光纤损耗大的几个因素

合集下载

影响光纤熔接损耗的因素

影响光纤熔接损耗的因素

影响光纤熔接损耗的因素较多,大体可分为光纤本征因素和非本征因素两类。

1.光纤本征因素是指光纤自身因素,主要有四点。

(1)模场直径不一致;(2)两根光纤芯径失配;(3)纤芯截面不圆;(4)纤芯与包层同心度不佳。

其中光纤模场直径不一致影响最大,按CCITT(国际电报电话咨询委员会)建议,单模光纤的容限标准如下:模场直径:(9~10μm)±10%,即容限约±1μm;包层直径:125±3μm;模场同心度误差≤6%,包层不圆度≤2%。

2.影响光纤接续损耗的非本征因素即接续技术。

(1)轴心错位:单模光纤纤芯很细,两根对接光纤轴心错位会影响接续损耗。

当错位1.2μm时,接续损耗达0.5dB。

(2)轴心倾斜:当光纤断面倾斜1°时,约产生0.6dB的接续损耗,如果要求接续损耗≤0.1dB,则单模光纤的倾角应为≤0.3°。

(3)端面分离:活动连接器的连接不好,很容易产生端面分离,造成连接损耗较大。

当熔接机放电电压较低时,也容易产生端面分离,此情况一般在有拉力测试功能的熔接机中可以发现。

(4)端面质量:光纤端面的平整度差时也会产生损耗,甚至气泡。

(5)接续点附近光纤物理变形:光缆在架设过程中的拉伸变形,接续盒中夹固光缆压力太大等,都会对接续损耗有影响,甚至熔接几次都不能改善。

3.其他因素的影响。

接续人员操作水平、操作步骤、盘纤工艺水平、熔接机中电极清洁程度、熔接参数设置、工作环境清洁程度等均会影响到熔接损耗的值。

光纤连接器原理和分类在光纤通信(传输)链路中,为了实现不同模块。

设备和系统之间灵活连接的需要,必须有一种能在光纤与光纤之间进行可拆卸(活动)连接的器件,使光路能按所需的通道进行传输,以实现和完成预定或期望的目的和要求,能实现这种功能的器件就叫连接器。

光纤连接器就是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。

光纤的波长(光纤的损耗主要来自四个部分)

光纤的波长(光纤的损耗主要来自四个部分)

单模光纤的波长一般只有1310nm和1550nm,为什么不选其他波长的呢?
第一是物质的本征吸收,分为紫外吸收和红外吸收
第二是杂质离子的吸收,主要是金属阳离子和OH-
第三是散射损耗,主要是Rayleigh散射,SRS和SBS。

最后是因为接续,弯曲和光纤本身结构的缺陷问题等带来的损耗。

这几个因素里面,第四点和光的波长的关系最小,可以先忽略。

Rayleigh散射的散射光圈和入射光波长的四次方成反比,波长太短的话散射现象会比较严重。

第二个问题里面,在光纤制作提纯的时候用化学提纯能到⑨个9的程度,一般的金属阳离子都是可以去掉的,
但OH-比较麻烦,不巧的是在这段波有两个OH-吸收峰,必须避开。

第一个问题要看石英的本征吸收问题,在1.2μm以上的时候紫外外比较明显,1.6μm以上的时候红外吸收明显,
也要避开。

70年代的时候人们也用850nm窗口的多模光纤进行通信,损耗比较大,
但对于近距离(约2-3英里)来说设备更经济,1310nm是色散和损耗都比较小的窗口,
1550nm有理论的最低损耗窗口。

光纤通信传输损耗的成因及降耗措施

光纤通信传输损耗的成因及降耗措施

光纤通信传输损耗的成因及降耗措施光纤通信具有保密性高、受干扰性能高等优点,其应用十分广泛,但在光纤传输中会有不同程度的损耗,影响了网络系统的有效传输。

为了提高光纤传输的安全可靠、稳定高效,对光纤传输损耗问题的深入研究非常重要,本文主要针对光纤传输损耗的形成原因进行了详细分析,并提出了合理有效的降耗措施,以保证信息在光纤中的可靠高效传输。

