模糊数学(模糊聚类、模糊映射与变换)

合集下载

模糊数学——模糊映射与模糊变换教学课件

模糊数学——模糊映射与模糊变换教学课件

f R 是X到Y的模糊映射。

于是,也确定了模糊映射 f R
模糊变换
定义4.3.2 称映射 T : F ( X ) F (Y ), A T ( A) B
为X到Y得模糊变换。
由定义可知,模糊变换是集合变换的推广,即 在影射T下,将模糊集A变成模糊集B. 若模糊变换T满足
T ( A B) T ( A) T ( B), T (A) T ( A),
因为Tf是由f诱导出的,所以 :Tf(A)=A•Rf .
r11 r12 令R r21 r22 , r r r 1,1,0 r 31 32 r
r 11 1 有,,0,0 r21 r 31
11 21
r 12 r22 0.2,0.5 , r32
例4. 3. 1 设 X x1 , x2 , x3 , x4 , Y y1, y2, y3 , 令
f1 : x1 f1 ( x1 ) x2 f1 ( x2 ) x3 f1 ( x3 ) x4 f1 ( x4 ) 1 y1 , y1 1 1 y1 , y2 , y1 y2 1 y3 , y3 1 1 1 y1 , y2 , y3 ; y1 y2 y3 0.2 0.3 0.8 , y1 y2 y3
B是Y上的模糊子集。 因此,T是X到Y的一个模糊变换。
模糊变换
例4.3.3
f : X Y,
T : F ( X ) F (Y ),
由1.4节的扩张原理知
A T ( A) f ( A), T 1 : F (Y ) F ( X ), B T ( B) f ( B)
则T是X到Y的模糊线性变换,

模糊数学_3第五章 模糊映射与变换,模糊关系方程

模糊数学_3第五章 模糊映射与变换,模糊关系方程

f fR : u V
满足:
{ f (u)} R | u
f (u ) vu
反之任给一普通映射 f : U V 也可确定普通关系
R {(u,v) | v f (u )}

1 当v f (u ) X R (u ,v) 0 当v f (u )
普通关系的映射象和原象都是清晰的。
~
R | u 4 f (u4 ) (0.7,0,0.4)
~
R | u1 0.4 0.7 0 ~ R | u 2 0.1 0.4 0.3 R ~ u R|u ~ 3 0 0.5 0 R | u 4 0.7 0 0.4 ~ v
对于模糊集合普通映射, f : U V 给定 A F (U ),在 f 之下的象应当是什么? ~ 给定 B F (V ),在 f 之下的原象应当是什么? ~ 普通集合 f 怎样扩展到 F (U ) 与 F (V ) 之间去。 • 定义5.6 设 f : U V ,所谓 f 在模糊集类上的扩展, 1 乃是指这样两个映射,仍记为 f 与 f
f : U V
设 A 1, 0, 0.2, 0, 0.1,, 0.9
~
由扩展原理: f ( A) (v1) A (u1 ) A (u2 ) A (u3 )
~ ~ ~ ~
1 0 0.2 1
f ( A) (v2 ) 0.1
f ( A) (v3 ) 0.9
在身高论域V上应表现为
0 .1 0 .2 1 . 5 1 .6
b a R (0.8,1,0.8,0.6,0.2) 0.8 1 0.8 0.6 0.2 1.4m 1.5m 1.6m 1.7m 1.8m

模糊数学

模糊数学

模糊性与随机性的区别
事物 事物分确定性现象与非确定性现象
- 确定性现象:指在一定条件下一定会发生的现象
- 非确定性现象分随机现象与模糊现象
* 随机性是对事件的发生而言,其事件本身有着明确的含义, 只是由于发生的条件不充分,事件的发生与否有多种可能性 * 模糊性是研究处理模糊现象的,它所要处理的事件本身是模 糊的
A : U {0,1} u A ( u),
其中
1, u A A ( u) 0, u A
函数 A 称为集合A的特征函数。
Ⅱ、模糊集合及其运算
美国控制论专家Zadeh教授正视了经典集合描述的 “非此即彼”的清晰现象,提示了现实生活中的绝大多数 概念并非都是“非此即彼”那么简单,而概念的差异常以 中介过渡的形式出现,表现为“亦此亦彼”的模糊现象。

ab ab a b ,a b 1 ab 1 (1 a )(1 b)

