光敏三极管特性实验.

合集下载

5光敏三极管的特性实验

5光敏三极管的特性实验

5光敏三极管的特性实验光敏三极管是一种利用光做为输入信号的三极管,主要用于探测光信号,转换为电信号。

它具有响应速度快,灵敏度高,结构简单,易于集成成模组等优点,被广泛应用于照相机、安防系统、遥控器、光电显示等领域中。

为了更好地了解光敏三极管的特性,我们进行了如下实验。

实验材料和仪器:1. 光敏三极管;2. 电源;3. 电压表;4. 万用表;5. 暗盒;6. 白炽灯;7. 紫外线灯。

实验内容和步骤:1. 测量光敏三极管的电阻;将光敏三极管连接到万用表上,设置为电阻档,读取其电阻值。

将光敏三极管放入暗盒中,再次测量其电阻值。

记录测量结果。

2. 测量光敏三极管的响应时间;将光敏三极管连接到电源上,设置为直流模式,调整电压值。

将光敏三极管放置在黑色纸片下方的端点上,使用白炽灯照射光敏三极管,同时记录光照射后响应灯的开启时间。

重复该步骤,使用紫外线灯照射光敏三极管,并记录响应时间。

分别计算出光敏三极管对不同波段的响应时间。

光敏三极管在不同光强下的电阻值如下表所示:光强/照射条件电阻值普通光敏三极管10MΩ左右在暗盒内150kΩ左右由此可见,在照射条件下,光敏三极管的电阻值明显低于在暗盒中的电阻值。

在使用白炽灯时,光敏三极管的响应时间为2ms左右,在使用紫外线灯时,光敏三极管的响应时间为1ms左右。

由此可见,在紫外线波段下,光敏三极管具有更高的响应速度。

结论:通过以上实验可知,光敏三极管具有较高的响应速度和灵敏度,可以较快地转换光信号为电信号,具有很好的应用前景。

另外,在紫外线光波段下,光敏三极管表现出了更好的灵敏度和响应速度,光敏三极管可以根据需求选择适当波段使用。

光敏三极管

光敏三极管

光敏三极管光敏三极管和普通三极管相似,也有电流放大作用,只是它的集电极电流不只是受基极电路和电流控制,同时也受光辐射的控制。

通常基极不引出,但一些光敏三极管的基极有引出,用于温度补偿和附加控制等作用。

当具有光敏特性的PN 结受到光辐射时,形成光电流,由此产生的光生电流由基极进入发射极,从而在集电极回路中得到一个放大了相当于β倍的信号电流。

不同材料制成的光敏三极管具有不同的光谱特性,与光敏二极管相比,具有很大的光电流放大作用,即很高的灵敏度。

光敏三极管的伏安特性测量图3 光敏三极管特性测试实验(1)按原理图3接好实验线路,将光敏三极管板置测试架中、电阻盒置于九孔插板中,电源由直流恒压源提供,光源电(可调)。

(2)先将可调光源调至相对光强为“弱光”位置,每次在一定光照条件下,测出加在光敏三极管的偏置电与产生的光电流I C的关系数据。

其中光电流 (l.0为取样电阻R)。

硅光电池硅光电池是一种直接把光能转换成电能的半导体器件。

它的结构很简单,核心部分是一个大面积的PN 结,把一只透明玻璃外壳的点接触型二极管与一块微安表接成闭合回路,当二极管的管芯(PN结)受到光照时,你就会看到微安表的表针发生偏转,显示出回路里有电流,这个现象称为光生伏特效应。

硅光电池的PN结面积要比二极管的PN结大得多,所以受到光照时产生的电动势和电流也大得多。

1)硅光电池的伏安特性测量图4硅光电池特性测试电路(1)实验线路见图4,电阻箱调到0Ω。

(2)先将可调光源调至相对光强为“弱光”位置,每次在一定的照度下,测出硅光电池的开路电压U oc和短路电流I S,其中短路电流为(取),以后逐步调大相对光强(次),重复上述实验。

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料

光电二三极管特性测试实验报告材料实验目的:通过实验,了解光电二三极管的基本结构和工作原理,掌握光电二三极管的特性测试方法,并探究光照强度对其电流特性的影响。

实验仪器与材料:1.光电二三极管2.光源3.恒流电源4.快速数字万用表5.电阻箱6.连线电缆实验原理:光电二三极管是能将光信号转化为电信号的光电器件,由半导体材料制成。

