文献翻译-系统分析的方法

合集下载

文献翻译-多路数据采集与分析系统的设计及应用

文献翻译-多路数据采集与分析系统的设计及应用

附录五中英文资料Multi-channel data collection and analysisof the design and applicationAbstract:The Paper mainly introduces a multichannel data acquisition and analysis system composed of one PC and one measuring instrument. The system can test eight products parallelly. It reduces the test cost and improves work efficiency. The paper also gives the hardware structure and software flow diagr am of the system. The application in the gyro test is also introduced briefly.Key words:communication prot;data acquisition; gyro; testWith the development of computer technology and the digital measuring instrument, usually by computer and measuring instruments to communicate with each other in real-time data collection and use of computer powerful computing capability to conduct the analysis of the data processing. Particularly in the large volume of data, measuring the length of time occasions, such as the Gyro-tilt test, using computer for automatic control of measuring instruments, automatic data acquisition and analysis it is particularly important, can save a lot of manpower and material resources to improve work efficiency, reduce costs , The conventional method of testing is usually a measuring instrument at the same time can only test a product, namely a computer and a measuring instrument test system can only be composed of serial testing. To test multiple products at the same time, they need multiple systems, testing products in large volume, low efficiency, such as the composition of several sets of test system, an increase of cost. First on a machine with a PC and a measuring instrument consisting of 8-way data collection and analysissystem, which can carry out multiple sets of product testing, at no additional cost on the basis of a computer give full play to the advantages of automatic test, Improve work efficiency.1 PrincipleThe system hardware and software system. A PC through a RS232 port and a measuring instrument connected, PC-parallel port (LPT) and an 8-way channel selector attached to a 8-way connector will channel selector were connected with a number of test products.The working principle as shown in Figure 1. The course of testing, computer through the parallel port 8-way control channel selection, were open different channels, each channel for data transmission by choosing to measuring instruments, measuring instruments through the RS232 port to the computer data sent to save, A complete cycle of all channels of data collection, and this has also tested a number of product features.Figure 1 system block diagram of workThroughout the course of testing, all the control operations have completed the software automatically, without human intervention.2 hardware designThe system is mainly to use the computer onboard RS232 communication ports and digital measuring instrument of communication port connecting communications, re-use LPT parallel port on a 8-way channel selector for access control. 8-way channel of choice for an 8-elected one of analog switches and related circuit, the control signals from the computer's parallel port to provide and meet shown in table 1.Table1 The relation between channel selection and port output8-way channel selector industry can use the SCM, subject to additional controls, select RS232 serial port as data transmission, because the RS232 port is the computer and measuring instruments on the standard configuration, communicate with each other without additional hardware , Easy to use. In addition, a serial communication-only a bit, with only a standard data-voltage potential, hence more difficult in data errors. In a parallel port to transfer data 8-bit, data transmission speed, but the data vulnerable to interference. Transmission distance in a shorter amount of data transmission larger circumstances, may be parallel port (such as GPIB, LPT, etc.) to communicate. In addition, since LPT parallel port may signal transmission, channel selection is suitable for the control port.System in the course of work, good access control modules and data acquisition module synchronization is particularly important because different channels of datastorage needs of the corresponding data buffer pool, which is controlled by software.3 software designThe whole system software design is the most important part. Software system from the bottom of the communication protocol can be divided into functional three-tier module and user interface. Software design in the use of multi-threaded Windows technology, the technology for data collection procedures can effectively accelerate the reaction time and increase the efficiency of implementation. The procedures used in a separate thread for data collection, so the guaranteed maximum energy collection of real-time; using another thread at the same time data processing, such procedures to avoid a single-threaded the same time only the implementation of a functional deficiencies. Especially when the amount of data collection, data processing task, using multi-threaded technology will greatly improve the efficiency of the system as a whole.3.1 Data Acquisition ModuleData acquisition modules to eight channels of data in a cycle of all the acquisition to the computer, and save the channel, and the corresponding data in the buffer. Its procedures diagram shown in Figure 2.Fig 2 Flow diagram of data acquisitionAt the beginning of procedures, with the choice of control and store data buffer at the same time to switch to the same channel, 8-way data collection cycle and command judgement, in the end not received orders, has recycling collection to do.Multi-channel data acquisition process the data vulnerable to interference, especially in the fast-channel switching, the data vulnerable to fluctuations, as shown in Figure 3. At this time if the data collection, will be collecting the wrong data, the need to add some software algorithms to prevent this from happening. If we develop the automated data tracking algorithm to automatically track each channel data to determine whether the channel in a stable state, and only the stability of dataacquisition, the volatility of other data. In addition, the software can also add some filtering algorithm (such as limiting filter, etc.) to filter out man-made interference or other factors caused by the mutation data. Limiting filter for(1)Figure 3 channel switching, the data volatilityWhen the new collected data and the data before a difference to the absolute value of more than one set of values that the data is invalid, and the previous data from the current data.3.2 Data Analysis ModuleIn the data analysis module can be added if the algorithm analysis, graphics display and print output, and other useful features, such as gyroscopes and stability in the standard deviation algorithm can function in the course of testing real-time calculation of zero stability, and through chart shows. Zero stability calculation formula as follows:(2)According to first-(2) to prepare an algorithm function, and then call in the analysis module. Analysis module diagram of the procedure shown in Figure 4.Figure 4 data analysis process flow chartBecause the system uses multi-threaded technology, in the cycle of operation and will not affect the acquisition module's operation. The module also in its algorithm in the function of any expansion, forming a algorithm to adapt to different procedures for data analysis.In addition, software design, a friendly user interface is necessary in the process of the functions from the package, through a unified interface to users, to reduce operating difficulties and enhance efficiency.4 system test resultsFigure 5 to 8 in the analysis of data acquisition systems, at the same time two three-axis gyro and a single axis gyroscope total of seven road test data of thesituation. Its precise data collection, data analysis can be conducted at the same time, and through real-time charts, user-friendly, easy to operate.Figure 5 8 Data Collection and Analysis System5 ConclusionMulti-channel data acquisition and analysis system for the hardware requirements simple, easy to set up, can be applied to various tests occasions, it can also test multiple products, thereby reducing the cost and enhance efficiency. As a result of a multi-threaded technology, the speed of data acquisition systems and hardware only (instrument) and the response speed of the speed of Communication. With the collection and analysis software algorithm has nothing to do.PAD programming tools can be used to develop a data collection, data analysis, graphics display and print output, and other powerful features and friendly user interface of our software. Software modular design and easy to carry out expansion, according to different algorithm for data analysis at the request of upgrades, and hardware can remain the same. The system give full play to the use of computers and measuring instruments of mutual communication, automation and test advantage.多路数据采集与分析系统的设计及应用摘要:介绍了用一台PC机和一台测量仪表组成的8路数据采集与分析系统。