模糊集的并、交、余运算性质 幂等律:A∪A = A, A∩A = A; 交换律:A∪B = B∪A,A∩B = B∩A; 结合律:(A∪B)∪C = A∪(B∪C), (A∩B)∩C = A∩(B∩C) ; 吸收律:A∪(A∩B) = A,A∩( A∪B)= A; 分配律:(A∪B)∩C = (A∩C)∪(B∩C); (A∩B)∪C = (A∪C)∩(B∪C); 0-1律: A∪U = U,A∩U = A; A∪ = A,A∩ = ; 还原律: (Ac)c = A ;
模糊集合及其运算
u0 是固定的,而 A* 在随机变动。 特点:在各次试验中,
模糊统计试验过程:
(1)做n次试验,计算出
x 140 A( x) 190 140
也可用Zadeh表示法:

第四章 模糊数学

第四章 模糊数学

(可多位专家取其平均值,如体操比赛打分) 3 描点( xi, A ( xi )),作出 A ( xi )的曲线。

例2:考虑年龄论域X 上的模糊子集A 青年人的年龄, 请专家评定结果如表:
0-14 0
15 18-28 30 35 38 40 45-200 0.5 1 0.9 0.6 0.5 0.3 0
A ( x4 ) 0,则有:




1 0.6 0.1 0 A (最后一项可不写) x1 x2 x3 x4
3、隶属函数的确定 这里介绍两种常用的确定方法,以R1中的模糊 集为例: (1)专家评定法(德尔菲法) 步骤: 1 给定论域X 及其模糊子集A; 2 适当选取X 中若干点xi,请专家评定其 A ( xi );
第四章 模糊数学(Fuzzy Maths)
第一节 模糊集(Fuzzy Sets)
一、模糊现象与模糊集
有些概念,其外延是清楚的,如男人、女人。
而有些概念,其外延不很清楚,如青年人、老年人。 于是我们有如下定义: 模糊集—边界不清楚的集合。 例如:
雨天是清晰集(普通集),而晴天是模糊集;
青年人、老年人也是模糊集。 事实上,“青年”变为“老年”是一个连续的 过程。因此,处于中间过渡阶段年龄的人,自然就 具有“亦此亦彼”的属性。我们把这种属性称为:

书159~161页给出了一个模糊统计的例子。 有时候我们得到的 A ( x)的图形是不规则的,很难

写出其精确的数学表达式。有时为了计算、编程的需 要,我们希望得到 A的函数表达式,可根据估计的 A

进行适当修正,得到与其最接近的函数表达式。下面 介绍几种常见的模糊分布曲线: 4、几种常见的 A ( x)类型(论域为R1):

模糊数学方法

模糊数学方法
。 在实际处理过程中,R的收敛速度是比较快的。为进一步加快收敛速
度,通常采取如下处理方法: R→R2→R4→R8→…→R2k
即先将R自乘改造为R2,再自乘得R4,如此继续下去,直到某一步出现 R2k=Rk=R*。此时R*满足了传递性, 于是模糊相似矩阵(R)就被改造成了 一个模糊等价关系矩阵(R*)。
糊变量,相应的参数分别为
,
,
(i=1, 2, …, n; j=1, 2, …, m)。其中,
,
,
,而
是xij的方差。待判别对象B的m个指标分别具有参数aj , bj (j=1, 2, …, m),且为正态型模糊变量,则B与各个类型的贴近度为
记Si=
,又有Si0=
,按贴近原则可认为B与Ai 0最贴近。
注意事项:系统最多可处理20个因子,100个样本。 例如,在“有序样本最优分割”一节中,我们将历年三化螟发生动态 根据最优分割结果分成3类, 即将三化螟种群消长过程划分为猖獗缓和猖 獗三个阶段, 这样的划分结果与该县历年水稻种植制度(一季中稻为主纯 双季稻单双季混栽)的变化是相吻合的。为识别1988 年之后三化螟发生 动态,我们也可以应用模糊识别方法进行分析。现将待识别数据和原来
模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。 实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育 等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信 息控制、人工智能等诸多领域的应用也已初见成效。从该学科的发展趋 势来看,它具有极其强大的生命力和渗透力。
在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别 和综合评判等方法。在DPS系统中,我们将模糊数学的分析方法与一般 常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能 模块程序的操作要领,供用户参考和使用。