当光照射到光电二三极管的PN结时,光子能量会激发电子从固体内部跃迁到导带,形成电流。

实验中通过改变光照强度来探究其对光电二三极管电流特性的影响。

实验步骤:1.将光电二三极管插入电源以及数字万用表中,根据光电二三极管的正负极性正确连接。

2.将恒流电源与光电二三极管进行连接,设置合适的电流值。

(注意:尽量选取较小的电流,以避免光电二三极管受到过大的电流烧毁)3.打开光源,并将光源调到合适的位置,以使其尽可能均匀地照射到光电二三极管上。

4.用快速数字万用表测量光电二三极管的电流值,并记录下来。

5.改变光源的距离以调节光照强度,再次测量光电二三极管的电流值,记录下来。

6.依次改变光源的距离,重复步骤4和5,并记录相应的电流值。

7.将实验数据进行整理和分析。

实验数据记录与分析:通过实验,我们得到了一系列不同光照强度下的光电二三极管电流值。

根据光照强度与电流值的关系,我们可以发现,随着光照强度的增大,光电二三极管的电流值也随之增大。

这是因为光照强度的增大会使得光子的能量增加,从而激发更多的电子跃迁到导带,形成更大的电流。

实验总结与思考:通过本次实验,我们深入了解了光电二三极管的基本结构和工作原理,掌握了光电二三极管特性测试的方法,并通过实验数据分析研究了光照强度对其电流特性的影响。

在实际应用中,我们可以利用光电二三极管的特性,将其应用于光电传感器、光电开关、光照度计等领域。

然而,在实验中我们需要注意的是,光电二三极管对光照的敏感度较高,一些外界因素,如环境光的影响会对实验的结果产生一定的干扰,因此,尽量保持实验环境的一致性是十分重要的。

光敏三极管特性实验误差分析

光敏三极管特性实验误差分析

光敏三极管特性实验误差分析
光敏三极管特性实验常见的误差包括仪器误差、操作误差和环境误差。

1. 仪器误差:由于光敏三极管的灵敏度较高,所以在实验过程中,对于仪器的精度要求也相应较高。

仪器误差包括测量误差和仪器本身的误差,如示波器和万用表等仪器的精度、灵敏度、分辨率等。

2. 操作误差:实验操作过程中的疏忽和错误也会对实验结果造成一定的误差。

例如未及时校准仪器、测量值的读取不准确、实验操作过程中的误操作等。

3. 环境误差:实验环境因素也会对实验结果造成影响,例如光线强度、温度和湿度等。

这些环境因素变化可能会造成光电元件的灵敏度改变,从而影响实验结果。

因此,在进行光敏三极管特性实验时,应该注意仪器的选择和使用,实验操作的准确性和规范性,以及控制环境因素的稳定性,以减少实验误差的发生。

同时需要对实验结果进行多次实验和数据处理,以提高实验数据的准确性。

光电二三极管特性测试实验报告

光电二三极管特性测试实验报告

光敏二极管特性测试实验一、实验目的1.学习光电器件的光电特性、伏安特性的测试方法;2.掌握光电器件的工作原理、适用范围和应用基础。

二、实验内容1、光电二极管暗电流测试实验2、光电二极管光电流测试实验3、光电二极管伏安特性测试实验4、光电二极管光电特性测试实验5、光电二极管时间特性测试实验6、光电二极管光谱特性测试实验7、光电三极管光电流测试实验8、光电三极管伏安特性测试实验9、光电三极管光电特性测试实验10、光电三极管时间特性测试实验11、光电三极管光谱特性测试实验三、实验仪器1、光电二三极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本四、实验原理1、概述随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。

