利用导数解决生活中的优化问题
导数在实际生活中的应用

导数在实际生活中的应用
导数是微积分中一个非常重要的概念,它在实际生活中有很多应用,例如:
1. 物理学中的运动学问题。
例如,速度和加速度是运动学中的基本概念,它们可以通过对位移和时间的导数来计算。
2. 经济学中的边际效应。
经济学家使用导数来衡量某种经济活动的边际效应,即当增加一单位产量或消费时所产生的额外效果。
3. 工程学中的优化问题。
设计师和工程师使用导数来帮助他们优化设计和工艺,以减少生产成本并提高产品质量。
4. 医学中的生理学问题。
医学家使用导数来研究血压变化、血糖水平变化等生理学问题,以更好地进行治疗。
5. 数据分析中的趋势分析。
数据分析师使用导数来计算数据的变化率和趋势,以帮助企业作出更明智的经营决策。
因此,导数在各个领域都有广泛的应用,它可以帮助我们了解事物的变化规律,优化设计和生产过程,并帮助我们做出更好的决策。
利用导数解决生活中的优化问题

利用导数解决生活中的优化问题导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。
一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。
再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.二.利用导数解决优化问题的基本思路:三、应用举例例1(体积最大问题)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为181234.53(m)042x h x x -⎛⎫==-<< ⎪⎝⎭.故长方体的体积为 22323()2(4.53)96(m )02V x x x x x x ⎛⎫=-=-<<⎪⎝⎭. 从而2()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =.当01x <<时,()0V x '>;当312x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值.从而最大体积233(1)91613(m )V V ==⨯-⨯=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的范围,再列出关系式,对关系式进行求导,最后求出最值来。
试述导数在解决实际问题中的应用

试述导数在解决实际问题中的应用在实际生活中,我们经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。
这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决,下面通过具体实例谈谈导数在实际生活中的应用。
一、生活中的优化问题:例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。
例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:这是一道实际生活中的优化问题,建立的目标函数是三次函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧。
而运用导数知识,求三次目标函数的最值就变得非常简单。
思路:设箱底边长为x cm,则箱高602xh-=cm,得箱子容积V是箱底边长x的函数:23260()(060)2x xr x x h x-==<<,从求得的结果发现,箱子的高恰好是原正方形边长的16,这个结论是否具有一般性?二、最大利润问题例2: 已知某商品生产成本C 与常量q 的函数关系式为1004C q =+,价格p 与产量q 的函数关系式1258p q =-。
求产量q 为何值时,利润L 最大。
分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润。
解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭ 利润()212510048L R C q q q ⎛⎫=-=--+ ⎪⎝⎭ ()212110002008q q q =-+-<< '1214L q =-+ 令'0L =,即12104q -+= 求得唯一的极值点84q = 因为L 只有一个极值点,所以它是最大值。
利用导数解决实际问题优秀课件

故R在M = 2C时取得极大值,而且此时取得最大值.
例 4.已知某种工艺品总成本C元是产量Q件的函数,且
= 102 + 200 + 1000,1 ≤ ≤ 30.
将Q看成能取区间[1, 30]内的每一个值,求月产量Q为多少时,才能使每件
= 12(x − 0.6)(x − 0.2).
令V ′
> 0,可解得x < 0.2.
1.2 − 2
1.2 − 2
1.2 − 2
因此可知V在(0, 0.2]上递增,在[0.2, 0.6)上递减,
故V在x = 0.2时取得极大值,而且在此时取得最大值.
即截去的正方形边长为0.2m时,容器的容积最大.
因此,当 0 < x <
1.6时,y ′
= 50 ×
1
×
2Leabharlann (1.22+
1
x 2 )−2 ×
海
陆
2x − 30 =
令y ′ > 0,可解得x > 0.9.
可知y在[0,0.9] 上递减,在[0.9,1.6]上递增,从而y在x = 0.9时
取得最小值,而且最小值为
50 1.22 + 0.92 + 30(1.6 −0.9 ) = 96.
设成本为每千米30万元,那么铺设输油管的最少花费是多少?
海
陆
思考:分别计算下列两种算法的铺设成本.
(1)先沿AC铺设,再沿CB铺设;
(2)直接沿着线段AB铺设.
解:(1) 成本为1.2 × 50 + 1.6 × 30 = 108万元.
1.4生活中的优化问题举例(三).ppt1

