第2章 光纤传输特性 损耗 色散
光纤的特性课件

光纤的制造-预制棒法
相似折射率分布的直径 2cm左右,长1m预制棒,再拉成 长度10km,0.125mm细直径的光纤。特点是可制造折射 率分布复杂的光纤。
32
光纤的制造-预制棒法
33
k0n
2n 0
2f 2c
0
g
d d
d d0
d0 d
2n 02
2 0
dn
•
0
2
d0 2c
1 c
n
0
dn
d 0
ps/nm
10
材料色散参量
m
L g
L Vg
m (0 ) m (0 ) L g 0 g 0
0
c
d2 n
d 02
0 L
偏振态改变 发生偏振色散 保偏光纤:维持光波偏振态的偏振保持光纤
26
偏振模色散Δτ取决于光纤的双折射,由 Δβ=βx-βy≈nxk-nyk得到
1 c
d
dk
1 c (nx
ny )
27
保偏光纤(PMF)
双折射参量的定义
BF
X Y
k0
0
X Y 2
传输相位差
L ( X Y ) L
28
用脉冲展宽表示时, 光纤色散可以写成
Δτ=(Δτ2n+Δτ2m+Δτ2w)1/2 Δτn ——模式色散; Δτm——材料色散; Δτw ——波导色散 所引起的脉冲展宽的均方根值。 8
群速与群延时
群速 的表示:
Vg
d d
群延时:群速Vg行进单位长度所花费的时间,即
g
1 Vg
d d
9
光纤内的群延时
M L
光纤的传输特性

光纤的传输特性光纤的传输特性包括损耗、色散、衰减、偏振和非线性效应等,其中,损耗和色散是光纤最重要的传输特性。
损耗限制系统的传输距离,色散限制系统的传输容量。
(1)光纤的损耗特性。
在光发射机和接收机之间由光缆吸收、反射、散射和辐射的信号功率被认为是损耗。
光纤损耗是光纤传输系统中限制中继距离的主要因素之一。
下表列出了3种石英光纤的典型损耗值。
(2)光纤的色散特性。
色散是光纤的一个重要参数,它会引起传输信号的畸变,使通信质量变差,限制通信容量与距离,特别是对高速和长距离光纤通信系统的影响更为突出。
光纤色散的产生涉及多方面的原因,这里只介绍模式色散、材料色散和波导色散。
①模式色散。
模式色散是指光在多模光纤中传输时会存在许多种传播模式,因为每种传播模式在传输过程中都具有不同的轴向传输速度,所以虽然在输入端同时发送光脉冲信号,但光脉冲信号到达接收端的时间却不同,于是产生了时延,使光脉冲发生展宽与畸变。
②材料色散。
材料色散是由构成纤芯的材料对不同波长的光波所呈现的不同折射率造成的,波长短则折射率大,波长长则折射率小。
就目前的技术水平而言,光源尚不能达到严格单频发射的程度,因此无论谱线宽度多么狭窄的光源器件,它所发出的光也会包含多根谱线(多种频率成分),只不过光波长的数量以及各光波长的功率所占的比例不同而已。
每根谱线都会受到光纤色散的作用,而接收端不可能对每根谱线受光纤色散作用所造成的畸变进行理想均衡,故会产生脉冲展宽现象。
③波导色散。
波导色散是指由光纤的波导结构对不同波长的光产生的色散作用。
波导结构是指光纤的纤芯与包层直径的大小、光纤的横截面折射率分布规律等。
这种色散通常很小,可以忽略不计。
光纤的损耗和色散

具体机理:在黑夜里向空中照射,可以看到 一束光束,人们也曾看到过夜空中的探照 灯发出粗大的光柱。为什么我们会看到这 些光柱呢?这是因为有许多烟雾,灰尘等 微小颗粒浮游于大气之中,光照射在这些 颗粒上,产生了散射,就射向了四面八方, 这个现象是由瑞利首先发现的,所以人们 把这种散射称为瑞利散射。 瑞利散射是怎样产生的呢?原来组成物质的 分子、原子、电子是以某些固有的频率在 振动,并能释放出波长与该振动频率相应 的光。
二 散射损耗
是指光通过密度或折射率不均匀的物质时,除了 在光的传播方向以外,在其它方向也可以看到 光,这种现象叫做散射。
原因:光纤的材料,形状,散射率分布等的 缺陷或不均匀。 散射损耗主要由材料微观密度不均匀引起的 瑞利(Rayleigh)散射和由光纤结构缺陷(如 气泡)引起的散射产生的。 结构缺陷散射产 生的损耗与波长无关。
• 3.色散平坦光纤(DFF)
有效利用带宽,最好使光纤在整个光纤通信的长波段 ( 1.3um-1.6um)都保持低损耗和低色散。
4. 色散补偿光纤(DCF)
利用一段光纤来消除光纤中由于色散的存在使得光脉 冲信号发生展宽和畸变。能够起这种均衡作用的光纤 称为色散补偿光纤。
作业
1.什么是损耗?光纤中存在哪些损耗?这些损 耗是由什么因素引起的? 2.什么是色散?光纤中存在哪些色散? 3. 光纤中的信号变化是由哪些因素引起的?这 些因素各导致信号如何变化?
