化工基础第三章传热

合集下载

化工基础(张四方),传热

化工基础(张四方),传热

四.传热中的一些基本物理量和单位
热量Q:是能量的一种形式, J 传热速率 常用q表示 是指单位时间传递的热量, W 传热速率也称为热流量,或热负荷
热流密度q:单位面积上的传热速率,W· m 潜热:单位质量的物质在发生相变化时伴随的热量变化J/kg 比定压热容cp:压力恒定时,单位质量的物质温度升高1K时 所需的热量,J· -1· -1 K kg
均值。
二. 平面壁的稳定热传导 1)单层平壁的稳定热传导
对于稳定传热,导热速率q不随时间而变。

t2
t1
q dt
A 0 d

q t 2 t1 A
t1 t2
q
A

t1 t 2
t1 t 2 t 推动力 (A) R 热阻

R——导热热阻,传导距离δ越大,传热面 积和导热系数越小,传导热阻越大。
3 间壁式传热
在多数情况下,化工工艺上不允许冷热流体直接接触,故直接接触式 传热和蓄热式传热在工业上并不很多,工业上应用最多的是间壁式传热过 程。这类换热器的特点是在冷、热两种流体之间用一金属壁(或石墨等导热 性能好的非金属壁)隔开,以便使两种流体在不相混合的情况下进行热量传 递。这类换热器中以套管式换热器和列管式换热器为典型设备。
液体中,水的导热系数最大。除水和甘油外,绝大多数液体 的导热系数随温度的升高而略有减小。
气体的导热系数
气体的导热系数很小,不利于导热,但有利于保温。 气体的导热系数随温度升高而加大 。 在相当大的压强范围内,气体的导热系数随压强变化极小 注意:在传热过程中,物质内不同位置的温度可能不相同, 因而导热系数也不同,在工程计算中常取导热系数的算术平
对数平均半径
2rm l t1 t 2 2l (t1 t 2 ) r2 r2 r1 ln r1

化工基础(张四方),吸收

化工基础(张四方),吸收

吸收尾气 (A+B)
溶剂S和溶质A。
气体B和少量的溶质A。
吸收尾气:吸收后排出的气体,主要成分为惰性
吸收液(A+S)
吸收过程在吸收塔中进行,逆流操作吸收塔示意
图如右所示。
吸收是一种典型传质过程
物质从一相转移到另一相的过程叫传质。传质是在不同的 相态间进行的。
按相态划分
液-固相传质过程
气-固 液-液 气-液
NH3
方平衡分压低;
溶解度 g溶质/1000gH2O
PSO2 =780Hg PO2 =8000Hg ,表明难溶气体,溶液上
方平衡分压高。
溶液上方分压越大的物质越难溶。
由图看出: P*↑溶解度↑;T↓ 溶解度↑ 对于同一种气体,分压一定时, 温度T越高,溶解度越小。
对于同一种气体,温度一定时,
如:气相中有A、B两种组分,A 为吸收质,B 为惰性组分, 则它们的摩尔分率为:y a=n a/n,(n=na+nb)
y b=n b/n
比摩尔分率:指每摩尔惰性组分中所带有吸收质的摩尔数。气 液两相中惰性组分(或溶剂)的量可认为不变。通常以Y代 表气相比摩尔分率,以X代表液相比摩尔分率。
x 1 x 气相中溶质的摩尔数 y Y 气相中惰性组分的摩尔数 1 y X Y x , y 1 X 1Y
气体吸收是混合气体中某些组分在气液相界面上溶解、在 气相和液相内由浓度差推动的传质过程。
吸收质或溶质:混合气体中的溶解组分,以A表示。 惰性气体或载体:不溶或难溶组分,以B表示。 吸收剂:吸收操作中所用的溶剂,以S表示。 吸收液:吸收操作后得到的溶液,主要成分为
混合尾气 (A+B) 吸收剂(S)
吸 收 塔

化工基础第三章(精馏过程的物料衡算与操作线方程)