半径为 6cm时,利润最大 .
y 换一个角度: 如果 我 们不用导 数工具 ,直接 从函数的图象 (图 r3 2 1.4 4)上观察,你有什么发现? f r 0.8π 3 r 从图象上容 易看出,当 r 3 时,
f 3 0,即瓶子半径是 3cm 时, 饮料的利润与饮料瓶的成本恰
解:⑴P(x) = R(x) – C(x) = – 10x3 + 45x2 + 3240x – 5000 MP (x) = P ( x + 1 ) – P (x) = – 30x2 + 60x +3275 (其中 xN 且 x[1, 20]). ⑵∵ P( x ) = – 30x2 + 90x + 3240 = – 30( x +9 )(x – 12) ∴当 1< x < 12 时, P( x ) > 0, P(x)单调递增, 当 12 <x < 20 时, P( x ) < 0 , P ( x ) 单调递减. ∴ x = 12 时, P(x)取最大值,即年建造 12 艘船时, 公司 造船的年利润最大. ⑶由 MP(x ) = – 30( x – 1) 2 + 3305 (xN 且 x[1, 20]). ∴当 1< x ≤ 20 时,MP (x)单调递减. MP (x)是减函数说明:随着产量的增加,每艘利润与前一 台比较,利润在减少.
4 3 S 3 S S 3 h h 3h 由①得 b= h,代入②,∴l= 3 h 3 h h 3
l′ = 3
S S S S =0, ∴ h = , 当 h < 时, l ′ <0, h > 时,l′>0. 2 4 4 4 h 3 3 3
生活中的优化问题举例

练习3:某种圆柱形的饮料罐的容积一定时,如何确定它 的高为R.
h
则表面积为 S(R)=2πRh+2πR2.
又V=πR2h(定值),
则h
V
R 2
.
R
S
(R)
2R
V
R 2
2R2
2V R
2R2.
当r (2,6) 时, f '(r) 0.
解: 由于瓶子的半径为r,所以每瓶饮料的利
润为: y
4r 3
f (r) 0.2
0.8r 2
(0 r 6)
3
令 f '(r) 0.8 (r 2 2r) 0
当r 2时, f '(r) 0. 当r (0,2)时, f '(r) 0;
3.4 生活中的优化问题举例
生活中经常遇到求利润最大、用 料最省、效率最高等问题,这些问题 通常称为优化问题,通过前面的学习, 知道,导数是求函数最大(小)值的 有力工具,本节我们运用导数,解决 一些生活中的优化问题。
问题1:海报版面尺寸的设计
学校或班级举行活动,通常需要张贴海报 进行宣传,现让你设计一张如图所示的竖向张 贴的海报,要求版心面积为128dm2,上下边各 空2dm,左右空1dm,如何设计海报的尺寸,才 能使四周空白面积最小? 解:设版心的高为xdm,则宽为 128 dm
(1)瓶子半径多大时,能使每瓶饮料的利润最大? (2)瓶子半径多大时,每瓶饮料的利润最小?
解: 由于瓶子的半径为r,所以每瓶饮料的利
润为:y f (r) 0.2 4r 3
令
3
f '(r) 0.8 (r 2
导数在实际生活中的应用

导数在实际生活中的应用(1)学习目标1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性.课前预学:问题1:一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.只要利用导数求出函数y=f(x)的所有,再求出端点的函数值,进行比较,就可以得出函数的最大值和最小值.问题2:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为问题.导数是求函数最大(小)值的有力工具,可以运用导数解决一些生活中的优化问题.问题3:利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各个量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的,解方程f'(x)=0;(3)比较函数在区间端点和点的函数值的大小,最大(小)者为最大(小)值.问题4:解决生活中的优化问题应当注意的问题确定函数关系式中自变量的区间,一定要考虑实际问题的意义,不符合实际问题的值应舍去.课堂探究:一.利润最大问题某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售量价格x的值,使商场每日销售该商品所获得的利润最大.二.容积最大问题请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.三.成本最低问题:如图,某工厂拟建一座平面图为矩形,且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米.如果池四周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,无盖.(1)写出总造价y(元)与污水处理池的长x(米)的函数关系式,并指出其定义域;(2)污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.课堂检测:1.把长度为l的铁丝围成一个长方形,则长方形的最大面积为.2.设底为正三角形的直棱柱的体积为V,则其表面积最小时底面边长为.3.做一个无盖圆柱水桶,其体积是27π m3,若用料最省,则圆柱的底面半径为m.4.已知一个扇形的周长为l,扇形的半径和中心角分别为多大时,扇形的面积最大?导数在实际生活中的应用(2)学习目标:1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性. 课前预学:1.把长度为16的线段分成两段,各围成一个正方形,这两个正方形面积的最小值为 .2.要做一个圆锥形漏斗,其母线长20 cm,要使其体积最大,则其高是 .3.周长为20的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值是 .4.一边长为48 cm 的正方形铁皮,铁皮四角截去四个边长都为x cm 的小正方形,做成一个无盖方盒.求x 多大时,方盒容积最大? 课堂探究:1.如图,等腰梯形ABCD 的三边AB,BC,CD 分别与函数y=-x 2+2,x∈[-2,2]的图象切于点P,Q,R.求梯形ABCD 面积的最小值.2.已知某公司生产的品牌服装的年固定成本为10万元,每生产1千件,需要另投入1.9万元,设R(x)(单位:万元)为销售收入,根据市场调查得知R(x)=其中x 是年产量(单位:千件).(1)写出年利润W 关于年产量x 的函数解析式;(2)年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?3.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=x 3-x+8(0<x≤120),已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?课堂检测:某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.。
重点:利用导数知识解决实际生活中的最优化问题