1 接续损耗的成因分析光信号经光纤传输后,由于吸收、散射等原因引起光功率的减小,故光纤损耗是光纤传输的重要指标。

实现光纤通信,一个重要的问题是尽可能地降低光纤的损耗。

引起光纤传输损耗的主要原因可分为两类,即接续损耗和非接续损耗。

而光纤的接续损耗则主要包括光纤材料的本征因素造成的固有损耗和非本征因素造成的熔接损耗两种。

1.1 固有损耗1.1.1 吸收损耗吸收损耗是光波通过光纤材料时,一部分的光能转化成热能,造成光功率的损失。

造成吸收损耗的主要原因是光纤材料的本征吸收和制作光纤时光纤材料不纯净所产生的杂质吸收。

(1)本征吸收指光纤的基础材料二氧化硅固有的吸收,不是杂质或者材料缺陷所引起的。

(2)杂质吸收指由于光纤材料的不钝净和晶体缺陷所产生的附加的吸收损耗,主要是材料中的金属过渡离子和生产过程中的氢氧根离子使光的传输产生损耗。

1.1.2 散射损耗散射是指光通过密度或折射率不均匀的透明物质时,除了在光的传播方向以外,在其它方向也能看到光,这种现象称为光的散射。

在光纤中光的传输由于散射的作用而产生散射损耗,散射损耗主要由瑞利散射和结构缺陷散射两部分组成。

1.2 熔接损耗熔接损耗是由接续方式、接续工艺、和接续设备的不完善引起的,包括光纤模场直径不同、光纤轴向错位、光纤端面不完整或者端面不干净、待熔接光纤的间隙不当、轴心(折角)倾斜以及工作人员操作水平、熔接参数的设置等可以人为避免的因素造成。