2.非零色散光纤(NZDF)
• 当在一根光纤上同时传输多波长光信号再采用光 放大器时,DSF光纤就会在零色散波长区出现严 重的非线形效应,这样就限制了WDM技术的应用。 • 为了提高多波长WDM系统的传输质量,就考虑 零色散点移动,移到一个低色散区,保证WDM系 统的应用。 • NZDF是指光纤的工作波长移到1.54~1.565μm 范围,不是在1.55um的零色散点内,在此区域内 的色散值较小,约为1.0~4.0PS/km· wm。此范围 内色散和损耗都比较小,而且可采用波分复用技 术。
光纤损耗特性及色散特性

散射损耗
光在通过密度或折射率等不不均匀的物质时, 除了在光的传播方向以外,在其他方向也可以 看到光,这种现象称为光的散射。 散射损耗是由于光纤的材料、形状、折射率分 布等的缺陷或不均匀,使光纤中传导的光发生 散射,由此产生的损耗为散射损耗。 散射损耗中主要是瑞利散射和结构缺陷散射对 光纤通信的影响比较大。
光纤的损耗特性及色散特性
June 2011 Alex Wang
损耗特性
光纤损耗:光波在光纤中传输,随着传输距离 的增加而光功率逐渐下降。 损耗原因:光纤本身损耗、光纤与光源的耦合 损耗以及光纤之间的连接损耗。 本身损耗:吸收损耗和散射损耗
吸收损耗
吸收损耗是光波通过光纤材料时,有一部分变 成热能,造成光功率的损失,与光纤材料有关, 主要分为本征吸收和杂质吸收。
瑞利散射
属于光纤的本征散射损耗,主要是由于光纤材 料的折射率随机性变化而引起。 材料折射率变化是由于密度不均匀或内部应力 不均匀而产生。 瑞利散射损耗与光波长的四次方成反比,随波 长的增加而急剧减小,在短波长0.85um处对 损耗的影响最大。
结构缺陷散射
光纤在制作过程中,由于结构缺陷(如光纤中 的气泡、未发生反应的源材料以及纤芯和包层 交界处粗糙),将会产生散射损耗,与波长无 关。
色散的表示方法源自色散的大小用时延差表示。 时延是指信号传输单位长度时所需要的时间。 时延差是指不同速度的信号,传输同样的距离, 需要不同的时间,即各信号的时延不同,这种 时延上的差别,称为时延差。
《光纤损耗和色散》课件

色散评估指标:色散系数、色散斜 率、色散带宽等
色散评估应用:光纤通信系统设计、 光纤选型、光纤性能评估等
光纤损耗和色散的关系
损耗和色散的相互影响
光纤损耗:光在光纤中传输时,由于各种原因导致的能量损失
色散:光在光纤中传输时,由于不同波长的光速不同,导致光脉冲在传输过程中发生展宽和变 形的现象
损耗与色散的关系:损耗和色散是相互影响的,损耗越大,色散越严重
光纤损耗和色散
汇报人:PPT
Hale Waihona Puke 单击输入目录标题 光纤损耗 光纤色散 光纤损耗和色散的关系 光纤损耗和色散的应用
添加章节标题
光纤损耗
定义和分类
分类:根据损耗原因,可以 分为吸收损耗、散射损耗和 弯曲损耗
光纤损耗:光纤在传输过程 中由于各种原因导致的光能 损失
吸收损耗:光纤材料对光的 吸收导致的损耗
添加 标题
材料色散:由于光纤材料对不同波长的光的 折射率不同,导致光脉冲在传播过程中发生 展宽和变形的现象。
添加 标题
波导色散:由于光纤中不同模式的光速不同, 导致光脉冲在传播过程中发生展宽和变形的 现象。
影响色散的因素
光纤材料:不同材料对色散的影响不同 光纤长度:光纤越长,色散越严重 光纤直径:直径越大,色散越小 光纤温度:温度越高,色散越严重 光纤弯曲:弯曲程度越大,色散越严重 光纤折射率:折射率越高,色散越小
降低色散的方法
采用低色散光纤,如G.652光纤 采用色散补偿技术,如色散补偿光纤 采用色散补偿设备,如色散补偿器 采用色散补偿算法,如色散补偿软件
色散的测量和评估
色散测量方法:光谱分析法、干涉 法、光时域反射法等