在确定了所有极值点后,需要比较这些点的函数值,以确定哪个点是最优解。如果目标是最小化函数,则选择函数值最小的极小值点作为最优解;如果目标是最大化函数,则选择函数值最大的极大值点作为最优解。
总结词
导数在最大利润问题中,可以帮助我们找到使利润最大的最优解。
总结词
导数在最大利润问题中,可以帮助我们找到使利润最大的最优解。
详细描述
在商业运营中,最大化利润是一个关键目标。导数的应用可以帮助我们找到使利润最大的最优解。例如,在定价策略中,我们可以通过求导找到最优的定价,以最大化利润。
详细描述
在商业运营中,最大化利润是一个关键目标。导数的应用可以帮助我们找到使利润最大的最优解。例如,在定价策略中,我们可以通过求导找到最优的定价,以最大化利润。
总结词:导数在最优化方案选择问题中,可以帮助我们找到最优的方案。
导数在解决最优化问题中的重要性
CATALOGUE
02
导数大于零的区间内,函数值随自变量增大而增大。
单调递增
导数小于零的区间内,函数值随自变量增大而减小。
单调递减
不等式最值
利用导数研究函数在某区间内的单调性,进而确定不等式成立的条件和最值。
在某些情况下,可能存在多个最优解或没有最优解,这取决于问题的性质和约束条件。
实际案例分析
CATALOGUE
04
总结词
导数在投资回报最大化问题中起到关键作用,通过求导数找到收益函数的最大值点,从而确定最优投资策略。
要点一
要点二
详细描述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数解决生活中的优化问题导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。
一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。
再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.二.利用导数解决优化问题的基本思路:三、应用举例例1(体积最大问题)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为181234.53(m)042x h x x -⎛⎫==-<< ⎪⎝⎭.故长方体的体积为 22323()2(4.53)96(m )02V x x x x x x ⎛⎫=-=-<<⎪⎝⎭. 从而2()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =.当01x <<时,()0V x '>;当312x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值.从而最大体积233(1)91613(m )V V ==⨯-⨯=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的范围,再列出关系式,对关系式进行求导,最后求出最值来。
例2(帐篷设计问题)请您设计一个帐篷。
它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥。
试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大?解:设OO1为x m,则由题设可得正六棱锥底面边长为(单位:m)=于是底面正六边形的面积为:2262)x x==+- m2帐篷的体积为231()2)(1)112)3V x x x x x x⎡⎤=+--+=+-⎢⎥⎣⎦m3求导数,得2()3)2V x x'=-令()0V x'=解得x=-2(不合题意,舍去),x=2.当1<x<2时,()0V x'>,V(x)为增函数;当2<x<4时,()0V x'<,V(x)为减函数。
所以当x=2时,V(x)最大。
即当OO1为2m时,帐篷的体积最大。
点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。
求解关键是设法构建函数关系,将实际问题如何转化为数学问题,再利用导数求解.例3(瞬时速度问题)若已知某质点的运动方程为S(t)=12+t-at,要使在t∈[0, +∞]上的每一时刻的瞬时速度的绝对值都不大于1,求实数a的取值范围。
解:S’(t)=att-+12. ∵| S’(t)|≤1,∴|1|2att-+≤1,∴⎪⎪⎩⎪⎪⎨⎧-≥-+≤-+111122attatt,即⎪⎪⎩⎪⎪⎨⎧++≤-+≥.11,1122ttatta当t∈[0,+∞]时,(112++tt)min=1,∴a≤1.当t +∞时,112→+tt,且12+tt连续递增,所有值都小于1,∴a≥0. 故实数a的取值范围是0≤a≤1。
点评:①质点运动方程S(t)的导数S’(t)的物理意义就是质点在时刻t的瞬时速度. ②利用导数的物理意义列出不等式,根据不等式在t∈[0, +∞﹞上恒成立,求出a的取值范围.例4(容器的容积最大)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边形翻转︒90角,再焊接而成.问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器高为xcm,容器的容积为)(xV cm3,则)(xV= x(90-2x)(48-2x) = 4x3-276x2+4320x (0<x<24).求)(x V '=12x 2-552x +4320 = 12(x 2-46x +360) = 12(x -10)(x -36).令)(x V '= 0,得x 1= 10,x 2= 36 (舍去),当0<x <10 时,)(x V '>0,那么)(x V 为增函数;当10<x <24 时,)(x V '<0,那么)(x V 为减函数.因此,在定义域(0,24)内,函数)(x V 只有当x = 10时取得最大值,其最大值为: )10(V = 10×(90-20)(48-20) = 19600(cm 3).