2 非接续损耗的成因分析光纤传输中的非接续损耗主要包括弯曲损耗、其他施工因素与应用环境造成的损耗。

光纤损耗的原因

光纤损耗的原因

光纤损耗的原因
光纤损耗是指光纤中光信号的强度、功率或能量在传输过程中损失的现象。

这种损耗是光纤通信中一个重要的问题。

下面我们来探讨一下光纤损耗的原因。

1.弯曲损耗
光纤细且易弯曲,若弯曲过度,容易导致光线发生反射而损失,弯曲程度越大,反射越多损耗越大。

因此,光纤在使用时要尽可能避免过度弯曲,特别是在光纤接头处。

2.散射损耗
光纤存在微小的面、体、杂质、缺陷等,光束经过时会与这些微小的障碍物发生散射,导致光能量减少,形成光纤损耗。

通常,光纤材料制造过程中如果没有得到很好的净化,或者由于使用过程中人为损坏或外部环境影响,光纤表面或内部可能会产生划痕、凹坑等散射损耗。

3.吸收损耗
光纤内的材料对波长相同但能量较低的光线会进行吸收,导致光
线功率降低。

光纤中常见的吸收材料有氧化铝、石墨、镁等。

4.位移损耗
如果光纤的轴线发生偏移,光线就会发生位移,从而导致光线与
纤芯之间的接触面积减小或完全失去接触,使光信号损失严重。

5.光纤接头问题
光纤接头是光纤网络中最薄弱的环节,不正确的接头方式、接头
磨损、污染、接触不良都会影响到光纤的传输性能,对光能量的损失
越大,损耗就越大。

6.温度变化
温度对光纤的性能会有一定的影响,通常低温会使光纤损耗增加,而高温则可能导致光纤变形、膨胀、蒸发等问题,也会影响光纤损耗。

7.消光损失
光纤中的某些部分在特定波长下可以形成干涉,使光线发生干涉
消光,从而导致光信号强度降低。

bbu与rru之间的光纤损耗 -回复

bbu与rru之间的光纤损耗 -回复

bbu与rru之间的光纤损耗-回复BBU(基带处理单元)和RRU(射频收发单元)是5G网络中的两个重要组成部分,它们之间通过光纤进行连接。

光纤损耗是指在光纤传输过程中,光信号所经过的能量损失。

在本文中,我们将逐步介绍BBU与RRU 之间的光纤损耗及其影响因素。

第一步: 了解光纤传输原理光纤是一种以光信号作为信息传输媒介的传输线路。

其基本原理是利用光的全反射特性,将光信号沿光纤的内部传输。

其中,光信号是通过光纤中心的光纤芯传播的,而纤维外部包裹的光纤皮层则用于保护光纤芯并提供一定的弯曲刚性。

第二步: 理解光纤损耗来源光纤损耗主要有两个来源:吸收损耗和分散损耗。

吸收损耗是指在光信号传输过程中,光能被光纤物质吸收而转化为热能。

这主要由于光纤材料的不完美性引起的,具体表现为光纤的折射率和吸收系数不一致。

分散损耗是指光信号传输过程中,不同波长的光信号由于光纤芯的非线性特性而速度不同,从而导致信号衰减。

这主要有两种类型:模式色散和色散。

模式色散是指不同的光模式在光纤中的传输速度不同。

光信号由于光纤内部的折射率不均匀分布,导致不同的光模式速度差异,从而引起光信号的失真和衰减。

色散是指光信号中不同波长光线的相位速度不同导致的信号失真。

这主要由于光纤折射率与波长之间的关系引起的。

第三步: 影响光纤损耗的因素光纤损耗受多种因素的影响,以下是其中几个主要因素:1. 光纤材料:光纤材料的折射率、吸收系数以及色散特性是影响光纤损耗的关键因素。

目前,有很多种类的光纤材料可供选择,例如单模光纤和多模光纤。

2. 光纤长度:光纤长度越长,光信号通过光纤传输所经过的能量损失也就越大。

3. 信号频率:信号频率高,光信号所经过的能量损失就越大。

4. 接头与连接器:光纤连接中的接头与连接器的质量和损耗值也会对光纤损耗产生直接影响。

第四步: 减少光纤损耗的方法为了减少光纤损耗,我们可以采取以下几种方法:1. 优化光纤的选择:选择光纤材料和结构来最小化吸收和分散损耗。

光纤损耗大的几个因素

光纤损耗大的几个因素

光纤损耗大存在的因素光纤熔接包处损耗变大,是常见的故障,原因通常有3个:1、光纤熔接处开裂,可能的原因有:当初熔接时存在缺陷;光缆遭受外力拉伸;熔接点塑料护套、固定金属棒与光纤热膨胀系数差异,反复的温度变化引起伸缩。

显然排除故障时必须重新熔接光纤。

2、熔接包内盘纤变形失园而出现角度,导致损耗变大。

可能的原因有:光缆遭受外力拉伸;因温度变化热涨冷缩引起。

排除故障时只需重新整理盘纤,保证圆形、消除角度。

3、熔接包内进水并侵入熔接处的裸纤,导致光信号散射损失。

排除故障时要打开熔接包清除积水,并晒干熔接处,尽量散尽水分,或者重新熔接。

光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗光纤使用中引起的传输损耗主要有1接续损耗2光纤本质造成的损耗、3熔接不当所报造成的损耗和4活动接头(光纤适配器及光纤跳线)造成的损耗和5非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)接续损耗(1)光纤固有损耗主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳等原因;其中影响最大的是模场直径不一致。

(2)熔接损耗非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。

(3)活动接头损耗非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。

解决接续损耗的方案(1)工程设计、施工和维护工作中应选用特性一致的优质光纤一条线路上尽量采用同一批次的优质品牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。

