所用绝缘材料的耐热性能来划分:
AE B
F
H
C
105 120 130 155 180 大于200

电机学第1章磁路

电机学第1章磁路
i

涡流损耗
铁芯是有阻值的,当磁通交变时,铁芯中就会感应交变的电 势,进而在铁心内引起环流。这些环流通作涡流状流动,称 为涡流涡流引起的损耗,称为涡流损耗。
pw k w f B
2
2 m
思考:如何尽量减小涡流损耗?
• 为减小涡流损耗, 电机和变压器的铁 心都用含硅量较高 的薄硅钢片叠成。
后于磁场强度变化,通常在电机内也可理解为磁通落后于 激磁电流的现象,称为磁滞现象)。
磁滞回线:磁场强度H缓慢地循环变化,B-H曲线封 闭曲线 • 磁滞现象是铁磁材料的另一个特性。
B
Bm
b
a
Br
Hc
c f e
Hc
H
Hm
Hm
d
Bm
图1-7 铁磁材料的磁滞回线
基本磁化曲线:
对同一铁磁材料,选择不同的磁场强度进行反复 磁化,可得一系列大小不同的磁滞回线,再将各 磁滞回线的顶点联接起来,所得的曲线。
2.磁化曲线和磁滞回线
磁化曲线:将一块尚未磁化的铁磁材料进行磁化,当磁 场强度H由零逐渐增大时,磁通密度B将随之增大, 得到曲线B=f(H)。 特性:①具有高的导磁性能;②磁化曲线呈非线性(饱 和特性)它的磁化曲线具有饱和性,磁导率μFe不 是常数,且随H的变化而变化。 磁滞回线在oa段:当H增大→B增大,但B增大速度较慢 在ab段:当H增大→B增大,B增大速度快; 在bc段:B随H增大的速度又较慢; 在cd段:为磁饱和区(又呈直线段)。其中拐弯点b称 为膝点;c点为饱和点。 • 过了饱和点c,铁磁材料的磁导率趋近μ0。
R
k
mk
Fm
• 磁路和电路的比拟仅是一种数学形式上的类似、 而不是物理本质的相似。

第五章磁路与变压器

第五章磁路与变压器

A*
A*
X
X
a* x
a x*
i
F1
A •
Xi a
• x
F2
A •
X a•
x
i
F1
A •
Xi a
x 同名端

F2
A •
X a
x•
同名端
二、线圈的接法 电器使用时两种电压(220V/110V)的切换:
1
*
3
*
2
4
220V: 联结 2 -3
110V: 联结 1 -3,2 -4
两种接法下线圈工作情况的分析
220V:联结 2 -3
i
1 10 *
N
3
U 220
*
2
N
4
励磁
i10
2
N
Φ m
U220 4.44 f (2N )Φm
Φ m
U 220
4.44 f 2N
220V:联结 2 -3
Φ m
U 220
4.44 f 2N
110V:联结 1 -3,2 -4
i10 1
*
1,3
3
U 110
*
2
2,4
4
U110 4.44 f (N )Φm
按绕组数分: 双绕组、多绕组及自耦变压器。
二. 构造
变压器铁心: 硅钢片叠压而成。 变压器绕组: 高强度漆包线绕制而成。 其它部件: 油箱、冷却装置、保护装置等。
线圈 铁心
铁心
壳式变压器
线圈 心式变压器
单相变压器的基本结构
i1 Φ
u1
铁芯
i2
u2 RL
原边 绕组
副边 绕组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁路的基本概念
磁路是指从磁场产生的力线通过介质(如铁芯、空气等)所形成的路径。

在磁路中,磁感应强度(或磁场强度)、磁通量、磁阻等都是基本概念。

磁感应强度(B):在物理学中,磁感应强度是一个表示磁场强度大小和方向的物理量,单位为特斯拉(T)。

磁通量(Φ):磁通量是通过一个曲面的磁感应线数目,通常表示为Φ,单位为韦伯(Wb)。

磁阻(Rm):磁通量在磁路中的传递需要经过介质,介质对于磁通量的传递起到阻碍作用,称为磁阻,单位为亨利(H)/安培(A)。

通过这些基本概念,可以描述磁路的特性,如磁路的导磁性、磁路的磁阻大小、磁路中磁通量的分布等等。

同时,在电机、变压器等电力设备中,磁路的设计和优化也十分重要。

相关文档
最新文档