文献翻译-系统分析的方法

文献翻译-系统分析的方法

外文资料翻译The Methodology of Systems AnalysisFor a system analysis to be undertaken,someone must think there is a problem-or at least recognize the possibility that a problem exists.That is,he must be dissatisfied with the current or anticipated state of affairs and want help in discovering how to bring about a change for the better.Systems analysis can almost always provide help,even if it does no more than turn up relevant information or indicate that certain actions offer little hope of bringing about improvement.In most circumstances,the analysis may even discover a course of action that will bring about the desired change,a course that can be recognized as the advantageous and implemented by those with authority to act.Systems analysis can also be used to present factual arguments and reliable information to help win acceptance for a proposed couse of action.In addition,it can help to prevent the chosen course from being rendered ineffective by adverse interests,misinterpretations,or unanticipated problems.Although a system analysis may be carried out without a specific user or set of users in mind,such work is not likely to have much influence other than to inform public debate.Decisionmaker is assumed to be an individual who wants to make decisions as rationally as possible by taking into consideration the probable consequences of each available course of action-selecting the "best"action by balancing its cost against the extent to which it helps to achieve his objectives and possible other benefits.The analyst's basic procedure is to determine what the decisionmaker wants,search out his feasible alternatives,work out the consequences that would follow the decision to adopt each of the alternatives,and then,either rank the alternatives in terms of their consequences according to criteria specified by the decisionmaker,or present the alternatives with their consequences to the decisionmaker for ranking and choice.In reality,the decisionmaking situation is rarely so uncomplicated.Theperson for whom a study is done is ususlly but one of many participants in a decisionmaking process,and he must use the results of the analysis as evidence and argument to bring the others to his point of view before acting.In some cases the decisions cannot be separated from the managerial,organizational,and political situation in which they are made,and the model we are assuming for the decisionmaker(called the rational actor model,or model I by Allison)must be supplemented or modified by bringing in organizational and political considerations.Nevertheless,as Allison remarks,"For solving problems.a model I-style analysis provides the best first cut. Indeed,for analyzing alternatives and distinguishing the preferred proposal,there is no clear alternative to this basic framework."This is the basic,unsophisticated view of the decisionmaking situation.As an example to illustrate the basic procedure,assuming that a legislative committee wants to propose legislation to increase highway safety,it is willing to consider three alternatives:a requirement for devices to make the use of seat belts automatic,lowering the maximum speed limit and enforcing it more strictly,and establishing higher standards for issuing driver's licenses.They ask the legislative analyst to carry out a systems analysis.It is useful to consider aproblem of thes type in terms of these elements: Objectives——what the decisionmaker desires to achieve.In the example,the objective is the problem,the alternatives may be policies,strategies,designs,actions,or whatever it appears might attain the objective.In the example,although the alternatives are limited to three types, within each type there are many possibilities to consider.Consequences——the results that would ensure were the alternatives to be adopted and put into effect.In the highway safety example,if the alternative of a lower maximum speed limit with stricter enforcement were implemented,a positive consequence(abenefit)would be a lower rate of fatal highway accidents;a negative consequence(a cost)would be the need for more police officers to be hired or taken from other tasks.Criteria——rules or standards that specify in terms of consequences(orsome subset of them)how the alternatives are to be ranked in order of desirability.For example,a possible criterion might be to rank the alternatives in decreasing order of the ratio of the reduction in the annual number of fatalities from implementing the alternative to the expenditure of public funds required.Model——an abstraction,a set of assumptions about some aspect of the world,either real or imaginary,intended to clarify our view of an object,process,or problem by retaining only characteristics essential to the purpose we have in mind.It is a simplified conceptual or physical image that may be used to investigate the behavior of a system or the result of an action without altering the system or taking the action.A model is made up of factors relevant to the problem and the relations among them essential to the purpose in mind.A model may take many forms.some common types are a set of tables,a series of mathematical equations,a computer program,or merely a mental image of the situation held by someone contemplating an action.In most systems analyses explicit models are normally used for predicting both the context and environment in which the alternatives are to be implemented and their associated consequences.This is necesary because the factors are usually so numerous and their interrelations so complex that intuition and mental models are not adequate to handle the large number of factors and their intricate relations.Predicting consequences is not the only,or even the first,use of models in a system analysis.It is however,the most prominent use,for such models are likely to be elaborate and programmed for a computer,whereas many other models may be no more than well-thought through concept.In our example many different models are needed to estimate the results for the alternatives,and their consequences are of different types.In our example an early problem for the analysis is to fend a way to turn the vague goal of increased highway safety into something of a more operational character——in other words,to settle on a way to measure it .Onemeasure might be the reduction in annual number of fatalities;another might be the reduction in the annual(monetary)cost of highway accidents to the victims.Another task for the analyst is to check the alternatives for feasibility.It might turn out the alternative of automated seat belts is not feasible owing to public unacceptability.If this alternative were far superior to all the others i n increasing safety,the decisionmaker would probably want to investigate the cost and effectiveness of a campaign to change public opinion.The analyst will also want to search for and examine alternatives not on the original list——such things as better emergency ambulance service,eliminating unguarded railroad crossings,and changed car design——for these alternatives may promise increased highway safety at less cost than those on the original list,and,when presented with supporting calculations,may lead the decisionmakers to expand the list of possibilities they are welling to consider.Indeed,the discovery,invention,or design of new and better alternatives is often the real payoff from systems analysis.In predicting the results associated with the various alternatives,the analyst may have to use radically differing models or methods.A model to show the effect of improved driving skills on the number of fatalities can differ considerably from a model to predict the way a lower speed limit affects fatalities.On the other hand ,predictions for both cases may be obtained statistically from experiences in other jurisdictions with similar driving conditions.In comparing alternatives various future contexts may also have to be considered,with predictions or conjectures made about the effects of,for instance,a petroleum shortage on automobile traffic and other exogenous factors beyond the decisionmakers' control.One run-through of the set of procedures is seldom enough.Several cycles or iterations are almost always necessary to refine the first models and assumptions,and thus increase one's confidence in the outcomes.系统分析的方法进行系统分析时,人们一定认为存在某个问题,或至少应该认识到存在某个问题的可能性。