光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。

光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。

从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。

从对光的响应来分,有用于紫外光、红外光等种类。

不同种类的光敏二极管,具胡不同的光电特性和检测性能。

例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。

这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。

又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。

因此,在使用光敏二极管进要了解其类型及性能是非常重要的。

实验三 光电三极管特性测试及其变换电路

实验三 光电三极管特性测试及其变换电路

实验三光电三极管特性测试及其变换电路实验目的、学习掌握光电三极管的工作原理2、学习掌握光电三杨管的基本特性掌掘光电三极管特性测试的方法4、了解光电三极管的基本应用二、实验内容1、光电三极管光电流测试实验2、光电三极管伏安特性测试实验3、光电三极管光电特性测试实验4、光电三极管时间特性测试实验5、光电三极管光谱特性测试实验三、实验仪器1、光电器件和光电技术综合设计平台1台2、光源驱动模块1个3、负载模块1个1、光通路组件1套5、光电三极管及封装组件1套6、2#迭插头对(红色,50cm) 10根7、2#迭插头对(黑色,50cm) 10根8、示波器1台四、实验原理光电三极管与光电二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。

光敏三极管有两个PN结,因而可以获得电流增益,它比光敏二极管具有更高的灵敏度。

其结构如图3-1 (a)所示。

当光敏三极管按图3-1 (b) 所示的电路连接时,它的集电结反向偏置,发射结正向偏置,无光照时仅有很小的穿透电流流过,当光线通过透明窗口照射集电结时,和光敏二极管的情况相似,将使流过集电结的反向电流增大,这就造成基区中正电荷的空穴的积累,发射区中的多数载流子(电子)将大量注人基区,由于基区很薄,只有一小部分从发射区注入的电子与基区的空穴复合,而大部分电子将穿过基区流向与电源正极相接的集电极,形成集电极电流。

这个过程与普通三极管的电流放大作用相似,它使集电极电流是原始光电流的(1+B )倍。

这样集电极电流将随入射光照度的改变而更加明显地变化。

在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si单晶体制造NPN或PNP型光敏三极管。

其结构使用电路及等效电路如图4所示。

光敏三极管可以等效一个光电二极管与另一个-般晶体管基极和集电极并联:集电极基极产生的电流,输入到三极管的基极再放大。

1.2.3.4光敏二极管三极管

1.2.3.4光敏二极管三极管

实验一光电基础知识实验一、实验目的通过实验使学生对光源,光源分光原理、光的不同波长等基本概念有具体认识。

二、基本原理本实验中备有普通光源和激光光源。

普通光源(白炽灯)光谱为连续光谱( 白炽灯的另一个特性是做灯丝的钨有正阻特性,工作时的热电阻远大于冷态时的电阻,在灯的启动瞬时有较大的合上主机的总电源开关。

2.松开图1-1中光源或三棱镜的升降固定螺钉,调节高度使光束对准三棱镜,转动三棱镜座使三棱镜毛面在后面,二个工作面(光面)的棱在前面。

然后调节涡杆角度使折射的投射面(狭缝端盖)上出现清晰的光谱。

如果光谱不清晰可轻微旋转光源罩(灯丝方向)和松开升降杆固定螺钉转动一个角度(光束方向)使光束对准三棱镜的工作面﹙要点:光束对准棱镜工作面﹑灯丝方向﹚。

3、关闭主机总电源开关。

将图1-1中的普通光源取下,换上半导体激光源(旋下前端盖小孔),将激光源与主机激光电源相应连接﹙注意颜色-极性﹚。

打开主机总电源开关,根据步骤2调节观察投射面现象(单色性)。

五、思考题1.解释实验现象。

2.半导体激光器的特性有哪些?半导体激光器的发散角一般为5º~10º,你如何利用实验装置和直尺完成最简易的发散角测量实验方法。

实验二 光敏电阻实验一、 实验目的:了解光敏电阻的光照特性、光谱特性和伏安特性等基本特性。

二、 基本原理:在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。

光电导效应是半导体材料的一种体效应。

光照愈强,器件自身的电阻愈小。

基于这种效应的光电器件称光敏电阻。

光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关。

三、 需用器件与单元:主机、安装架、发光二极管光源、光敏电阻探头、光照度计及探头、分光装置。

四、 实验步骤:1、亮电阻和暗电阻测量(1)图2-1是光敏电阻实验原理图(2)按图2-2光照度实验安装接线。

将照度计探头与主机小面板上照度计显示表Vi 口相连接。

光敏三极管

光敏三极管

光敏三极管的特性研究一、光照特性二、伏安特性三、光谱响应特性◆实验目的掌握光敏三极管的结构、原理及光照特性、伏安特性和光响应特性◆实验仪器用具CSY-2000G主机箱、发光二极管、滤色片、光电器件实模板、光敏三极管、光照度探头;◆实验原理在光敏二极管的基础上,为了获得内增益,就利用晶体三管的电流放大效应制造光敏三极管,光敏三极管可以等效一个光电二极管与一个晶体管基极集电极并联。