所以当容器的高为10cm 时,容器的容积最大,最大容积为19600cm 3.点评:函数的应用题主要存在于用料最省、造价最低、利润最大等最优化问题中,由于函数的应用性问题是一种最广泛,实用性又极强的问题,并且利用导数运算工具简化了运算量,所以函数应用题已成为高考的一大热点.例5(水库的蓄水量问题)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为124(1440)50,010,()4(10)(341)50,1012.x t t e t V t t t t ⎧⎪-+-+<≤=⎨⎪--+<≤⎩(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以1i t i -<<表示第1月份(1,2,,12i =L ),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取 2.7e =计算).解:(Ⅰ)①当010t <≤时,124()(1440)5050x V t t t e =-+-+<,化简得214400t t -+>,解得4t <,或10t >,又010t <≤,故04t <<.②当1012t <≤时,()4(10)(341)5050V t t t =--+<,化简得(10)(341)0t t --<, 解得41103t <<,又1012t <≤,故1012t <≤. 综合得04t <<,或1012t <≤;故知枯水期为1月,2月,3月,11月,12月共5个月.(Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c t t令V ′(t )=0,解得t=8(t=-2舍去).当t 变化时,V ′(t ) 与V (t )的变化情况如下表:由上表,V (t )在t =8时取得最大值V (8)=8e 2+50-108.52(亿立方米).故知一年内该水库的最大蓄水量是108.32亿立方米点评:本题以水库蓄水为背景,考查了函数、导数和不等式等基本知识,同时还考查了运用导数知识求最值和综合运用数学知识解决生产生活实际问题的能力.例6(磁盘的最大存储量问题)计算机把数据存储在磁盘上。
磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。
磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。
磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit )。
为了保障磁盘的分辨率,磁道之间的宽度必需大于m ,每比特所占用的磁道长度不得小于n 。
为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为R 的磁盘,它的存储区是半径介于r 与R 之间的环形区域.(1)是不是r 越小,磁盘的存储量越大?(2)r 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于r 与R 之间,由于磁道之间的宽度必需大于m ,且最外面的磁道不存储任何信息,故磁道数最多可达R r m-。
由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达2r nπ。
所以,磁盘总存储量()f r =R r m -×2r nπ2()r R r mn π=-. (1)它是一个关于r 的二次函数,从函数解析式上可以判断,不是r 越小,磁盘的存储量越大.(2)为求()f r 的最大值,计算()0f r '=.()2()2f r R r mnπ'=-,令()0f r '=,解得2R r =, 当2R r <时,()0f r '>;当2R r >时,()0f r '<. 因此2R r =时,磁盘具有最大存储量。
此时最大存储量为224R mn π。
例7(饮料瓶大小对饮料公司利润的影响问题)(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是20.8r π分,其中 r 是瓶子的半径,单位是厘米。
已知每出售1 mL 的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?(2)瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为r ,所以每瓶饮料的利润是 ()332240.20.80.8,0633r y f r r r r r πππ⎛⎫==⨯-=-<≤ ⎪⎝⎭令()20.8(2)0f r r r π'=-= 解得 2r =(0r =舍去) 当()0,2r ∈时,()0f r '<;当()2,6r ∈时,()0f r '>.当半径2r >时,()0f r '>它表示()f r 单调递增,即半径越大,利润越高;当半径2r <时,()0f r '< 它表示()f r 单调递减,即半径越大,利润越低.(1)半径为2cm 时,利润最小,这时()20f <,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.(2)半径为6cm 时,利润最大.换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?可根据单调区间画出函数的大致图像,由图像知:当3r =时,()30f =,即瓶子的半径为3cm 时,饮料的利润与饮料瓶的成本恰好相等;当3r >时,利润才为正值.当()0,2r ∈时,()0f r '<,()f r 为减函数,其实际意义为:瓶子的半径小于2cm 时,瓶子的半径越大,利润越小,半径为2cm 时,利润最小.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。