层次分析法---文献翻译

层次分析法---文献翻译

层次分析法---文献翻译888大学毕业设计(论文)文献翻译题目层次分析法院、系(部) 计算机科学与技术学院专业及班级计科0903班姓名 888 指导教师 888 日期 2013年3月Analytic Hierarchy ProcessThe Analytic Hierarchy Process (AHP) is a structured technique for helpingpeople deal with complex decisions. Rather than prescribing a "correct" decision, the AHP helps people to determine one that suits their needs and wants. Based on mathematics and psychology, it was developed by Thomas L. Saaty in the 1970s and has been extensively studied and refined since then. The AHP provides a comprehensive and rational framework for structuring a problem, for representing and quantifying its elements, for relating those elements to overall goals, and for evaluating alternative solutions. It is used throughout the world in a wide variety of decision situations, in fields such as government, business, industry, healthcare, and education.Several firms supply computer software to assist in using the process.Users of the AHP first decompose their decision problem into a hierarchy of more easily comprehended sub-problems, each of which can be analyzed independently. The elements of the hierarchy can relate to anyaspect of the decision problem—tangible or intangible, carefully measured or roughly estimated, well- or poorly-understood—anything at all that applies to the decision at hand.Once the hierarchy is built, the decision makers systematically evaluate its various elements, comparing them to one another in pairs. In making the comparisons, the decision makers can use concrete data about the elements, or they can use their judgments about the elements' relative meaning and importance. It is the essence of the AHP that human judgments, and not just the underlying information, can be used in performing the evaluations.The AHP converts these evaluations to numerical values that can be processed and compared over the entire range of the problem. A numerical weight or priority is derived for each element of the hierarchy, allowing diverse and often incommensurable elements to be compared to one another in a rational and consistent way. This capability distinguishes the AHP from other decision making techniques.In the final step of the process, numerical priorities are derivedfor each of the decision alternatives. Since these numbers represent the alternatives' relative ability to achieve the decision goal, they allow a straightforward consideration of the various courses of action.Uses and applicationsWhile it can be used by individuals working on straightforward decisions, Analytic Hierarchy Process (AHP) is most useful where teamsof people are working on complex problems, especially those with high stakes, involving human perceptionsand judgments, whose resolutions have long-term repercussions. Ithas unique advantages where important elements of the decision are difficult to quantify or compare, or where communication among team members is impeded by their different specializations, terminologies, or perspectives.Decision situations to which the AHP can be applied include:, Choice - The selection of one alternative from a given set of alternatives,usually where there are multiple decision criteria involved., Ranking - Putting a set of alternatives in order from most toleastdesirable Prioritization - Determining the relative merit of a setofalternatives, as opposed to selecting a single one or merely ranking them, Resource allocation - Apportioning resources among a set of alternatives, Benchmarking - Comparing the processes in one's own organization withthose of other best-of-breed organizations, Qualitymanagement - Dealing with the multidimensional aspects of quality and quality improvementThe applications of AHP to complex decision situations have numbered in the thousands, and have produced extensive results in problems involving planning, Resource allocation, priority setting, and selection among alternatives. Other areas have included forecasting, toreotal quality management, business process re-engineering ,quality function deployment, and the Balanced Scorecard.ManyAHP applications are never reported to the world at large, because they take place at high levels of large organizations where security and privacy considerations prohibit their disclosure. But some uses of AHP are discussed in the literature. Recently thesehave included:, Deciding how best to reduce the impact of global climate change (Fondazione Eni Enrico Mattei), Quantifying the overall quality of software system(Microsoftcorporation), Selecting university faculty(Bloomsburg University of Pennsy), Deciding where to locate offshore manufacturing plants(University ofCambridge), Assessing risk in operating cross-country prtroleumpipelines(AmericanSociety of Civil Engineers), Deciding how best to manage U.S. watersheds(U.S. Department of Agriculture)AHP is sometimes used in designing highly specific procedures for particular situations, such as the rating of buildings by historic significance. It was recently applied to a project that uses video footage to assess the condition of highways inVirginia. Highway engineers first used it to determine the optimum scope of the project, then to justify its budget to lawmakers.AHP is widely used in countries around the world. At a recent international conference on AHP, over 90 papers were presented from 19 countries, including the U.S., Germany, Japan, Chile , Malaysia, andNepal. Topics covered ranged from Establishing Payment Standards for Surgical Specialists, to Strategic TechnologyRoadmapping, to Infrastructure Reconstruction in Devastated Countries. AHP wasintroduced in China in 1982, and its use in that country has expanded greatly since then—its methods are highly compatible with the traditional Chinese decision making framework, and it has been used for many decisions in the fieldsofeconomics,energy,management,environment,traffic,agriculture, industry, and the military.Though using AHP requires no specialized academic trainning, the subject is widely taught at the university level—one AHP software provider lists over a hundredcolleges and universities among its clients. AHP is considered an important subject in many institutions of higher learning, includingschools of engineering and Graduate school of Business . AHP is also an important subject in the quality field, and is taught in many specialized courses including Six Sigma, Lean Six Sigma, and QFD.In China, nearly a hundred schools offer courses in AHP, and many doctoral students choose AHP as the subject of their research and dissertations. Over 900 papers have been published on the subject inthat country, and there is at least one Chinese scholarly journal devoted exclusively to AHP.ImplementationAs can be seen in the examples that follow, using the AHP involves the mathematical synthesis of numerous judgments about the decision problem at hand. It is not uncommon for these judgments to number in the dozens or even the hundreds. While the math can be done by hand or with a calculator, it is far more common to use one of several computerized methods for entering and synthesizing the judgments. The simplest of these involve standard spreadsheet software, while the most complex use custom software, often augmented by special devices for acquiring the judgmentsof decision makers gathered in a meeting room.Steps in using the processThe procedure for using the AHP can be summarized as:1. Model the problem as a hierarchy containing the decision goal,the alternativesfor reaching it, and the criteria for evaluating the alternatives.2. Establish priorities among the elements of the hierarchy bymaking a series ofjudgments based on pairwise comparisons of the elements. For example, whencomparing potential real-estate purchases, the investors might say they preferlocation over price and price over timing.3. Synthesize these judgments to yield a set of overall prioritiesfor the hierarchy.This would combine the investors' judgments about location, priceand timingfor properties A, B, C, and D into overall priorities for each property.4. Check the consistency of the judgments.5. Come to a final decision based on the results of this process.CriticismsThe AHP is now included in most operations research and management science textbooks, and is taught in numerous universities; it is used extensively in organizations that have carefully investigated its theoretical underpinnings. While the general consensus is that it isboth technically valid and practically useful, the method does have its critics.In the early 1990s a series of debates between critics andproponents of AHP was published in Management Science and The Journal of the Operational ResearchSociety. These debates seem to have been settled in favor of AHP.Occasional criticisms still appear. A 1997 paper examined possible flaws in the verbal (vs. numerical) scale often used in AHP pairwise comparisons. Another from the same year claimed that innocuous changesto the AHP model can introduce order where no order exists. A 2006 paper found that the addition of criteria for which all alternatives perform equally can alter the priorities of alternatives. An in-depth paper discussing the academic criticisms of AHP was published in Operations Research in2001.Most of the criticisms involve a phenomenon called rank reversal, discussed inthe following section.Rank reversalMany people hear about rank reversal and assume that there is some sort of proven principle about it that needs to be upheld in making decisions. That assumption has led to much misunderstanding of AHP and other decision making techniques. In actuality, rank reversal is a complex matter about which there are many conflicting ideas and opinions. This section offers a simplified explanation of the situation.Decision making involves ranking alternatives in terms of criteriaor attributes of those alternatives. It is an axiom of some decision theories that when new alternatives are added to a decision problem, the ranking of the old alternatives must not change. But in the real world, adding new alternatives can change the rank of the old ones. These rank reversals do not occur often, but the possibility of their occurrencehassubstantial logical implications about the methodology used to make decisions, the underlying assumptions of various decision theories, etc.A simple example will demonstrate the phenomenon of rank reversal: Consider a pretty girl in a small town. She's having a party next week, and she wants to buy a dress that will impress her guests. She visitsthe town's only dress store and goes to the rack of party dresses. There are five such dresses, and after long consideration she ranks them by desirability as follows:Rank Style Color Price1 Style A Blue $1092 Style A Green $1093 Style B Red $1194 Style C Yellow $995 Style D Off-White $149Now imagine that she enters the back room and sees the store'sentire inventory of dresses. The dresses she has looked at in Styles B, C, and D are the only ones of their kind, but there are four more StyleA dresses in green and eight more Style A dresses in blue. In the language of decision science, these dresses are copies of the existing alternatives. In our one-store small town scenario, there's a reasonable chance that one or more party guests would buy and wear one of the copies.When made aware of these new alternatives, our fashion-consciousgirl might rank her choices in a different order. Considering her great embarrassment if a guest were to wear the same dress that she did, she might rank her choices like this:OldRank Style Color PriceRank1 3 Style B Red $1192 4 Style C Yellow $993 5 Style D Off-White $1494 2 Style A Green $1095 1 Style A Blue $109Notice that the rankings of the two Style A dresses have reversed (since there are more copies of the blue dress than of the green one). Not only that, but Style A has gone from the most preferred style to the least preferred. Rank reversal has occurred. Axioms of decision theories have been violated. Scholars and researchers can cry"foul," or impugn the method by which the girl has made her choice, but there is no denying that in the world of our example, ranks havebeen reversed. There is no doubt that the reversal is due to the introduction of additional alternatives that are no different from the existing ones.The above is but one example of rank reversal. Rank reversal canalso occur when additional alternatives are added/removed that are not copies of the original alternatives (e.g., red and yellow dresses in completely different styles). Another example of rank reversal occurred in the 2000 U.S. presidential election. Ralph Nader was an 'irrelevant' alternative, in that he was dominated by both the Democrat and Republican candidates. However, since he attracted more votes from those who would have voted Democrat rather than Republican, his presence caused the ranks to reverse. Put another way, if Nader were not in the race, it is widely accepted that Al Gore would have won.There are two schools of thought about rank reversal. One maintains that new alternatives that introduce no additional attributes should not cause rank reversal under any circumstances. The other maintains that there are both situations in which rank reversal is not reasonable as well as situations where they are to be expected. The current version of the AHP can accommodate both these schools — its Ideal Mode preserves rank, while its Distributive Mode allows the ranks to change. Either mode is selected according to the problem at hand.层次分析法层次分析法(AHP)是一种帮助人们处理复杂决策的结构化技术,比起一种指定的“正确”的方法,层次分析法能帮助人们决定哪一种是更适合他们的需求。