化工基础第三章(精馏过程的物料衡算与操作线方程)
2018/6/9
1.0
0<q<1
q=1
q>1
a
q=0
d
e
y
q<0
b
c 0 xW xF x 不同加料热状态下的 q 线
2018/6/9
xD
1.0
4、 操作线的作法
用图解法求理论板层数时,需先在x–y图上作出精馏段和提
馏段的操作线。
前已述及,精馏段和提馏段的操作线方程在x-y图上均为直
线。
作图时,先找出操作线与对角线的交点,然后根据已知条 件求出操作线的斜率(或截距),即可作出操作线。
Dx D A 100% FxF
塔釜难挥发组分的回收率ηB:
W (1 x w ) B 100% F (1 x F )
2018/6/9
二、 恒摩尔流的假定
精馏操作时,在精馏段和提馏段内,每层塔板上升的汽相 摩尔流量和下降的液相摩尔流量一般并不相等,为了简化精
馏计算,通常引入恒摩尔流动的假定。
2018/6/9
将以上两式联立后,有:
y n 1
L D L D xn x D xn xD V V LD LD
令R=L/D,R 称为回流比,于是上式可写作:
y n 1
R 1 xn xD R 1 R 1
以上两式均称为精馏段操作线方程。
2018/6/9
两点讨论 (1)该方程表示在一定操作条件下,从任意板下降的液体组 成xn 和与其相邻的下一层板上升的蒸汽组成yn+1 之间的关系。 (2)该方程为一直线方程,该直线过对角线上a(xD,xD)点, 以R/(R+1)为斜率,或在y轴上的截距为xD/(R+1)。
(1)恒摩尔汽流

化工原理第三章传热

化工原理第三章传热

Q S
Kt m
t m
1/ K
(1-3)
传 热 速 率
传热温度差(推动力) 热阻(阻力)
式中:△tm──传热过程的推动力, ℃ 1/K ──传热总阻力(热阻),m2 ·℃/W
两点说明:
➢ 单位传热面积的传热速率(热通量)正比于推动力,反比于 热阻。因此,提高换热器的传热速率的途径是提高传热推
动力和降低热阻。
三、 换热器类型
换热器:实现冷、热介质热量交换的设备
用于输送热量的介质—载热体。 加热介质(加热剂):起加热作用的载热体。水蒸气、热水等。 冷却介质(冷却剂):起冷却作用的载热体。冷水、空气制冷剂。
① 直接混合式 —— 将热流体与冷流体直接混合的一种传热方式。 ② 蓄热式 —— 热量 存储在热载体上 传递给冷流体。如
式中:d1为套管的内管直径,d2为套管的内管直径。
应用范围:
Re 1200 ~ 220000, d2 1.65 ~ 17 d1
特征尺寸: 流动当量直径de。
定性温度: 流体进、出口温度的算术平均值。
滴状冷凝:若冷凝液不能润湿壁面,由于表面张力的作用,冷凝 液在壁面上形成许多液滴,并沿壁面落下,此中冷凝 称为。在实际生产过程中,多为膜状冷凝过程。
➢ 一般金属(固体)的导热系数>非金属(固体)>液体>气体
➢ 多数固体λ与温度的关系
λ=k0+k×t
单位:W/(m •K)
k0 --0℃下的导热系数
k为经验常数。
对大多数金属材料,其k值为负值;对非金属材料则为正值。
➢ 对于金属 t ↑ λ↓(通过自由电子的运动) 对于非金属 t ↑ λ↑ (通过靠晶格结构的振动) 对于液体 t ↑ λ↓ (通过靠晶格结构的振动) 对于气体 t ↑ λ↑ (通过分子不规则热运动)

化工基础第三章(精馏过程的物料衡算与操作线方程)