(2)光缆施工时应严格按规程和要求进行挑选经验丰富的施工人员光缆配盘时尽量做到整盘配置(单盘≥500-800米),以尽量减少接头数量。

光纤熔接损耗产生原因及降低措施

光纤熔接损耗产生原因及降低措施

光纤熔接损耗产生原因及降低措施光纤熔接损耗是指在光纤熔接过程中,由于不同原因导致光信号的衰减情况。

光纤熔接损耗的产生原因有很多,包括对中心偏移的控制不精确、纤维端面质量不佳、纤维容差过高、环境影响等。

为了降低光纤熔接损耗,需要采取一系列的措施,如加强熔接操作技术、提高设备和器件的精度、改善环境条件等。

下面将详细阐述光纤熔接损耗产生原因及降低措施。

一、光纤熔接损耗产生原因1.对中心偏移的控制不精确:光纤熔接过程中,如果不准确控制两根光纤之间的中心偏移量,会导致熔接时光信号不能完全匹配,从而引起损耗。

2.纤维端面质量不佳:光纤的端面质量对熔接损耗有着非常重要的影响。

如果光纤的端面质量不好,如有划痕、污垢等,会使得光束的传输受到影响,从而引起光纤熔接过程中的损耗。

3.纤维容差过高:光纤的容差是指光纤熔接时,两根光纤之间直径、几何形状等的偏差。

容差过高会导致熔接时光纤之间无法完全接触,从而引起损耗。

4.环境影响:在熔接过程中,环境因素如温度、湿度、尘埃等也会对熔接损耗产生影响。

例如,在高温环境下,光纤熔接时的膨胀系数会发生变化,导致光纤熔接损耗增大。

二、降低光纤熔接损耗的措施1.加强熔接操作技术:提高操作人员的技术水平,确保熔接操作的准确性和稳定性。

操作人员需要掌握正确的操作步骤和技巧,熟悉熔接设备的使用方法。

2.提高设备和器件的精度:选择高精度的光纤熔接设备和光纤连接器,确保设备和器件的质量和性能。

同时,对设备和器件进行定期的维护和检测,确保其正常工作和准确度。

3.改善纤维端面质量:在熔接前,对光纤的端面进行充分的清洁和检查,确保其表面没有划痕和污垢,并采用专业的光纤端面处理工具进行处理。

此外,在熔接时可以采用光纤端面偏心校准技术,提高端面的质量。

4.控制纤维容差:合理选择光纤的容差范围,以确保两根光纤之间的容差在允许的范围内。

同时,在熔接前可以使用光纤准直仪等设备对光纤进行准备,以提高容差的控制。

5.改善环境条件:提供适宜的环境条件,如温度、湿度、尘埃等的控制。

光纤中产生传输损耗的原因

光纤中产生传输损耗的原因

光纤中产生传输损耗的原因
光纤在现代通信领域中被广泛应用,然而在光信号传输的过程中,会产生一定
的传输损耗。

这些损耗的主要原因包括以下几点:
1. 吸收损耗:光纤中的材料对光的能量有一定的吸收,并将其转化为热能。


种吸收导致光信号能量的减弱,从而造成传输损耗。

2. 散射损耗:光纤中杂质、不均匀性或结构缺陷会导致光信号的扩散或散射,
使光信号能量在传输过程中损失。

散射损耗可分为Rayleigh散射、Mie散射和弹性散射等几种形式。

3. 弯曲损耗:光纤在弯曲或弯折的情况下,由于光信号的传播路径不再是直线,会导致信号的散失。

较小的弯曲半径和较大的弯曲角度都能引起更大的传输损耗。

4. 线性损耗:光纤中的材料具有一定的透光率,因此光信号会沿着光纤的长度
方向逐渐减弱。

这种线性损耗主要由光纤本身的特性引起。

5. 热效应损耗:光信号的强度与光纤的温度密切相关,当光纤发生温度变化时,光信号的强度也会相应发生变化。

热效应损耗主要包括热导、热辐射和热吸收等。

6. 耦合损耗:光纤系统中,光源、光纤和接收器之间存在着光信号的耦合过程,而耦合过程中会产生一定的能量损失,从而导致传输损耗。

了解和掌握这些光纤中产生传输损耗的原因,对于光纤通信系统的设计和维护
具有重要意义。

在实际应用中,科学有效地减小这些损耗,提高光信号的传输质量和效率,将会对光纤通信技术的发展产生积极的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤损耗大存在的因素
光纤熔接包处损耗变大,是常见的故障,原因通常有3个:
1、光纤熔接处开裂,可能的原因有:当初熔接时存在缺陷;光缆遭受外力拉伸;熔接点塑料护套、固定金属棒与光纤热膨胀系数差异,反复的温度变化引起伸缩。

显然排除故障时必须重新熔接光纤。

2、熔接包内盘纤变形失园而出现角度,导致损耗变大。

可能的原因有:光缆遭受外力拉伸;因温度变化热涨冷缩引起。

排除故障时只需重新整理盘纤,保证圆形、消除角度。

3、熔接包内进水并侵入熔接处的裸纤,导致光信号散射损失。

排除故障时要打开熔接包清除积水,并晒干熔接处,尽量散尽水分,或者重新熔接。

光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗
光纤使用中引起的传输损耗主要有
1接续损耗
2光纤本质造成的损耗、
3熔接不当所报造成的损耗和
4活动接头(光纤适配器及光纤跳线)造成的损耗和
5非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)
接续损耗
(1)光纤固有损耗主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳等原因;其中影响最大的是模场直径不一致。