第七章系统评价的方法与评价原则2012

第七章系统评价的方法与评价原则2012

(二)检索文献
系统、全面地收集所有相关的文献资料是系统评价与叙述性文献 综述的重要区别之一。为了避免出版偏倚和语言偏倚,应围绕要解决 的问题,按照计划书中制订的检索策略(包括检索工具及每一检索工 具的检索方法),采用多种渠道和系统的检索方法。除发表的原著之 外,还应收集其他尚未发表的内部资料以及多语种的相关资料。 除了利用文献检索的期刊工具及电子光盘检索工具(Medline、 Embase、Scisearch、Registers of clinical trials)外,系统评价还强调 通过与同事、专家和药厂联系以获得未发表的文献资料如学术报告、 会议论文集或毕业论文等;对已发表的文章,由Cochrane协作网的工 作人员采用计算机检索和手工检索联合的方法查寻所有的随机对照试 验,建立了Cochrane对照试验注册库和各专业评价小组对照试验注册 库,既可弥补检索工具如MEDLINE等标识RCT不完全的问题,也有 助于系统评价者快速、全面获得相关的原始文献资料。
性的作用。
系统评价本身只不过是一种研究的方法学,并不仅限于随机对照试验或 仅对治疗措施疗效进行系统评价。 根据研究的临床问题不同,系统评价可分为病因、诊断、治疗、预后、 卫生经济评价和定性研究等方面的系统评价; 根据系统评价纳入的原始研究类型不同,可分为临床对照试验和观察性 研究的系统评价,前者如随机对照试验和非随机对照试验的系统评价,后者 如队列研究和病例-对照研究的系统评价; 根据进行系统评价时纳入原始研究的方式,可分为前瞻性、回顾性和累 积性系统评价; 根据资料分析时是否采用统计学方法(Meta-分析),可分为定性和定 量的系统评价。 目前,由于根据随机对照试验所进行的系统评价在理论和方法学上较完 善及其论证强度较高,所以有关随机对照试验或评估治疗措施疗效的系统评 价较多,而其他类型的系统评价如诊断试验、病因学研究、非随机试验等正 在研究之中。