化工基础第三章(精馏过程的物料衡算与操作线方程)
2019/11/17
2019/11/17
2、 提馏段操作线方程
在图虚线范围(包括提馏段第m层板以下塔段及再沸器)内 作物料衡算,以单位时间为基准,可得:
总物料衡算: L’=V’+W
易挥发组分衡算: L’xm=V’ym+1+WxW
式中:
L’——提馏段中每块塔板下降的液体流量,kmol/h; V’——提馏段中每块塔板上升的蒸汽流量,kmol/h; xm——提馏段第m块塔板下降液体中易挥发组分的摩尔分率; ym+1——提馏段第m+1块塔板上升蒸汽中易挥发组分的摩尔分率。
的方程。
在进料热状态一定时,q 即为定值,则 q 线方程为一直线方 程。
q线在y-x图上是过对角线上e (xF,xF)点,以q/(q-1)为斜 率的直线。
不同进料热状态,q 值不同,其对q 线的影响也不同。
2019/11/17
1.0
0<q<1
q=1 q>1
a
y
q=0 q<0
d
e
b
0
2019/11/17
2019/11/17
(2)提馏段操作线的作法
由:
ym1

R' R' 1 xm

1 R' 1 xW
当 xm=xW 时,ym+1=xW 。
说明提馏线也有一点其横坐标与纵坐标相等,这一点必然
落在对角线上,可从对角线上查找。
由分离要求 xW 和经确定的再沸比 R’ 可计算出截距-xW/(R’ +1)。
xD xF
0.95 0.24
据:
ym1

R' R'
1

第三章传热过程

第三章传热过程

第三章传热过程内容提要:本章先对传热的三种基本方式即传导传热、对流传热和辐射传热以及工业上的换热方法进行介绍,然后着重讨论传导传热、对流传热的机理和传导传热、对流传热的速率方程式,在此基础上建立总传热速率方程。

冷热流体通过固体壁面进行热交换时的热量衡算及与总传热方程相结合解决热交换过程中的问题。

对强化和抑制传热过程的途径以及列管式热交换器的基本结构仅作简单介绍。

学习指导:了解传导传热和对流传热的机理,掌握传导传热、对流传热的速率方程式,掌握总传热速率方程式并对其中的总传热系数K、传热平均温度差Δtm能分别计算,能将热交换中热量衡算式与总传热方程相结合而解决热交换中的计算问题。

了解强化和抑制传热过程的方法以及列管式热交换器的基本结构。

第一节概述在自然界,在人们的生产和日常生活中,每时每刻都在发生由于物体或系统内部温度不同而使热量自动地转移到温度较低的部分的过程,这一过程称为热的传递简称传热。

而本章主要研究化工生产中的传热。

一、化工生产中的传热过程在化工生产、科学实验中随时会遇到热量传递问题,化工生产中的化学反应要求在一定温度下进行,而适宜的温度依靠加热或冷却才能实现。

例如,氮、氢合成氨、由氨氧化制硝酸、萘氧化制苯酐等,由于催化剂的活性和反应的要求,反应温度必须控制在一定的范围,过高过低都会导致原料利用率降低,温度控制不当甚至会发生事故。

又如在蒸馏、蒸发、干燥、结晶、冷冻等操作中也必须供给或移走一定的热量才能顺利进行。

在这类情况下,要求热量的传递速率要高,即通常所说的要求传热良好。

另有一类情况如高温或低温下操作的设备或管道,为了保持其温度应尽量隔绝热的传递即要求传热速度要低,即通常所说的保温。

此外,能量的充分利用是化工生产尤其是大型生产中极为重要的问题,为了充分利用反应热,回收余热和废热以降低生产成本,工业上大量使用热交换器,这都涉及到热量的传递问题。

传热过程是研究具有不同温度的物体内或物体间热量的传递。

化工原理(上册)—化工流体流动与传热第三版柴诚敬习题答案

化工原理(上册)—化工流体流动与传热第三版柴诚敬习题答案

化工原理(上册) - 化工流体流动与传热第三版柴诚敬习题答案第一章:引言习题1.1答案:该题为综合性问题,回答如下:根据流体力学原理,液体在容器中的自由表面是一个等势面,即在平衡时,液体表面上各点处的压力均相等。

所以整个液体处于静止状态。

习题1.2答案:该题为计算题。

首先,根据流速的定义:流体通过某个截面的单位时间内通过的体积与截面积之比,可得流速的公式为:v = Q / A,其中v表示流速,Q表示流体通过该截面的体积,A表示截面积。