色散测量设备:光谱分析仪、干涉 仪、光时域反射仪等
光纤的基本特性衰耗、色散

光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。
光纤的损耗限制了没有光放大的光信号的传播距离。
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。
1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。
a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。
红外吸收带的带尾也向光纤通信波段延伸。
但影响小于紫外吸收带。
在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。
目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。
c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。
现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。
在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。
因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。
光纤通信概论第二章2

满足f(ax+by)=af(x)+bf(y)称为线性系统: 是各分量互不相干的独立贡献 一分耕耘,一分收获! 否则称为非线性系统! 非线性是相互作用,而正是这种相互作用,使得 整体不再是简单地等于部分之和,而可能出现不 同于"线性叠加"的增益或亏损。 在光学中,线性与非线性分别表示非功率依赖和功 率依赖。 如果一个光纤系统的参数依赖于光强,就称为非 线性的
材料色散与波导色散
色散(ps/nm.km)
20
材料色散 G652光纤色散 零色散点
单模光纤的色散 D=DM+DW
G653光纤色散 0 波导色散 12701310 1550 在光纤通信波长范围内,波导色散系数为负,在一定的波长范 围内,材料色散和波导色散符号相反 材料色散一般大于波导色散,但在零色散波长附近二者大小可 以相比拟,普通单模光纤在1.31μm处这两个值基本相互抵消
模式色散
High-order Mode (Longer path) Axial Mode (shortest path) core
模式色散:
cladding
Low-order Mode (shorter path)
以不同入射角进入光纤的光线将经历不同的途径,虽然在输 入端同时入射并以相同的速度传播,但到达光纤输出端的时 间却不同,出现了时间上的分散,导致脉冲严重展宽
2
FWMratio
PFWM P
P
f 2 A eff
D
色散的分类
模式色散:不同模式不同传输速度,多模光纤特有 色度色散(Chromatic Dispersion): 通常简称的 色散概念! 材料色散:不同波长(频率)信号的折射率不同, 传输速度不同 波导色散:光纤的波导结构(不同区域折射率不同) 引起的色散效应 偏振模色散:不同偏振态不同传输速度
光纤损耗特性及色散特性

本征吸收:是光纤基础材料(SiO2)固有吸收,与波长有关, 对于SiO2石英系光纤,主要有两个吸收带,紫外吸收带和红 光吸收带。 杂质吸收:是由光纤材料的不纯净而造成的附加吸收损耗, 例如金属过渡离子和水的氢氧根离子吸收电磁能而造成的损 耗。
散射损耗