模糊数学ppt课件

模糊数学ppt课件

1 2
,则有rij'
பைடு நூலகம்[0,1]
。也可以
用平移—极差变换将其压缩到[0,1]上,从而得到模糊相似矩阵
R (rij )nm
(2)绝对值指数法. 令
m
rij exp{ xik x jk }(i, j 1, 2, , n) k 1
则 R (rij )nm
(3)海明距离法. 令
rij
1
d (xi , x j )
(6)主观评分法:设有N个专家组成专家组,让每一位专家对
所研究的对象 x i 与 x j 相似程度给出评价,并对自己的自信度
作出评估。如果第k位专家 Pk 关于对象 x i与 x j 的相似度评价
为 rij (k ),对自己的自信度评估为aij (k ) (i, j 1,2,, n),则相关 系数定义为
)2
(i, j 1,2,, n)
其中E为使得所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
(5)切比雪夫距离法. 令
rij
d (xi ,
1 xj)
Q
d
m
k 1
( xi xik
,
x
j ), x jk
(i, j 1,2,, n)
其中Q为使所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
第三步. 聚类 所谓模糊聚类方法是根据模糊等价矩阵将所研究的对象进
行分类的方法。对于不同的置信水平 [0,1] ,可以得到不同 的分类结果,从而形成动态聚类图。 (一)传递闭包法
通常所建立的模糊矩阵R 只是一个模糊相似矩阵,即R 不 一定是模糊等价矩阵。为此,首先需要由R 来构造一个模糊等

模糊数学-模糊数学基本知识

模糊数学-模糊数学基本知识

隶属函数参数化
1. 三角形隶属函数
0
trig ( x;
a,
b,
c)
x a ba
cx
cb
0
xa a xb b xc
cx
trig(x; a,b, c) max(min( x a , c x), 0) ba cb
参数a,b,c确定了三角形MF三个顶点的x坐标。
2. 梯形隶属函数
0
xa
trap(x, a, b, c, d )
g(x;50,20)
bell(x:20,4,50)
❖ (2)模糊子集运算的基本性质
模糊集合间的并、交、补(余)运算 具有如下的性质.
1)幂等律 A~ A~ A~, A~ A~ A~
2)交换律 A~ B~ B~ A~; A~ B~ B~ A~
3)结合律 ( A~ B~) C~ A~ (B~ C~),
论域U上的模糊集A由隶属函数uA来表征, uA的大小反映了x对于模糊子集的从属程度。 模糊子集完全由隶属函数来描述。
❖ 模糊子集的表示方法 (1)向量法
(2)查德表示法 有限集 无限集
模糊集举例 例4 设U={1,2,3,4,5,6}, A表示“靠近4”的数,则 AF (U),各数属于A的程度A(ui) 如表。
经典集合论的例子: 设U={ 红桃,方块,黑桃,梅花 }
V={ A,1,2,3,4,5,6,7,8,9, 10,J, Q, K } 求U×V
解: U×V={ (红桃,A),(红 桃, 2),……,(
梅花, K) }
35
模糊关系论例子: 设有一组学生U:
U={ 张三,李四,王五 } 他们对球类运动V:
( A~ B~) C~ A~ (B~ C~).