已知流速v为10m/s,截面积A为0.5m²,代入公式计算得:Q = v × A = 10m/s × 0.5m² = 5m³/s。

所以,该管道内的流体通过的体积为5立方米每秒。

习题1.3答案:该题为基础性知识题。

流体静压头表示流体的静压差所能提供的相当于重力势能的高度。

根据流体的静压力与流体的高度关系可知,流体静压力可以通过将流体的重力势能转化为压力单位得到。

由于重力势能的单位可以表示为m·g·h,其中m为流体的质量,g为重力加速度,h为高度。

而流体的静压头就是将流体静压力除以流体的质量得到的,即流体静压力除以流体的质量。

所以,流体静压头是等于流体的高度。

第二章:流体动力学方程习题2.1答案:该题是一个计算题。

根据题意,已知流体的密度ρ为1.2 kg/m³,截面积A为0.4 m²,流速v为2 m/s,求流体的质量流量。

根据质量流量公式:Q = ρ × A × v,代入已知数值计算得:Q = 1.2 kg/m³ × 0.4 m² × 2 m/s = 0.96 kg/s。

所以,流体的质量流量为0.96 kg/s。

习题2.2答案:该题为综合性问题,回答如下:流体动量方程是描述流体运动的一个重要方程,其中包含了流体的质量流量、速度和压力等参数。

化工原理知识点总结pdf

化工原理知识点总结pdf

化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。

本章将针对化工原理的基础知识进行总结。

1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。

化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。

1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。

在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。

1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。

物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。

1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。

动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。

1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。

质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。

1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。

界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。

第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。

本章将总结化工反应原理的基本知识。

2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。

化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)不同温度的等温面不相交 2)在等温面内没有热量的传递
2-1傅里叶定律
2.温度梯度: 温度梯度:等温面法线方向上的温度变化率 温度梯度 T n
对于一维稳态的温度场,温度梯度可表示为 :温度梯度 dT dn
温度梯度是向量,正方向指向温度增加的方向
3. 傅立叶定律
q -λ dT dn
傅立叶定律
化工基础第三章传热
主要内容
• 第一节:概述 • 第二节:热传导 • 第三节:对流传热 • 第四节:热交换的计算 • 第五节:热交换器 • 第六节:传热过程的强化
前言
凡是有温度差存在的地方,必然有热的传递 (能量传递过程) 传热在化工生产中的应用: 1、物料的加热、冷却或者冷凝、蒸发、干燥等过程 2、反应器内需要供给或移走反应热,使反应在一定温度下进行 3、化工设备和管道的保温,生产中热能的合理利用,废热回收
非导电体:通过晶格结构的振动实现 液体 机理复杂,介于气体和固体之间
特点:静止介质中的传热,没有物质的宏观位移
1-2传热的基本方式
2.热对流 流体中质点发生相对位移而引起的热量传递,称为热对流。 对流只能发生在流体中。
特点:流动介质中的传热,流体作宏观运动 对流传热的同时,伴随着流体质点间的热传导