光在通过密度或折射率等不不均匀的物质时, 除了在光的传播方向以外,在其他方向也可以 看到光,这种现象称为光的散射。 散射损耗是由于光纤的材料、形状、折射率分 布等的缺陷或不均匀,使光纤中传导的光发生 散射,由此产生的损耗为散射损耗。 散射损耗中主要是瑞利散射和结构缺陷散射对 光纤通信的影响比较大。
瑞利散射
属于光纤的本征散射损耗,主要是由于光纤材 料的折射率随机性变化而引起。 材料折射率变化是由于密度不均匀或内部应力 不均匀而产生。 瑞利散射损耗与光波长的四次方成反比,随波 长的增加而急剧减小,在短波长0.85um处对 损耗的影响最大。
结构缺陷散射
光纤在制作过程中,由于结构缺陷(如光纤中 的气泡、未发生反应的源材料以及纤芯和包层 交界处粗糙),将会产生散射损耗,与波长无 关。
色散特性
光纤色散就是由于光纤中光信号中的不同频率 成分或不同的模式,在光纤中传输时,由于速 度的不同而使得传播时间不同,因此造成光信 号中的不同频率成分或不同模式到达光纤端有 先有后,从而产生波形畸变的一种现象。 由于光纤中色散的存在,会使得输入脉冲在传 输过程中展宽,产生码间干扰,增加误码率, 限制通信容量和传输距离。
色散的表示方法
色散的大小用时延差表示。 时延是指信号传输单位长度时所需要的时间。 时延差是指不同速度的信号,传输同样的距离, 需要不同的时间,即各信号的时延不同,这种 时延上的差别,称为时延差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6.2 光波导中信号失真
1 什么是色散,色散的分类 名词:色散
信号在光纤中是由不同的频率成份和不同 的模式成份携带的,这些不同的频率成份 和模式成份有不同的传播速度,使得光纤 输出波形在时间上产生展宽。 色散种类:模内色散(色度色散)和模间 色散,偏振模色散(单模光纤中)。
2 模内色散(色度色散)
L
Pout
(单位: dB/km)
? 损耗大小影响光纤的传输距离长短和中继距离的 选择 ,影响光纤通信系统的成本
3、损耗的种类
? 吸收损耗 ? 散射损耗 ? 其他损耗
吸收损耗
? 本征吸收损耗 是由于光纤材料本身吸收 光能量产生的。主要存在红外波段的分 子振动吸收和紫外波段的电子跃迁吸收。 红外吸收对长波长有影响,紫外吸收对 短波长有影响。
? 偏振模色散与色度色散相比相对较小
表2-7 PMD与系统传输速率 以及最大传输距离的关系
微弯损耗
宏弯损耗
? 弯曲损耗是光信息传输所受衰减的主要原因之一, 它与光纤敷设的弯曲半径有关,最小弯曲半径常作 为光纤的一项参数给出。
? 弯曲半径应超出光纤包层直径的 150 倍;对短期应 用,应超过包层直径的 100 倍。如果包层直径为 125μm 的话,这两个数值分别 19mm 和13mm 。
一般渐变型多模光纤的每公里长度上的最大时延差为
?m
?
1 n(0) 2C
?2
? 9 单模光纤:色度色散和偏振模色散
? 色度色散 两类:材料色散 波导色散
色度色散参数为波长的函数;
Dmat =材料色散, D wg =波导色散, D= 总色散
? 偏振模色散:
? 两个偏振模式因光纤的不完善而出现传输常数的差 异时产生的色散
? 模内色散包括材料色散和波导色散 ? 材料色散:纤芯的材料的折射率随波长的变化导
致色散。折射率随波长的变化 ,使不同波长的群速 度不同,造成时延差 ,发生脉冲展宽。在 1.27um 处 最小 ? 波导色散:原因是由于光纤中只有 80% 的光功率 在纤芯中传播, 20% 在包层中传播,由于包层中 传播速率大于纤芯,就出现色散。波导色散的大 小取决于光纤的设计
8 渐变型光纤的模式色散