(2)熔接损耗非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。

(3)活动接头损耗非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。

解决接续损耗的方案
(1)工程设计、施工和维护工作中应选用特性一致的优质光纤一条线路上尽量采用同一批次的优质品牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。

(2)光缆施工时应严格按规程和要求进行
挑选经验丰富的施工人员光缆配盘时尽量做到整盘配置(单盘≥500-800米),以尽量减少接头数量。

敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。

(3)挑选经验丰富训练有素的接续人员进行接续和测试
接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流
程进行接续,严格控制接头损耗,熔接过程中时刻使用光域反射仪(OTDR)进行监测(接续损耗≤0.08dB/个),不符合要求的应重新熔接。

使用光时域反射仪(OTDR)时,应从两个方向测量接头的损耗,并求出这两个结果的平均值,消除单向OTDR测量的人为因素误差。

(4)保证接续环境符合要求
严禁在多尘及潮湿的环境中露天操作,光缆接续部位及工具、材料应保持清洁,不得让光纤接头受潮,准备切割的光纤必须清洁,不得有污物。

光纤切割后不得在空气中暴露时间过长尤其是在多尘潮湿的环境中。

接续环境温度过低时,应采取必要的升温措施。

非接续损耗及其解决方案
2.1非接续损耗
光纤使用中引起的非接续损耗主要有弯曲损耗和其它施工因素及应用环境造成的损耗。

(1)弯曲造成的辐射损耗当光纤受到很大的弯折,弯曲半径与其纤芯直径具有可比性时,它的传输特性会发生变化。

大量的传导模被转化成辐射模,不再继续传输,而是进入包层被涂覆层或包层吸收,从而引起光纤的附加损耗。

光纤的弯曲损耗有宏弯曲损耗和微弯曲损耗两种类型。

①宏弯损耗光纤的曲率半径比光纤直径大的多的弯曲(宏弯)引起的附加损耗,主要原因有:路由转弯和敷设中的弯曲;光纤光缆的各种预留造成的弯曲(预留圈、各种拿弯、自然弯曲);接头盒中光纤的盘留、机房及设备内尾纤的盘绕等。

②微弯损耗光纤轴产生μm级的弯曲(微弯)引起的附加损耗,主要原因有:光纤成缆时,支承表面微小的不规则引起各部分应力不均匀而形成的随机性微弯;纤芯与包层的分界面不光滑形成的微弯;光缆敷设时,各处张力不均匀而形成的微弯;光纤受到的侧压力不均匀而形成的微弯;光纤遇到温度变化,因热胀冷缩形成的微弯。

(2)其它施工因素和应用环境造成的损耗
①不规范的光缆上架引起的损耗。

层绞式松套结构光缆容易产生此类损耗,原因在于,其一是光缆上架处多根松套管相互扭绞;其二是使用扎带将松套管绑扎到接头盒的容纤盘卡口时,使松套管出现急弯;其三是光缆上架时金属加强构件与光纤松套管出现上下错位。

这些因素会引起损耗增大。

②热缩不良的热熔保护引起的损耗。

原因主要有,其一是热熔保护管自身的质量问题,热熔后出现扭曲,产生气泡;其二是熔接机的加热器加热时,加热参数设置不当,造成热熔保护管变形或产生气泡;其三是热缩管不干净、有灰尘或沙砾,热熔时对接续点有损伤,引起损耗增大。

③直埋光缆不规范施工引起的损耗。

原因在于,其一是光缆埋深不够,受到载重物体碾压后受损;其二是光缆路由选择不当,因环境和地形变化使光缆受到超出其容许负荷范围的外力;其三是光缆沟底不平,光缆出现拱起、挂起现象,回填后有残余应力;其四是其它原因造成光缆外护层受损伤而进水,造成氢损。

④架空光缆不规范施工引起的损耗。

原因主要有,其一是在光缆敷设施工中,光缆打小圈、弯折、扭曲及打背扣,牵引时猛拉、出现浪涌,瞬间最大牵引力过大;其二是光缆挂钩使用不当,卡挂方向不一致出现蛇行弯,间隔过于稀疏,光缆因垂度过大而受力;其三是盘留于杆上的光缆未固定牢固,光缆受到长期外力和短期冲击力而遭到损伤;其四是光缆布防太紧,没考虑光缆的自然伸长率;其五是其它原因造成光缆外护层受损伤而进水,造成氢损。