4.气体导热系数 0.006~0.4 W/(m·K)
t , 一般情况下,随p的变化可忽略; 气体不利于导热,有利于保温或隔热
2-3平壁的稳态热传导
1、单层平壁的稳定热传导
q λ dT dx
δ
T2
qdx λdT
0
T1
q λ T1 T2 δ
qAA(T1T2)
T1
T2
T R
推动力 热阻
A
K/W
强制对流 流体受外力作用而引起的流动
自然对流 由于流体内温度差导致密度差异而引起的流动
一般讨论对流传热多指热由流体传到固体的壁面(或反之 )的传热过程
1-2传热的基本方式
3.热辐射
物体由于热的原因以电磁波的形式向外发射能量的过程
λ=0.4~40μm
特点:不仅产生能量的转移,
而且伴随着能量形式的
转换;
面传递的热量,单位 J/s或W
热流密度q (热通量) :单位时间内通过单位传热面积传递
的热量,单位 J/(s. m2)或W/m2
热流量与热通量的关系为 q A
稳态传热
Φ=KAΔTm
热流量方程
K:总传热系数,W/(m2·K)
总传热速率方程
A:总传热面积,m2
ΔTm:两流体的平均温差,K
第三章
热量传递
面积热流量为:
qt1t21 0 .5 .35 7 166 5 30 0 0 567 W/7 m2
2-3平壁的稳态热传导
2.多层平壁的稳态热传导
T1 T2
热流体T1
T`2
冷流
T2 体T`1
换热器的传热量(热负荷)
在换热过程中,忽略热损失 放=吸 (传热量)
1-3热平衡方程与热流量方程
(1)无相变时的传热量计算
Φ=qm,hCp,h ( T1 – T2) = qm,cCp,c ( T2′– T1′)
(2)有相变时的传热量计算 饱和蒸汽冷凝 液体沸腾汽化
非稳定传热:传热进行时,物质各
1-2传热的基本方式
热传导 热对流 热辐射
1-2传热的基本方式
1.热传导 热量从物体内部温度较高的部分传递到温度较低的部分
或者传递到与之相接触的温度较低的另一物体的过程称为热 传导,简称导热。 气体 分子做不规则热运动时相互碰撞的结果 固体 导电体:自由电子在晶格间的运动
间歇传热 连续传热
稳态传热:传热速率=常数 非稳态传热:传热速率≠常数
第三章 热量传递
第一节 概述
1-1稳态与非稳态传热 1-2传热基本方式 1-3热平衡方程与
热流量方程
1-1稳态与非稳态传热
稳态传热:传热进行时,物质各点温度不随时间而变仅随位置 变化的传热过程。
Tf(x,y,z) 传热速率=常数
热能 辐射能
热能 热辐射不需要媒介;
黑体 斯蒂芬-波尔茨曼定律
高温物体的主要传热形式
辐射能力
E0
0T4
辐射常数
C0
(T 100
)
4
T>673K
1-3热平衡方程与热流量方程
传热过程
将热量由壁面一侧的流体通过壁面传递到壁面另一侧的过程 1.传热平衡方程 以某换热器为衡算对象,列出稳态传热时的热量衡算方程
λ——比例系数,称为导热系数;w/m·k 负号表示热流方向与温度梯度方向相反
2-2导热系数
1.导热系数的定义
λ q w/m·k dT dn 在数值上等于单位温度梯度下的热通量
表征材料导热性能的物性参数
= f(结构, 组成, 密度, 温度, 压力)
金属固体 > 非金属固体 > 液体 > 气体
2.固体导热系数
例 某平壁厚度δ=0.37m,内表面温度t1=1650℃,外表面温度 t2=300℃,平壁材料导热系数λ=0.815+0.00076t,W/(m·℃) 试求平壁的面积热流量q。
解:
tmt1 2t2
16 53000 975 2
平壁材料的平均导热系数:
m 0 .8 1 5 0 .0 0 0 7 6 9 7 5 1 .5 5 6W/(m2·℃ )
金属材料 10~102 W/(m•K) 建筑材料 10-1~10 W/(m•K) 绝热材料 10-2~10-1 W/(m•K)
在一定温度范围内:0(1a)t
金属材料a < 0 非金属材料a > 0
2-2导热系数
3.液体导热系数 0.09~0.6 W/(m·K)
金属液体较高,非金属液体低(水的最大); 水和甘油:t , 其它液体:t ,
φ = qm·r
其中 r—气化潜热(或冷凝潜热) KJ / kg
饱和蒸汽冷凝 qm,h r = qm,cCp,c ( T2′– T1′) 液体沸腾汽化 qm,hCp,h ( T1 – T2) = qm,c r
1-3热平衡方程与热流量方程
2.热流量方程
传热速率Φ(热流量):单位时间内通过换热器的整个传热
第二节 热传导
2-1傅里叶定律 2-2导热系数 2-3平壁的稳态热传导 2-4圆筒壁的稳态热传导
2-1傅里叶定律
1.温度场和等温面 温度场:某时刻,物体或空间等各温点面的温度分布
Tft1x,ty 2 ,z, 不稳定温度场: T t1>ft2x,Qy,z, 稳定温度场: Tfx,y,z
等温面:在同一时刻,温度场中所有温度相同的点组成的面
相关文档
最新文档