实验原理图等效电路图◆光敏三极管的光照特性就是当光敏三极管的测量电压为+5V时,光敏三极管的光电流随着光照强度的变化而变化,即调节照度,测量对应的电流◆实验数据照度04080120160200LX00.110.220.390.56 1.11电流mA光照特性曲线图◆实验结论◆由图可以看出,光敏三极管的光照特性曲线不是严格线性的,其流过三极管的电流随着照度的增加而增大,且增大的速率也越来越快。

◆光敏三极管的伏安特性就是在一定的光照强度下,光电流随外加电压的变化而变化,即当照度一定时,调节电压,测量电流大小◆实验数据电压U1.32345照度(LX)100电流mA0.270.280.280.290.29200电流mA0.870.880.900.910.92◆100Lx 光电三极管伏安特性曲线图◆200Lx光电三极管伏安特性曲线图◆光电三极管伏安特性曲线图◆实验结论:随照度增加,光敏三极管的伏安特性曲线逐渐变密,且电压对光电流的影响没有照度那么大◆光电三极管的光谱响应特性◆光敏三极管对不同波长的光的接收灵敏度不一样,它有一个峰值响应波长,当入射光的波长大于响应波长时,相对灵敏度就会下降,光子能量太小,不足以激发电子空穴对,当入射光的波长小于波长时,相对灵敏度也会下降,由于光子在半导体表面附近就被吸收◆光谱响应特性:光敏三极管的灵敏度与辐射波长的关系,即当照度一定时,测量不同波长的光对光电流的影响◆实验数据波长nm400480530570610660照度(LX 10电流mA00.020.010.010.020.03 50电流00.130.080.090.110.18光敏三极管光谱响应特性曲线图实验结论:照度越大,光敏三极管对波长的灵敏度就越明显谢谢观赏Company Logo。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压(伏) UR(伏) 电阻(欧姆) 光电流Ic 2 4 6 8 10
实验内容
• 3、光照特性测量
• 按图连接好实验线路,光源选用 高亮度卤素灯,负载电阻选用 100K欧姆。 • 调节光照从“弱—强”,测得不 同(15个)照度条件下,测出光敏三 极管输出光电流IC与入射光照度 间的数据关系。照度依然用UR来 UR I 度量 。其中光电流 ph
照度
实验原理
• 光敏三极管相对光谱特性
硅光敏三极管的相对光谱特性 曲线如右图所示:在可见光区 和近红外光区附件有较好的光 谱灵敏度; 光电三极管的光谱响应特性主 要取决于其半导体材料的光谱 响应特性;但其灵敏度(增益 值)主要受个体光电管的hFE 影响(光电二极管不同)。
实验原理
• 光敏三极管温度特性
实验内容
• 2、伏安特性测量
• 按图连接好实验线路,光源选用 高亮度卤素灯,负载电阻选用 100K欧姆。 • 分别在弱、中、强三种光照度条 件下,测出光敏三极管外加偏压 UCE与其光电流IC之间的数据关系 UR I 。UCE= UCC - UR;光电流 c
100 K
• 在三种照度下重复测量,将数据记录至相应 数据表格中,并绘制伏安特性曲线。
实验原理
• 光敏三极管简介
• 光敏三极管与反偏的光敏二极 管工作原理类似;但存在两个 PN结,可利用一般晶体管的 电流放大作用获得更大的光电 流,因此具有更高的灵敏度。
c
3DU5C
c (+) e e (–)
符号
外型
• 光敏三极管可用元素半导体或化合物半导体制得 ,不同材料的光敏三极管对应的光谱特性不同。 本实验用的是一种用平面工艺制造的硅NPN型光 敏三极管,只有E、C两个引出端子,
实验原理
• 光敏三极管工作原理
• 光敏三极管可等效为一个光敏 二极管和普通三级管结合而成 。当具有光敏特性的PN结受到 光照时会形成光电流,此光生 电流由基极进入发射极,从而 在集电极回路中得到一个放大 了hFE倍的响应电流。
Ib
Ic=Ib*hFE