⑤管道光缆不规范施工引起的损耗。

原因在于,其一是光缆采用网套法布防时,牵引速度控制不好,光缆出现打背扣、浪涌;其二是穿放光缆时,没有布防塑料子管,光缆被擦伤;其三是其它原因造成光缆外护层受损伤而进水,造成氢损。

⑥机房、设备内尾纤和光纤跳线绑扎、盘绕不规范,出现交叉缠绕等现象造成损耗。

⑦光缆接头盒质量不良,接头盒封装、安装不规范,因外界作用造成接头盒受到损伤等,造成进水而出现氢损。

⑧光缆在架设过程中的拉伸变形,接续盒中夹固光缆压力太大,容纤盘中热熔管卡压过紧,容纤盘中光纤盘绕不规范等引起的损耗。

2.2解决非接续损耗的方案
(1)工程查勘设计、施工中,应选择最佳路由和线路敷设方式。

(2)组建、选择一支高素质的施工队伍,保证施工质量,这一点至关重要,任何施工中的疏忽都有可能造成光纤损耗增大。

(3)设计、施工、维护中,积极采取切实有效的光缆线路“四防”措施(防雷、防电、防蚀、防机械损伤),加强防护工作。

(4)使用支架托起缆盘布放光缆,不要把缆盘放倒后采用类似从线轴上放的办法布放光缆,不要让光缆受到扭力。

光缆布放时,应统一指挥,加强联络,要采用科学合理的牵引方法。

布防速度不应过快;连续布防长度不宜过长,必要时应采用倒“8”字,从中间向两头布放。

在拐弯处等有可能损伤光缆的地方一定要小心并采取必要的保护手段。

遇到在闹市区布放光缆等需要临时盘放光缆的情况时,使用8字形盘留,不让光缆受到扭力。

(5)光缆布放时,必须注意允许的额定拉力和弯曲半径的限制,在光缆敷设施工中,严禁光缆打小圈及弯折、扭曲,防止打背扣和浪涌现象。

牵引力不超过光缆允许的80%,瞬间最大牵引力不超过100%,牵引力应加在光缆的加强件上,特别注意不能猛拉和发生扭结现象。

光缆转弯时弯曲半径应不小于光缆外径的15~20倍。

(6)不要使用劣质的,尤其是已经弯曲变形的热缩套管,这样的套管在热缩时内部会产生应力,施加在光纤上使损耗增加。

携带、存放套管时,注意清洁,不要让异物进入套管。

(7)在接续操作时,要根据收容盘的尺寸决定开剥长度,尽量开剥长一些,使光纤较从容的盘绕在收盘内(盘留长度为60~100cm)。

应该重视熔接后光纤的收容(光纤的盘纤和固定),盘纤时,盘圈的半径越大,弧度越大,整个线路的损耗越小,所以一定要保持一定的半径(R≥40mm),避免产生不必要的损耗,大芯数光缆接续的关键在收容。

接续操作时,开缆刀切入光缆的深度要把握好,不要把松套管压扁使光纤受力。

采用合格接头材料并按照规范和操作要求,正确封装、安装接头盒。

(8)机房内尽量整洁,尾纤应该有圈绕带保护,或单独给尾纤使用一个线,不使尾纤之间或与其他连线之间交叉缠绕,也尽量不要把尾纤(即使是临时使用)放在脚可以踩到的地方。

光缆终端时注意避免跳线在走线中出现直角,特别是不应用塑料带将跳线扎成为直角,否则光纤因长期受应力影响引起损耗增大。

跳线在拐弯时应走曲线,弯曲半径应不小于40
mm。

布放中要保证跳线不受力、不受压,以避免跳线长期的应力疲劳。

光纤成端操作(OD F)时,不要将尾纤捆扎太紧。

(9)加强光缆线路的日常维护和技术维修工作。

光纤入户(FTTH)是信息时代发展的必然,光网络互联是数字地球的明天。

伴随着各级各类光纤通信网络的大量建设和运行,正视和解决光纤使用中引起的传输损耗问题必将在光纤通信工程设计、施工、维护中极大地改善和优化光纤通信网络传输性能。

相关文档
最新文档