fluent多相流算例

合集下载

fluent 案例

fluent 案例

fluent 案例
- 电池仿真计算:该案例使用Fluent中的电池仿真模块,基于前期实验获取的数据,根据NTGK模型模拟稳定的充放电过程。

计算原理是需要提供不同倍率下的DOD与电压曲线。

- 动网格实例:动网格模型可以用来模拟由于流域边界运动引起流域形状随时间变化的流动情况,如汽车发动机中的气缸运动、阀门的开启与关闭、机翼的运动、飞机投弹等。

- 离心泵空化:利用Fluent中的Mixture多相流模型仿真计算离心泵内的空化情况。

案例描述为离心泵入口总压0.6MPa,出口静压0.2MPa,叶轮旋转速度1200RPM。

流体域内介质为液态水,其在当前工作条件下饱和蒸汽压为3540Pa。

- 板式换热器CFD仿真:本案例在ANSYS2019R3中演示了如何利用Fluent进行板式换热器CFD仿真。

首先在SpaceClaim中建立几何模型,并进行命名边界条件,接着导入Fluent Meshing进行网格划分,然后利用Fluent进行求解,最后在CFD-POST中进行后处理。

这些案例展示了Fluent在不同领域的应用,如果你对其中某个案例感兴趣,可以继续向我提问。

fluent混合多相流湍流普朗特数

fluent混合多相流湍流普朗特数

fluent混合多相流湍流普朗特数
在多相流领域,特别是涉及到湍流的情况下,普朗特数(Prandtl number)是一个重要的无量纲参数。

普朗特数通常用符号Pr表示,它定义为动力黏度与热扩散率之比。

在Fluent(一种流体动力学仿真软件)中,你可以使用普朗特数来描述涉及到多相流湍流的情况。

在混合多相流中,考虑到连续相和分散相之间的热传递,普朗特数可以通过以下公式表示:
Prt=动力黏度t/热扩散率t
其中,下标t表示涉及到分散相(通常是颗粒)的特性。

在Fluent 中,你可以在模拟设置中选择不同的物理模型和湍流模型,并在求解器选项中调整相应的参数,其中就包括普朗特数。

具体的操作可能取决于你的具体模拟问题和所使用的Fluent 版本。

请注意,对于不同类型的多相流问题,特别是考虑到颗粒运动的情况,可能会有不同的模型和参数设置。

因此,最好查阅Fluent 的文档或用户手册,以获取详细的说明和建议。

Fluent 多相流

Fluent 多相流


Primary and secondary phases

One of the phases is considered continuous (primary) and others (secondary) are considered to be dispersed within the continuous phase.
2
© Fluent Inc. 7/13/2013
Fluent Software Training TRN-98-006
Definitions

Multiphase flow is simultaneous flow of

Matters with different phases( i.e. gas, liquid or solid). Matters with different chemical substances but with the same phase (i.e. liquid-liquid like oil-water).
Multiphase Models

Four models for multiphase flows currently available in structured
FLUENT 4.5 Lagrangian dispersed phase model (DPM) Eulerian Eulerian model Eulerian Granular model Volume of fluid (VOF) model

Unstructured FLUENT 5 Lagrangian dispersed phase model (DPM) Volume of fluid model (VOF) Algebraic Slip Mixture Model (ASMM) Cavitation Model

fluent 多相流设置体积分数

fluent 多相流设置体积分数

多相流是指在同一系统中同时存在两种或两种以上的物质相,并且它们彼此之间可以传递质量、动量和能量的现象。

在工程实践中,多相流问题的研究和应用广泛存在于化工、石油、能源、环境、生物和医药等领域。

而在多相流中,体积分数是描述多相组分在单位体积内的比例关系,具有重要的工程意义。

1. 什么是体积分数?体积分数是指单位体积内某一相的体积与总体积之比。

在两相流中,通常用$\alpha$表示体积分数,其定义为:$\alpha = \frac{V_{1}}{V}$其中,$\alpha$表示体积分数,$V_{1}$表示该相的体积,$V$表示总体积。