• 可见与普通三极管类似,光敏三极管同样具有电 流放大功能,只不过其控制端受入射光强控制。
光敏三极管的相对光响应灵敏 度与温度对应曲线如图所示: 由于光电三极管的 hFE 受环境 温度的影响较大,所以光电三 极管的灵敏度也会随环境温度 变化而出现较大的变化;故与 光电二极管相比,光电三极管 对温度变化更为敏感。
实验内容
• 1、判断光敏三极管极性
• 方法:
• 用万用表20K电阻档,黑表棒接发射极E,红 表棒接集电极C,无光照时显示∞,光照增强 时电阻迅速减小至1-2K欧姆; • 若将红表棒接发射极,黑表棒接集电极,则 不论光照变化与否万用表始终显示∞。
照度 UR(伏) 光电流
实验内容
• 4、光敏管的应用——光控电路
• 右图为一无光照射时切 断电路,有光照射时接 通电路的亮通型光电控 制电路。 • 当有光照时,光电二 / 三 极管导通,处理电路中 的晶体管 T(9013) 基极电 压升高,T导通,给集电 极 负 载 的 LED 供 电 , 电 流流过 LED ,使 其发光 。
• 4、光敏管的应用——光控电路连接
光敏三极管单元
实验内容
• 4、光敏管的应用——实验步骤
• 将光敏二极管接入“光敏三极管单元” 的“传感 器入”,“发光管”端口与发光二极管相接,输 出端Vo接数字电压/频率表20V档。 • 开启仪器电源,调节“增益”电位器,使其在光 源的照射下发光管发光。 • 改变光照条件,分别用白纸、带色的纸和遮光罩 改变光敏二极管的光照,当光照变暗到一定程度 时发光管变暗,这就是亮通控制电路的原理。 • 将光敏二极管换为光敏三极管进行上面的实验步 骤,比较实验结果。 • 根据暗通电路原理,试设计一个暗通控制电路。
光电传感与检测技术
实验二 光敏三极管特性实验
实验目的
• 熟悉光敏三极管的结构和工作原理。
• 了解光敏三极管的特性,当工作电压一定时,光 敏三极管输出光电流与入射光照度的关系。 • 了解光敏管在控制电路中的具体应用。
实验原理
• 光敏二极管简介
• 和普通二极管相似,光敏二 极管的核心部分也是一个 PN结,属于单向导电性的 非线性元件。 • 光敏二极管在电路中一般是处于反向工作状 态。在没有光照射时,由少数载流子漂移形 成的反向电流很小(暗电流),处于截止状 态;当有光照射时,吸收光子、激发电子— —空穴对,在外加反向电压作用下形成光电 流,使得光敏二极管处于导通状态。
实验原理
• 光敏三极管伏安特性
• 在给定光照条件下,光敏三极管两端电压与其输 出电流Ic间的关系即为其伏安特性,具体特性曲 线如图所示: 无光照射时,集电极— 照度 发射极间的漏电流称为 暗电流。 Iceo=Icbo· hFE 可见光敏三极管的暗电 流也比光敏二极管增大 了hFE倍。 偏压
实验原理
• 2、伏安特性测量 —电路连接
• 2、伏安特性测量—数据记录
光敏二极管伏安特性测试数据表(照度: 弱 )
电压(伏) 2 4 6 8 10
UR(伏)
电阻(欧姆) 光电流Ic
光敏二极管伏安特性测试数据表(照度: 中 )
电压(伏)
UR(伏) 电阻(欧姆) 光电流Ic
2
4
6
8
10
光敏二极管伏安特性测试数据表(照度: 强 )
100 K
• 在三种偏压下重复测量,将数据记录至相应 数据表格中,并绘制光照特性曲线。
• 3、光照特性测量—数据记录
光敏二极管光照特性测试数据表(电压: 2V )
照度 UR(伏) 光电流
光敏二极管光照特性测试数据表(电压: 6V)
照度 UR(伏) 光电流
光敏二极管光照特性测试数据表(电压: 10V)
• 光敏三极管光照特性
• 在给定偏压条件电/光照特性,具体特 性曲线如下图所示:
偏压
理论上输出电流 Ic=Ip*hFE 。 Ip 为集 - 基的等效二极管 光生电流,表明Ic与光电流 Ip之间满足线性关系,即输 出电流Ic与入射光量基本保 持线性关系。
相关文档
最新文档