模糊数学简介

模糊数学简介

§1.4 模糊等价关系与经典等价关系
模糊等价关系
若模糊关系R是 上各元素之间的模糊关系 模糊关系, 若模糊关系 是X上各元素之间的模糊关系, 且满足: 且满足: (1)自反性 自反性: (1)自反性:R(x, x) =1; I ≤R (⇔ rii =1 ) ; ⇔ (2)对称性 对称性: (2)对称性:R(x, y) =R(y, x); T=R(⇔ rij= rji) ; R ⇔ (3)传递性 传递性: (3)传递性:R2⊆R, R2≤R. 则称模糊关系 模糊关系R是 上的一个模糊等价关系 模糊等价关系. 则称模糊关系 是X上的一个模糊等价关系.
模糊等价关系与经典等价关系的联系
若R是X 上的模糊等价关系,当且仅当, ∀λ ∈ [0,1], R λ 是X 上的经典等价关系。
第二部分 模糊数学的基本应用
2. 1 模糊聚类分析基础 2.2 模糊模式识别基础 2.3 模糊综合评判基础 2.4 模糊线性规划
y
§2.1 模糊聚类分析
数据标准化
设论域X 为被分类对象, 设论域 = {x1, x2, …, xn}为被分类对象,每个 为被分类对象 对象又由m个指标表示其形状 个指标表示其形状: 对象又由 个指标表示其形状: xi = { xi1, xi2, …, xim}, i = 1, 2, …, n 于是,得到原始数据矩阵为 于是,
, sj = 1 n
1 其中 x j = n
∑x
ij
∑ (x
i =1
n
ij
− xj)
2
平移 • 极差变换 xij − min{ xij | 1 ≤ i ≤ n} ′ xij = max{ xij | 1 ≤ i ≤ n} − min{ xij | 1 ≤ i ≤ n}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用λ =0.8时的截关系,将X分成4
个等价类:
{x1, x3}, {x2}, {x4}, {x5}
吉林大学计算机科学与技术学院
19
λ =0.6
1 0.4 0.8 0.5 0.5
0.4
1
0.4
0.4
0.4
1 0 1 0.8 0.4 1 0.5 0.5
0.5
0.4
0.5
1
0.6
0.5 0.4 0.5 0.6 1
t(R)0.6 1 0
0
0
0 0
1 0 0
0 0
1 1
1 1
利用λ =0.6时的截关系,将X分成3
个等价类:
{x1, x3}, {x2}, {x4, x5}
吉林大学计算机科学与技术学院
20
λ =0.5
1 0.4 0.8 0.5 0.5
r ij
1
0.1
m k 1
xik
x jk
,i
j
“环境”例中,采用“绝对值减数法” 问:得到的相似矩阵的维数是多少?
9
模糊相似矩阵
10
步骤2:相似关系等价关系
步骤1得到的矩阵一般满足自反性和 对称性
将模糊相似矩阵改造成模糊等价矩 阵
平方法 求传递闭包
11
至多计算多少次?
模糊相似矩阵5×5
1 1
1 1
11
利用λ =0.4时的截关系,将X分成1
个等价类:
{x1, x2, x3, x4, x5}
吉林大学计算机科学与技术学院
22
动态聚类图
λ由1变到0,Rλ的分类由细到粗
λ =1
λ =0.8 λ =0.6 λ =0.5 λ =0.4
x1 x2 x3 x4 x5
吉林大学计算机科学与技术学院
0.5
0.4
0.5
1
0.6
0.5 0.4 0.5 0.6 1
吉林大学计算机科学与技术学院
16
R的传递闭包t(R)=R4 对于t(R),依次取截关系
吉林大学计算机科学与技术学院
17
λ =1
1 0.4 0.8 0.5 0.5
0.4
1
0.4
0.4
0.4
t(R) 0.8 0.4 1 0.5 0.5
λ =0.8
1 0.4 0.8 0.5 0.5
0.4
1
0.4
0.4
0.4
1 0 1 0 0
0
1
0
0
0
t(R) 0.8 0.4 1 0.5 0.5
0.5
0.4
0.5
1
0.6
0.5 0.4 0.5 0.6 1
t(R)0.8 1 0