在此基础上,可以推导出两相体系体积分数之和等于1的关系:$\alpha_{1} + \alpha_{2} = 1$其中,$\alpha_{1}$和$\alpha_{2}$分别代表两个相的体积分数。

体积分数的概念和定义为多相流问题的研究和工程应用提供了重要的理论基础。

2. 多相流中的体积分数设置的意义在工程实践中,多相流中的体积分数设置具有重要的意义和作用。

体积分数的设置可以帮助工程师和研究人员更好地描述和理解多相流体系的组成和性质。

通过对不同相在单位体积内的分布进行描述和分析,可以为多相流问题的建模和仿真提供重要的依据。

体积分数的设置可以用于描述和预测多相流体系的流动特性和变化规律。

不同相的体积分数分布将直接影响到多相流体系的流动行为和性质,因此对体积分数的合理设置将有助于预测多相流体系的运动方式、速度分布、浓度分布等重要参数。

体积分数的设置还可以为多相流问题的数值模拟和工程应用提供重要的输入参数。

在进行多相流数值模拟时,需要将不同相的体积分数作为初始条件和边界条件进行设定,以便于计算得出多相流体系的动态变化过程和结果。

合理设置体积分数对于有效开展多相流问题的数值模拟具有重要的意义。

3. 多相流中体积分数设置的方法在多相流问题的研究和应用过程中,体积分数的设置通常采用以下几种方法:(1)实验测定法实验测定法是通过实验手段对多相流体系中不同相的体积分数进行直接测量和观测。

fluent多相流模型

fluent多相流模型

fluent多相流模型
Fluent多相流模型是一种广泛应用于多相流模拟的数值求解方法。

这种模型可以模拟具有液体、气体和固体三种组分的多相流动系统,使得流动特性得到更为详尽的描述。

它基于控制单元格(Control Volume),采用有限体积方法(FVM),从而可以计算流体与固体界面的相互作用,以及流体与流体之间的相互作用。

Fluent多相流模型还能够模拟不断变化的流体和悬浮物的运动,能够模拟可燃物燃烧过程,以及其他更为复杂的流动现象。

Fluent多相流模型应用于机械、电子、自动化及工程等方面,其计算精度也属于较高的等级。

Fluent多相流模型通过对流体及悬浮物的实时求解,用以分析多相流动系统中物理和化学现象的发展,从而实现对模型的预测和优化。

它可以求解传热、传质、流体动力和边界层等多相流动系统的最优状态,以及求解各种流体的流动速度、粘度、温度和压力等。

Fluent多相流模型的关键特性在于它可以模拟多相流动系统中不同物理过程的相互作用,从而使得结果非常接近实际应用情况。

Fluent学习资料教程集锦12-fluent_多项流

Fluent学习资料教程集锦12-fluent_多项流

• 使用FLUENT中 DPM模型模拟仿 真喷雾干燥过程, 包括液体喷雾进入 加热室接触干燥粉 末时的流动,热交 换和质量交换。
• 优化喷雾干燥器 中的不同参数时, CFD仿真技术起到
Air and methane inlets
Centerline for particle injections
Outlet
– 稀疏型 (< 10%), 内部颗粒间的距离大于 颗粒载颗荷 粒– 离直散径相和两连倍续相,的因惯此性力,颗粒间的相Vpri互mary作用可
比率
part
cont
cp以oanrtt 忽 略1。1, ,twonoewwaayyccoouupplilningg
Vse c onda r y
• 如果St 1, 所有模型都适用,这时就需要考虑 计算速度
附录
建立离散相模型 (DPM)
Define Models Discrete Phase…
Define Injections…
Display Particle Tracks…
DPM 模型边界条件
• Escape
• Trap • Reflect
欧拉多相模型
欧拉多相模型
• 欧拉多相流模型基于平均N-S方程,可以计算 任意粒子和连续相物质。 • 对每一相求解守恒方程。 • 每相同时共存: 每相的守恒方程都包涵单相项 (压力梯度,导热率等)+界面项。 • 界面项包括动量(升力),热量和质量交换。 相间速度和温度差异使得机械能和热能的交换是 非线性的。 • 提供了附加的模型(湍流模型等)。
VOF模型举例 – 晃动的汽车油箱
• 在FLUENT中使 用VOF模型,仿 真模拟各种加速 环境下,汽车油 箱中液体的晃动 t = 1.05 sec (自由表面移 动)。