渐变型光纤中光线的传播路径是近似于正弦形曲线,其中正弦幅 度大的光线传播距离长,而正弦幅度小的光线传输路程短,但由于 渐变型光纤纤芯折射率分布在轴心处最大并沿径向逐渐减小,所以 正弦幅度最大的光线由于离轴心远,折射率小而传播速率高,而正 弦幅度最小的光线由于离轴心近,折射率大而传播速率低,结果在 到达输出端时相互之间的时延差近似为零,从而使渐变型多模光纤 的模式色散较小。
? 利用光纤的弯曲损耗特性,可以在光纤链路上引入 一些可控的衰减。在需要对光进行可控衰减时,通 过将光纤绕上几圈就可以实现,所绕圈数和半径均 可控制衰减量。
4 光纤的损耗波谱曲线
耗损
口窗长波短
dB/km
瑞利散射
紫外吸收 波导缺陷吸收
一般测试曲线
红外吸收 长波长窗口
? 光纤通信所使用的三个低损耗窗口: ? 0.85um 约为 2.5dB/km ? 1.31um 约为 0.5dB/km ? 1.55um 约为 0.2dB/km
色度色散
3 偏振模色散
4 模间色散
? 模间色散产生的原因:即使在同一频 率的光,不同的模式群速率不一样,
也产生色散。它主要取决于光纤的 折射率分布。
? 模间色散主要存于多模光纤中。
5 光纤各种色散对传输的影响:
? 模间色散
? 材料色散
E-
E-
? 偏振模色散
E+
E+
6 色散效应对高速通信系统的影响
10 Gb/s
40 Gb/s
7 阶跃型光纤的模式色散
在阶跃型光纤中,当光线端面的 入射角小于端面临 界角 时,将在纤芯中形成全反射。若每条光线代 表一种模式,则不同入射角的光线代表不同的模 式,不同入射角的光线,在光纤中的 传播路径不 同,而由于纤芯折射率均匀分布,纤芯中不同路 径的光线的 传播速度相同 ,因此不同路径的光线 到达输出端的时延不同,从而产生脉冲展宽,形 成模式色散。
2.6 光纤传输特性
主要内容
? 损耗 ? 色散 ? 光纤的带宽和冲激响应 ? 光纤中的非线性效应 ? 单模光纤性能指标
2.6.1 损耗
1、损耗的定义: 当光在光纤中传输时,随着传输距离的增加,光 功率逐渐减小,这种现象即称为光纤的损耗。 2、损耗一般用损耗系数 α 表示:
? ? 10 lg Pin
? 杂质吸收损耗主要是由于光纤中含有的 各种过渡金属离子和氢氧根(OH-)离子 在光的激励下产生振动,吸收光能量造 成。 (OH-)离子的吸收对光通信的长 波长影响比较大(主要在1.38um)。
散射损耗
? 散输射方损向耗,是从指而在使光一纤部中分传光输不的能一到部达分收光端由所于产散生射的而损改耗变。传主 要包含瑞利散射损耗、 非线性散射损耗和波导效应散射损 耗。
? 弯曲损耗 是由于光纤中部分传导模在弯曲部位成 为辐射模而形成的损耗。它与弯曲半径成指数关 系,弯曲半径越大,弯曲损耗越小。
? 微弯损耗 是由于成缆时产生不均匀的侧压力,导 致纤芯与包层的界面出现局部凹凸引起 弯曲损耗(宏弯损耗和微弯损耗)
单模光纤中的宏弯损耗: a)光纤中的模场分布 b)弯曲光纤中的模场分布
? 瑞均利匀散性射所引损起耗的是由本于征光损纤耗材。料瑞折利射散率射分损布耗小与尺波寸长的的随四即次不方 成反比,即波长越短,损耗越大。因此对 短波长窗口影响 较大。
? 非喇线曼性散散射射 和损 布耗 里渊是散当射光,强使度输大入到光一信定号程的度能时量,部产分生转非移线到性 新的频率成分上而形成损耗。因此非线性散射损耗是随传 播频率变化的。在常规光纤中由于半导体激光器发送光功 率较小,该损耗可忽略。但在 DWDM系统中 ,由于总功率很 大,就必须考虑其影响。
? 波与导波效长应无散 关射 。损 光耗 纤波是导由结于构光缺纤陷波主导要结由构熔缺炼陷和引拉起丝的工损艺耗不, 完善造成。
其他损耗
? 主要是连接损耗和弯曲损耗和微弯损耗。 ? 连接损耗 是由于进行光纤接续是端面不平整或光
纤位置未对准等原因造成接头处出现损耗。其大 小与连接使用的工具和操作者技能有密切关系。