0
0
0 0
1 0 0
0 0
1 0
0 1
境污染分类”、“岩石分类”等 用到模糊聚类分析
4
分类问题
设U ={u1, u2, …, un }为待分类的全体 对象,其中每个待分类对象由一组数 据表征如下:
ui {xi1, xi2 ,..., xim}
问题转化为:如何建立对象ui与uj之 间的相似关系
5
何谓数据表征
例如,要对一些环境单元进行分类,判 断它们的污染程度
吉林大学计算机科学与技术学院
25
直接聚类法
建立模糊相似矩阵R后,无需求出 其传递闭包t(R)
直接从R出发,可以求得同样的聚
类图
x1 x2 x3 x4 x5
λ =1
λ =0.8
λ =0.6
吉林大学计算机科学与技术学院
21
λ =0.4
1 0.4 0.8 0.5 0.5
0.4
1
0.4
0.4
0.4
1 1 1 1 1
1
1
1
1
1
t(R) 0.8
0.5
0.5
0.4 0.4 0.4
1 0.5 0.5
0.5 0.5
1
0.6
0.6 1
t(R)0.4 1 1 1
1 1 1
1 1 1
7
步骤1:建立模糊相似关系
如何建立对象ui与uj之间的相似关系? 有许多方法,应用时根据实际情况,
选择一种方法来求ui与uj的相似关系 R(ui, uj)=rij 在“环境污染”的例子中,如何给 出模糊相似矩阵?
8
建立相似矩阵
建立模糊相似矩阵的注意事项:
rij∈[0,1]
1,i j
自反 对称
0.4
1
0.4
0.4
0.4
1 0 1 1 1
0
1
0
0
0
t(R) 0.8 0.4 1 0.5 0.5
0.5
0.4
0.5
1
0.6
0.5 0.4 0.5 0.6 1
t(R)0.5 1 0 1 0 1 0
1 1 1
1 1
1 1
11
利用λ =0.5时的截关系,将X分成2
个等价类:
{x1, x3, x4, x5}, {x2}
k=[log25]+1=2+1=3 最坏情况下,RR2R4R8,计
算到R8
吉林大学计算机科学与技术学院
12
吉林大学计算机科学与技术学院
13
吉林大学计算机科学与技术学院
14
吉林大学计算机科学与技术学院
15
模糊等价矩阵
1 0.4 0.8 0.5 0.5
0.4
1
0.4
0.4
0.4
t(R) R4 0.8 0.4 1 0.5 0.5
0.5
0.4
0.5
1
0.6
0.5 0.4 0.5 0.6 1
1 0 0
0
1
0
t(R)1 0 0 1
0
0
0
0 0 0
0 0
0
0
0 0
1 0
0 1
利用λ =1时的截关系,将X分成5个
等价类:
{x1}, {x2}, {x3}, {x4}, {x5}
吉林大学计算机科学与技术学院
18
模糊数学 8
1
上次课堂作业
设 1 0.1 0.2
R
0.1 0.2
1 0.3
0.3 1
请问至多几次平方可以到达传递闭 包?
请给出传递闭包t(R)
2
3-9 聚类分析
3
聚类分析
所谓聚类分析,就是用数学方法对 事物进行分类
应用十分广泛 模糊数学产生之前,聚类分析是数理
统计多元分析的一个分支 现实分类问题具有模糊性,例如“环
23
其他建立相似矩阵的方法
非常多!主要分为3类
相似系数法 距离法(绝对值减数法就是距离法之
一) 主观法
在后面的附录中给出
吉林大学计算机科学与技术学院
24
聚类分析的步骤
建立初始矩阵
利用某个建立相似矩阵的方法,建 立相似矩阵
利用平方法,相似矩阵等价矩阵
若相似矩阵的维数较大,需要多次自 乘,工作量大
每个环境单元包括四个要素:空气、水 分、土壤、作物
环境单元的污染状况由污染物在四个要 素中含量的超限度来描述
《北京市东南郊环境污染治理》,获北 京市科技成果一等奖
6
现有5个污染单元, U={Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ}
它们的污染数据如下: Ⅰ=(5,5,3,2),Ⅱ=(2,3,4,5), Ⅲ=(5,5,2,3),Ⅳ=(1,5,3,1), Ⅴ=(2,4,5,1)
相关文档
最新文档