我用fluent的多相流中的混合模型计算了叶轮中的液固两相流

我用fluent的多相流中的混合模型计算了叶轮中的液固两相流

我用fluent的多相流中的混合模型计算了叶轮中的液固两相流,没有什么问题,可是当我用欧拉模型计算液固两相流时,迭代了几次就出现了float错误,也不知道是什么原因,好像是压力过大,一直在上升,到了极限,可是我用混合模型压力没有达到那种程度呀,照理说用欧拉模型不应该有什么错误,这是一个多孔介质例子,进口速度为0.01m/s,组份为液态水和氧气,其中氧气从多孔介质porous jump 渗透过去,如何看氧气在tissue中扩散的。

porous jump的face permeability1 a=e-8 m_2thickness 设为0.0001pressure jump coefficient为默认porous zone设置如下:direction vector 1, 1, 方向向量1 ,1 ,viscous resistance 100 each 粘性阻力100inertial resistance 100 each 惯性阻力100porosity 0.1 孔隙度0.1边界条件设置如下:Ab – wall – defaultBc – wall – defaultBe –porous jump –face permeability 1e-8, porous medium thickness 0.0001Cd – outflow rating – 0.5De – wall – defaultDefault interior – interiorDefault interior001 – interiorDefault interior019 – interiorEf – wall - defaultFg – outflow rating – 1 抗体-墙-默认公元前-墙-默认是-多孔跳转-面对渗透1e - 8 ,多孔介质厚度0.0001镉-流出评价- 0.5者-墙-默认默认内部-内部默认interior001 -内部默认interior019 -内部英法-墙-默认纤维蛋白原-流出评价- 1Fluid - porous zone - direction vector 1, 1, viscous resistance 100 each,inertial resistance 100 each, porosity 0.1Gh- wall - defaultHi – wall - defaultHk - porous jump same conditions as otherIj – outflow – 0.5Jk – wall – defaultKl – wall – defaultLa –velocity inlet –0.01 m/s, temperature 300K, 0.5 mass fraction O 流体-多孔区-方向向量1 , 1 ,粘性阻力100 ,惯性阻力100 ,孔隙度0.1生长激素墙-默认Lfluid –porous zone - direction vector 1, 1, viscous resistance 100 each,inertial resistance 100 each, porosity 0.1 Pipefluid – fluid – default (no porous zone) Models –species transport –water and oxygen mixtureV ariations –different boundary conditions at top and bottom (outflow, wall ect)把多孔介质区域特别标出来,在ZONE里,设为FLUID,然后再在FLUENT中设边界条件时,再设成POROUSLfluid -多孔区-方向向量1 ,1 ,粘性阻力100 ,惯性阻力100 ,孔隙度0.1Pipefluid -流体-默认(无孔区)车型-种运输-水和氧混合气变奏曲-不同边界条件在顶部和底部(流出,墙壁等)。