外文文献翻译---基于 Web 的分析系统

外文文献翻译---基于 Web 的分析系统

文献翻译基于 Web 的分析系统院(系)名称信息工程学院专业名称软件工程英文译文基于Web 的分析系统马克斯科特,约翰琳1 摘要在使用分析型数据库时,分析人员将数据归入公用组,并尝试确定条件变化时产生的结果。

例如,提高产品价格会增加单位利润,但可能会减少销量ù会产生较高还是较低的总利润?或者,联邦贴现率的下降会如何影响房地产贷款的收益?为了帮助分析人员根据历史趋势做出有根据的预测,Microsoft 在SQL Server 2000 中提供了分析服务,在SQL Server 7.0 中提供了OLAP 服务。

这些服务都提供OLAP 功能,能够将存储在SQL Server(或任何其他OLE DB 兼容的数据源)上的数据处理成多维数据结构,称为多维数据集。

多维数据集简化了趋势分析和建立实体间交互方式联系的过程。

例如,房地产投资者采用现金流模型来区分一组具有共同特征(如:地产类型、地理位置和利率范围)的贷款,并预测各种事件的影响。

如果贷款提前偿还或者借款人违约,后果将会如何?此类不可预测的事件会如何影响贷款所担保的债券的收益。

从包含几百笔贷款的清单中选择并区分具有分析特征的贷款是需要相当技巧的。

分析服务和OLAP 服务有助于在各组贷款间建立联系,以便分析人员能够建立贷款假设模型。

为了帮助客户的房地产分析人员预测商业抵押证券的业绩,我们的开发小组需要设计一个以各种方式(如:利率、到期期限或地产位置)来简化贷款分类的系统。

其界面应易于学习和使用。

而且,所开发的系统需要在Internet 上进行安全的部署。

为了满足这些要求,开发小组选择了分析服务。

2 在Web上部署Office在选定了后端技术后,开发小组开始制订实现前端界面的计划。

多数金融分析人员使用Microsoft Excel,他们对其界面比较熟悉,感觉也很舒服。

Excel 包括数据透视表服务,能够允许分析人员连接到分析服务数据库。

Excel 的拖放界面提供了对多维数据的简单和直观的访问,并不要求用户进行深入的培训。

中英文文献翻译-举升系统失效分析

中英文文献翻译-举升系统失效分析

附录附录ALifting sytem failure analysisBelow a certain brand can explain a type of lift accident .Because lifting machine structure is more complicated ,e to maintenance enterprise use it frequently in work under high load ,We have to consider its damaged condition. actual use, as repeated wear and tear of fatigue damage ,So anytime possible lifting system failure .If the downturn is likely to cause maintenance personnel injured and vehicles damaged .After the failure of the lift inspection, analysis, found its existence defects in design. This product for the mechanical lifting machine, uses the pin shaft transmission, driven by shaft lifting arm motion realization Auto lift. Unless the power cut off the motor car, driven shaft lifting stop failure analysis personnel of nantong product quality supervision, inspection ZouLei can observed. To effectively guarantee the safety, auto lift should lock up the device. In order to effectively To protect the security, automotive lift Should stop the browser and the backstop. From The Brand Lift of the occurrence of several Lapsed since the incident, the principal, Vice-nut at the same time lead to wear and tear due to strong Decreases occurred in the thread root cut Letter, which of course, and materials selection, Manufacturing quality, the use of maintenance due to Su-relevant, but imagine if Is an independent work of the backstop , And even in the absence of Vice-nut, so that The possibility of a thing you Moment of downtime in order to achieve things, it does not work independently of the stop device and the backstop , And only made use of the role of self-locking screw to prevent the decline in our care arm Know that the conditions for self-locking thread is the thread friction angle or Chaetoceros. It's an But to protect the whole body is fitted with a nut in the bottom of the main vice of the so-called Nut, through institutions linked synchronous rotation with the main nut. There is no denying that when the Lord, Vice-nut There is a certain gap between the, if nut the main event of an accident, child care Vice-nut will be on the arm and not the accidents. However, the main, the Deputy nut As the gap between the main nut and gradually reduce the wear and tear, when reduced to a Certain extent, it must be replaced with new ones of the main nut, otherwise, continue to use When the owners go, the gap between the Deputy nutcompletely disappear, the Lord, is Vice-nut Quality has become one, and act as security devices has been gradually Vice nut Until all the nuts to replace the main workload. At this point if an accident such as Thread occur due to wear and cut the root, see the attached map, security protection devices can play It should be the role to be sure, if the timely replacement of the main nut, can be avoided Some accidents, but not all users have the professional knowledge and Lord, the gap between the Vice-nut is not clear at a glance from the outside can, it is necessary to disassemble Therefore, the use of cars to check whether the lift should be independent Work backstop safety protection device, if not, be sure to strengthen the Inspection and timely replacement of drive nut to avoid accidents. If not, then, be sure to strengthening inspection and change in time transmission nut, lest produce an accident. The manufacturers character, also Should improve design.Hope so as to remind each manufacturer .译文举升系统失效分析下面是某个品牌的一次事故分析,因为起重机械结构比较复杂,维护企业使用它经常在工作在高负载时,我们必须考虑其受损的情况.实际使用中因为重复的磨损及疲劳损伤,所以随时可能发生举升系统的损坏事故。

文献检索系统及检索效率评价指标分析

文献检索系统及检索效率评价指标分析

文献检索系统及检索效率评价指标分析李辉【期刊名称】《《科技创业月刊》》【年(卷),期】2012(000)012【总页数】2页(P160-161)【关键词】文献检索; 检索效率; 综合指标【作者】李辉【作者单位】黑龙江科技学院图书馆黑龙江哈尔滨150027【正文语种】中文【中图分类】G252.71 文献检索系统的类型文献检索系统又叫文献情报检索系统,它是检索和提供文献线索、文献地址、文献目录、文献原文或文献复制件的一种常见的检索系统。

它是一个使情报用户需要同文献情报源之间相互联系,包含有文献情报资源,具备一定的物质载体与设备,能够提供一定检索技术手段的有机整体。

在文献检索系统中,文献描述体数据库,就是文献检索工具。

检索工具虽然是文献著录款目的集合,但它却包含了词表、索引等因素。

它是一种有形的实体,总是同一定的载体设备相联系,它必然具备一定的检索手段和潜力,并且总是体现着一定的用途、对象和目标。

实际上,检索工具就是检索系统的核心和概括。

文献检索系统的种类主要有:①书目检索系统。

书目检索系统包括传统的文摘、索引和目录、机读目录、联机目录以及提供书目数据库查询服务的系统;②全文检索系统。

全文检索系统包括传统的缩微检索系统、电子报刊、电子辞书以及能提供其它全文数据库查询服务的系统;③语段检索系统。

以语段作为存贮和检索单元,介于文献检索与事实检索之间。

2 文献检索系统的构成2.1 逻辑构成一个完整的文献检索系统通常包括以下六个方面,即六个子系统:(1)文献选择子系统,即检索工具对一定学科范围文献的覆盖面,摘贮率,以及对文献类型、文种与时间跨度的包含程度。

(2)词表子系统,即作为文献的存贮与检索两个方面的用来表达文献内容与提问内容的共同依据,词表(包括主题词表和分类表等)的规模(网罗度)与细分程度(专指度),是影响检索工具查全与查准潜力的重要因素。