多相流(multiphaseflows)fluent教程

多相流(multiphaseflows)fluent教程

Choosing a Multiphase Model
In order to select the appropriate model, users must know a priori the characteristics of the flow in terms of the following:
Turbulence Modeling in Multiphase Flows
Turbulence modeling with multiphase flows is challenging. Presently, single-phase turbulence models (such as k– or RSM) are used to model turbulence in the primary phase only. Turbulence equations may contain additional terms to account for turbulence modification by secondary phase(s). If phases are separated and the density ratio is of order 1 or if the particle volume fraction is low (< 10%), then a single-phase model can be used to represent the mixture. In other cases, either single phase models are still used or “particlepresence-modified” models are used.
One of the phases is considered continuous (primary) The others (secondary) are considered to be dispersed within the continuous phase. There may be several secondary phase denoting particles with different sizes
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tutorial:Dam-Break Simulation Using FLUENT’s Volume of Fluid ModelPurposeThis tutorial examines the dam-break problem using the Volume of Fluid(VOF)multiphase model.This tutorial demonstrates how to do the following:•Set up a dam-break problem.•Choose the time step by estimating the maximum possible velocity of the interfaceand the grid cell dimension.•Solve the problem using the VOF model.•Manipulate the solution parameters.PrerequisitesThis tutorial assumes that you are familiar with the FLUENT interface and that you havea good understanding of basic setup and solution procedures.In this tutorial,you will useVOF multiphase model,so you should have some experience with it.This tutorial will not cover the mechanics of using this model;instead,it will focus on the application of this model to solve a dam-break problem.If you have not used this model before,it would be helpful tofirst refer to the FLUENT6.3 User’s Guide and the FLUENT6.2Tutorial Guide.Problem DescriptionThe initial setup of the dam-break problem is shown in Figure1.In this problem,a rectangular column of water,in hydrostatic equilibrium,is confined between two walls.Gravity is acting downwards with a magnitude of-9.81m/s2.At the beginning of the calculation,the right wall is removed and the water is allowed toflow out to the horizontal wall.Dam-Break Simulation Using FLUENT’s Volume of Fluid ModelFigure1:Initial Setup of the ProblemPreparation1.Copy the meshfile,dambreak.msh.gz to the working folder.2.Start the2D(2d)version of FLUENT.Dam-Break Simulation Using FLUENT’s Volume of Fluid Model Setup and SolutionStep1:Grid1.Read the gridfile dambreak.msh.gz.2.Check the grid.Grid−→Check3.Display the grid(Figure2).Display−→Grid...(a)Click the Colors...button to open the Grid Colors panel.i.Select Color By ID.This will assign a different color to each zone in the domain,rather than toeach type of zone.ii.Close the Grid Colors panel.(b)Click Display.(c)Close the Grid Display panel.Figure2:Grid DisplayDam-Break Simulation Using FLUENT’s Volume of Fluid ModelStep2:Models1.Define the solver settings.Define−→Models−→Solver...(a)Select Unsteady for Time.(b)Click OK to close the Solver panel.2.Define the model settings.Define−→Models−→Multiphase...(a)Select the Volume of Fluid multiphase model.(b)Enable Implicit Body Force Formulation.(c)Click OK to close the Multiphase Model panel.Step3:MaterialsThe default properties of water and air are the correct values for this problem.You can check them in the Materials panel.1.Define the material properties.Define−→Materials...(a)Retain the default settings for air.(b)Define the new material by copying water-liquid(h20<l>)from the Fluent Database.(c)Click Change/Create and close the Materials panel.2.Define the primary(air)and secondary(water-liquid)phases.Define−→Phases...(a)Specify air as the primary phase.(b)Specify water-liquid as the secondary phase.(c)Close the Phases panel.Dam-Break Simulation Using FLUENT’s Volume of Fluid ModelStep4:Operating ConditionsDefine−→Operating Conditions...1.Enable Gravity.2.Enter-9.81m/s2for Gravitational Acceleration in the Y direction.3.Enable Specified Operating Density and retain the default value for Operating Density.4.Click OK to close the Operating Conditions panel.Step5:Boundary ConditionsDefine−→Boundary Conditions...1.Set the boundary conditions for poutlet.