(3)标引子系统,即根据一定的词表,将文献的主题内容经过概念分析,而翻译(转换)成检索系统语言的词汇。

信息系统外文文献翻译---系统的分析与设计

信息系统外文文献翻译---系统的分析与设计

附录1 外文翻译(原文)Systems Analysis and DesignWorking under control of a stored program, a computer processes data into information. Think about that definition for a minute. Any given computer application involves at least three components: hardware, software, and data. Merely writing a program isn't enough; because the program is but one component in a system.A system is a group of components that work together to accomplish an objective. For example, consider a payroll system. Its objective is paying employees. What components are involved? Each day,employees record their hours worked on time cards. At the end of each week, the time cards are collected and delivered to the computer center, where they are read into a payroll program. As it runs, the program accesses data files. Finally, the paychecks are printed and distributed. For the system to work, people, procedures, input and output media, files, hardware, and software must be carefully coordinated. Note that the program is but one component in a system.Computer-based systems are developed because people need information. Those people, called users, generally know what is required, but may lack the expertise to obtain it. Technical professionals, such as programmers, have the expertise, but may lack training in the user's field. To complicate matters, users and programmers often seem to speak different languages, leading to communication problems. A systems analyst is a professional who translates user needs into technical terms, thus serving as a bridge between users and technical professionals.Like an engineer or an architect, a systems analyst solves problems by combining solid technical skills with insight, imagination, and a touch of art. Generally, the analyst follows a well-defined, methodical process that includes at least the following steps;1.Problem definition2.Analysis3.Design4.Implementation5.MaintenanceAt the end of each step, results are documented and shared with both the user and the programmers. The idea is to catch and correct errors and misunderstandings as early as possible. Perhaps the best way to illustrate the process is through example.Picture a small clothing store that purchases merchandise at wholesale, displays this stock, and sells it to customers at retail. On the one hand, too much stock represents an unnecessary expense. On the other hand, a poor selection discourages shoppers. Ideally, a balance can be achieved: enough, but not too much.Complicating matters is the fact that inventory is constantly changing, with customer purchases depleting stock, and returns and reorders adding to it. [1] The owner would like to track inventory levels and reorder and given item just before the store runs out. For a single item, the task is easy-just count the stock-on-hand. Unfortunately, the store has hundreds of different items, and keeping track of each one is impractical. Perhaps a computer might help.2-1 Problem DefinitionThe first step in the systems analysis and design process is problem definition. The analyst's objective is determining what the user (in this case, the store's owner) needs. Note that, as the process begins, the user possesses the critical information, and the analyst must listen and learn. Few users are technical experts. Most see the computer as a "magic box, "and are not concerned with how it works. At this stage, the analyst has no business even thinking about programs, files, and computer hardware, but must communicate with the user on his or her own term.The idea is to ensure that both the user and the analyst are thinking about the same thing-Thus, a clear, written statement expressing the analyst's understanding of the problem is essential. The user should review and correct this written statement. The time to catch misunderstandings and oversights is now, before time, money and effort are wasted.Often, following a preliminary problem definition, the analyst performs a feasibility study. The study a brief capsule version of the entire systems analysis and design process, attempts to answer three questions:1.Can the problem be solved?2.Can it be salved in the user's environment?3.Can it be solved at a reasonable cost?If the answer to any one of these questions is no, the system should not be developed. Given a good problem definition and a positive feasibility study, theanalyst can turn to planning and developing a problem solution.2- 2 AnalysisAs analysis begins, the analyst understands the problem. The next step is determining what must be done to solve it. The user knows what must be done 1 during analysis; this knowledge is extracted and formally documented. Most users think in terms of the functions to be performed and the data elements to be manipulated. The objective is to identify and link these key functions and data elements, yielding a logical system design.Start with the system's basic functions. The key is keeping track of the stock-on-hand for each product in inventory. Inventory changes because customers purchase, exchange, and return products, so the system will have to process customer transactions. The store's owner wants to selectively look at the inventory level for any product in short supply and, if appropriate, order replacement stock, so the system must be able to communicate with management. Finally, following management authorization, the system should generate a reorder ready to send to a supplier.Fig 1Given the system's basic functions, the analyst's next task is gaining a sense of their logical relationship. A good way to start is by describing how data flow between the functions. As the name implies, data flow diagrams are particularly useful for graphically describing these data flows. Four symbols are used (Fig. 1). Data sources and destinations are represented by squares; input data enter the system from a source, and output data flow to a destination. Once in the system, the data are manipulated or change by processes, represented by round-corner rectangles. A process might be a program, a procedure, or anything else that changes or moves data. Data can be held for later processing in data stores, symbolized by open-ended rectangles. A data store might be a disk file, a tape file, a database, written notes, or even a person's memory.Finally, data flow between sources, destinations, processes, end data stores over data flows, which are represented by arrows.Fig 2Figure 2 shows a preliminary data flow diagram for the inventory system. Start with CUSTOMER. Transactions flow from a customer f into the system, where they are handled by Process transaction. A data store, STOCK, holds data on each item in inventory. Process transaction changes the data to reflect the new transaction. Meanwhile, MANAGEMENT accesses the system through Communicate, evaluating the data in STOCK and, if necessary, requesting a reorder. Once, a reorder is authorized. Generate reorder sends necessary data to the SUPPLIER, who ships the items to the store. Note that, because the reorder represents a change in the inventory level of a particular product or products it is handled as a transaction.The data flow diagram describes the logical system. The next step is tracing the data flows. Start with the destination SUPPLIER. Reorders flow to suppliers; for example, the store might want 25 pairs of jeans. To fill the order, the supplier needs the product description and the reorder quantity. Where do these data elements come from? Since they are output by Generate reorder, they must either be Input to or generated by this process. Data flow into Generate reorder for STOCK; thus, product descriptions and reorder quantities must be stored in STOCK.Other data elements, such as the item purchased and the purchase quantity are generated by CUSTOMER. Still others, for example selling price and reorder point, are generated by or needed by MANAGEMENT. The current stock-on-hand for a given item is an example of a data element generated by an algorithm in one of the procedures. Step by step, methodically, the analyst identifies the data elements to be input to .stored by, manipulated by, generated by, or output by the system.To keep track of the data elements, the analyst might list each one in a datadictionary. A simple data dictionary can be set up on index cards, but computerized data dictionaries have become increasingly popular. The data dictionary, a collection of data describing and defining the data, is useful throughout the systems analysis and design process, and is often used to build a database during the implementation stage.The idea of analysis is to define the system's major functions and data elements methodically. Remember that the objective is translating user needs into technical terms. Since the system starts with the user, the first step is defining the user's needs. Users think in terms of functions and data. They do not visualize programs, or files, or hardware .and during this initial, crucial analysis stage it is essential that the analyst think like a user, not like a programmer.Data flow diagrams and data dictionaries are useful tools. They provide a format for recording key information about the proposed system. Also, they jog the analyst's memory) for example, if the analyst doesn't have sufficient information to complete a data dictionary entry, he or she has probably missed something. Perhaps most importantly, the data flow diagram and the data dictionary document the analyst's understanding of the system requirements. By reviewing these documents, the user can correct misunderstandings or oversights. Finally, they represent an excellent starting point the next step, design.2-3 DesignAs we enter the design stage, we know what the system must do, and thus can begin thinking about how to do it. The objective is to develop a strategy for solving the problem. At this stage, we are not interested in writing code or in defining precise data structures; instead, we want to identify, at a black box level, necessary programs, files, procedures, and other components.The data flow diagram defines the system's necessary functions; how might they be implemented? One possibility is writing one program for each process. Another is combining two or more processes in a single program; there are dozens of alternative solutions. Let's focus on one option and document it.A system flowchart uses symbols to represent programs, procedures, hardware devices, and the other components of a physical system (Fig. 3). Our flowchart (.Fig.4) shows that transaction data enter the system through a terminal, are processed by a data collection program, and then are stored on an inventory file. Eventually, the inventory file is processed by a Report and reorder program. Through it, management manipulates the data and authorizes reorders.Fig. 4 on a system flowchart, symbols represent programs, procedures, hardware devices, and the other components of a physical system.Fig 3Look at the system flowchart. It identifies several hardware components, including a computer, a disk drive, a data entry terminal, a printer, and a display terminal. Two programs are needed; Process transaction and Report and reorder. In addition to t he hardware and the programs, we’ll need data structures for the inventory file and for data flaws between the I/O devices and the software. Note that this system flowchart illustrates one possible solution; a good analyst will develop several feasible alternatives before choosing one.Fig 4The flowchart maps the system, highlighting its major physical components. Since the data link the components, the next task is