(a)In the drop-down list for Phase,select water-liquid and click the Set...button.i.Retain the default value of0for Backflow Volume Fraction.ii.Click OK to close the Pressure Outlet panel.(b)Close the Boundary Conditions panel.Step6:Solution1.Set the solution parameters.Solve−→Controls−→Solution...(a)Enter0.9for Pressure,0.7for Momentum,and1for the remaining parametersin the Under-Relaxation Factors group box.(b)Select PRESTO!from the Pressure drop-down list,and First Order Upwind fromthe Momentum drop-down list in the Discretization group box.(c)Select PISO from the Pressure-Velocity Coupling drop-down list.PISO is recommended for transientflow simulations.(d)Click OK to close the Solution Controls panel.2.Set the termination criteria for Pressure.Solve−→Controls−→Multigrid...(a)Enter0.001for Termination Value for Pressure.(b)Click OK to close the Multigrid Controls panel.Dam-Break Simulation Using FLUENT’s Volume of Fluid Model3.Initialize the solution.Solve−→Initialize−→Initialize...(a)Retain the default values for all components and click Init.(b)Close the Solution Initialization panel.4.Patch the initial distribution of the water-liquid.Solve−→Initialize−→Patch...(a)In the drop-down list for Phase,select water-liquid.(b)In the Variable list,select Volume Fraction.(c)Select water in the Zones To Patch list.(d)Set the Value to1.(e)Click Patch and close the Patch panel.5.Enable the plotting of residuals during the calculation.Solve−→Monitors−→Residual...(a)Enable Plot.(b)Click OK to close the Residual Monitors panel.6.Calculate the time step by estimating the maximum possible velocity of the interfaceand the grid cell dimension.Courant=tx cellv fluidρgh=ρ2v2fluidv fluid= ≈10m/st= x cell/v fluid≈0.01sec7.Set the time stepping parameters.Solve−→Iterate...(a)Enter0.01(s)for Time Step Size.(b)Enter20for Number of Time Steps.(c)Enter40for Max.Iterations per Time Step.(d)Click Apply.8.Save the initial case and datafiles,(dambreak.cas.gz and dambreak.dat.gz).9.Click Iterate to start the calculation.10.After FLUENT completes the specified number of iterations,run the calculation furthersuccessively specifying30,30,and20(a total of80)for Number of Time Steps.Dam-Break Simulation Using FLUENT’s Volume of Fluid Model11.Save the case and datafiles after each set of iterations.This will help in viewing the progress of the VOF simulation.Step7:PostprocessingThe velocity vectors and contours of velocity for the VOF model are displayed for four time step values.The followingfigures(Figure3to Figure9)show the progression of the solution as the number of time steps is increased.1.Display velocity vectors after20time steps(Figure3).(a)Select Velocity from the Vectors Of drop-down list.(b)Select mixture from the Phase drop-down list.(c)Select Velocity...and Velocity Magnitude from the Color By drop-down lists andclick Display.2.Displayfilled contours of volume fraction of water-liquid after20time steps(Figure4).(a)Select Phases...and Volume Fraction from the Contours Of drop-down lists.(b)Select water-liquid from the Phase drop-down list and click Display.3.Similarly,display the contours of volume fraction and velocity vectors after50,80,and100time steps(Figure5to Figure10).Dam-Break Simulation Using FLUENT’s Volume of Fluid ModelStepsFigure3:Velocity Vectors Colored By Velocity Magnitude after20TimeDam-Break Simulation Using FLUENT’s Volume of Fluid ModelStepsFigure5:Velocity Vectors Colored By Velocity Magnitude after50TimeDam-Break Simulation Using FLUENT’s Volume of Fluid ModelStepsFigure7:Velocity Vectors Colored By Velocity Magnitude after80TimeDam-Break Simulation Using FLUENT’s Volume of Fluid ModelStepsFigure9:Velocity Vectors Colored By Velocity Magnitude after100Timec Fluent Inc.November6,200611Dam-Break Simulation Using FLUENT’s Volume of Fluid ModelStep8:Manipulation of Solution Parameters1.Solve the problem by manipulating different solution parameters.•Interface tracking scheme.•Enable/Disable PISO.•Pressure interpolation scheme.•Discretization scheme for momentum,volume fraction.•Reference density value and location.•Time step size.SummaryIn this tutorial,a dam-break problem was solved using the Volume of Fluid(VOF)model in FLUENT.12c Fluent Inc.November6,2006。

相关文档
最新文档