defining the data structures.Consider, for example, the inventory file. It contains all the data elements from the data store STOCK. The data elements are listed in the data dictionary. Using them, the file's data structure can be planned,How should the file be organized? That depends on how it will be accessed. For example, in some applications, data are processed at regular, predictable intervals. Typically, the data are collected over time and processed together, as a batch. If batch processing is acceptable, a sequential file organization is probably best.It is not always possible to wait until a batch of transactions is collected, however. For example, consider an air defense early warning system. If an unidentified aircraft is spotted it must be identified immediately the idea of waiting until 5 _ 00 p.m. because "that's when the air defense program is run" is absurd. Instead, because of the need for quick response, each transaction must be processed as it occurs. Generally such transaction processing systems call for direct access file.Our inventory system has two programs. One processes transactions. A direct access inventory file seems a reasonable choice. The other allows management to study inventory data occasionally; batch processing would certainly do. Should the inventory file be organized sequentially or directly? Faced with such a choice a good analyst considers both options. One possible system might accept transactions and process them as they occur. As an alternative, sales slips might be collected throughout the day and processed as a batch after the store closes. In the first system, the two programs would deal with direct access files; in the second system, they would be linked to sequential files. A program to process direct access data is different from a program to process sequential data. The data drive the system. The choice of a data structure determines the program’s structure. Note that the program is defined and planned in the context of the system.2- 4 ImplementationOnce the system's major components have been identified .we can begin to develop them. Our system includes two programs, several pieces of equipment, and a number of data structures. During implementation, each program is planned and written using the techniques described in Chapter 7. Files are created, and their contents checked. New hardware is purchased, installed, and tested. Additionally, operating procedures are written and evaluated. Once all the component parts are ready, the system is tested. Assuming the user is satisfied, the finished system is released.2- 5 MaintenanceMaintenance begins after the system is released. As people use it, they will suggest minor improvements and enhancements. Occasionally, bugs slip through debug and testing, and removing them is another maintenance task. Finally, conditions change, and a program must be updated; for example, if the government passes a low changing the procedure for collecting income taxes, the payroll program must be modified. Maintenance continues for the life of a system, and its cost can easily match or exceed the original development cost. Good planning, solid documentation, and well-structured programs can help to minimize maintenance cost.附录2 外文翻译(译文)系统的分析与设计在存储程序的控制下,计算机把数据处理成信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文资料翻译The Methodology of Systems AnalysisFor a system analysis to be undertaken,someone must think there is a problem-or at least recognize the possibility that a problem exists.That is,he must be dissatisfied with the current or anticipated state of affairs and want help in discovering how to bring about a change for the better.Systems analysis can almost always provide help,even if it does no more than turn up relevant information or indicate that certain actions offer little hope of bringing about improvement.In most circumstances,the analysis may even discover a course of action that will bring about the desired change,a course that can be recognized as the advantageous and implemented by those with authority to act.Systems analysis can also be used to present factual arguments and reliable information to help win acceptance for a proposed couse of action.In addition,it can help to prevent the chosen course from being rendered ineffective by adverse interests,misinterpretations,or unanticipated problems.Although a system analysis may be carried out without a specific user or set of users in mind,such work is not likely to have much influence other than to inform public debate.Decisionmaker is assumed to be an individual who wants to make decisions as rationally as possible by taking into consideration the probable consequences of each available course of action-selecting the "best"action by balancing its cost against the extent to which it helps to achieve his objectives and possible other benefits.The analyst's basic procedure is to determine what the decisionmaker wants,search out his feasible alternatives,work out the consequences that would follow the decision to adopt each of the alternatives,and then,either rank the alternatives in terms of their consequences according to criteria specified by the decisionmaker,or present the alternatives with their consequences to the decisionmaker for ranking and choice.In reality,the decisionmaking situation is rarely so uncomplicated.Theperson for whom a study is done is ususlly but one of many participants in a decisionmaking process,and he must use the results of the analysis as evidence and argument to bring the others to his point of view before acting.In some cases the decisions cannot be separated from the managerial,organizational,and political situation in which they are made,and the model we are assuming for the decisionmaker(called the rational actor model,or model I by Allison)must be supplemented or modified by bringing in organizational and political considerations.Nevertheless,as Allison remarks,"For solving problems.a model I-style analysis provides the best first cut. Indeed,for analyzing alternatives and distinguishing the preferred proposal,there is no clear alternative to this basic framework."This is the basic,unsophisticated view of the decisionmaking situation.As an example to illustrate the basic procedure,assuming that a legislative committee wants to propose legislation to increase highway safety,it is willing to consider three alternatives:a requirement for devices to make the use of seat belts automatic,lowering the maximum speed limit and enforcing it more strictly,and establishing higher standards for issuing driver's licenses.They ask the legislative analyst to carry out a systems analysis.It is useful to consider aproblem of thes type in terms of these elements: Objectives——what the decisionmaker desires to achieve.In the example,the objective is the problem,the alternatives may be policies,strategies,designs,actions,or whatever it appears might attain the objective.In the example,although the alternatives are limited to three types, within each type there are many possibilities to consider.Consequences——the results that would ensure were the alternatives to be adopted and put into effect.In the highway safety example,if the alternative of a lower maximum speed limit with stricter enforcement were implemented,a positive consequence(abenefit)would be a lower rate of fatal highway accidents;a negative consequence(a cost)would be the need for more police officers to be hired or taken from other tasks.Criteria——rules or standards that specify in terms of consequences(orsome subset of them)how the alternatives are to be ranked in order of desirability.For example,a possible criterion might be to rank the alternatives in decreasing order of the ratio of the reduction in the annual number of fatalities from implementing the alternative to the expenditure of public funds required.Model——an abstraction,a set of assumptions about some aspect of the world,either real or imaginary,intended to clarify our view of an object,process,or problem by retaining only characteristics essential to the purpose we have in mind.It is a simplified conceptual or physical image that may be used to investigate the behavior of a system or the result of an action without altering the system or taking the action.A model is made up of factors relevant to the problem and the relations among them essential to the purpose in mind.A model may take many forms.some common types are a set of tables,a series of mathematical equations,a computer program,or merely a mental image of the situation held by someone contemplating an action.In most systems analyses explicit models are normally used for predicting both the context and environment in which the alternatives are to be implemented and their associated consequences.This is necesary because the factors are usually so numerous and their interrelations so complex that intuition and mental models are not adequate to handle the large number of factors and their intricate relations.Predicting consequences is not the only,or even the first,use of models in a system analysis.It is however,the most prominent use,for such models are likely to be elaborate and programmed for a computer,whereas many other models may be no more than well-thought through concept.In our example many different models are needed to estimate the results for the alternatives,and their consequences are of different types.In our example an early problem for the analysis is to fend a way to turn the vague goal of increased highway safety into something of a more operational character——in other words,to settle on a way to measure it .Onemeasure might be the reduction in annual number of fatalities;another might be the reduction in the annual(monetary)cost of highway accidents to the victims.Another task for the analyst is to check the alternatives for feasibility.It might turn out the alternative of automated seat belts is not feasible owing to public unacceptability.If this alternative were far superior to all the others i n increasing safety,the decisionmaker would probably want to investigate the cost and effectiveness of a campaign to change public opinion.The analyst will also want to search for and examine alternatives not on the original list——such things as better emergency ambulance service,eliminating unguarded railroad crossings,and changed car design——for these alternatives may promise increased highway safety at less cost than those on the original list,and,when presented with supporting calculations,may lead the decisionmakers to expand the list of possibilities they are welling to consider.Indeed,the discovery,invention,or design of new and better alternatives is often the real payoff from systems analysis.In predicting the results associated with the various alternatives,the analyst may have to use radically differing models or methods.A model to show the effect of improved driving skills on the number of fatalities can differ considerably from a model to predict the way a lower speed limit affects fatalities.On the other hand ,predictions for both cases may be obtained statistically from experiences in other jurisdictions with similar driving conditions.In comparing alternatives various future contexts may also have to be considered,with predictions or conjectures made about the effects of,for instance,a petroleum shortage on automobile traffic and other exogenous factors beyond the decisionmakers' control.One run-through of the set of procedures is seldom enough.Several cycles or iterations are almost always necessary to refine the first models and assumptions,and thus increase one's confidence in the outcomes.系统分析的方法进行系统分析时,人们一定认为存在某个问题,或至少应该认识到存在某个问题的可能性。

相关文档
最新文档