找“等量关系”的几种方法
找等量关系方法计划汇总

找等量关系式的四种方法1、根据目中的关句找等量关系。
用中反映等量关系的句子,如“合唱的人数比舞蹈的3倍多15人〞、“桃和杏一共有180棵〞的句子叫做用的关句。
在列方程解用,同学可以根据关句来找等量关系。
2、用常数量关系式作等量关系。
我已学了如“工效×工=工作量〞、“速度×=路程〞、“价×数量=价〞、“量×数量=量〞等常数量关系式,可以把些常数量关系式作等量关系式来列方程。
3、把公式作等量关系。
在解答一些几何形体的用,我可以把有关的公式作等量关系。
4、画出段找等量关系于数量关系比复,等量关系不明的用我可以先画出段,再根据段找出等量关系。
例如:划耕6420公耕地,已耕了5天,平均每天耕780公,剩下的要3天耕完,平均每天要耕多少公?根据意画出段:从中我可以看出等量关系是:“已耕的公数+剩下的公数=6420〞列出方程::平均每天要耕X公780×5+3X=6420想一想:根据上面的段可以找出哪些等量关系。
1.牢算公式,根据公式来找等量关系。
种方法一般适用于几何用,教要学生牢周公式、面公式、体公式等,然后根据公式来解决。
2.熟数量关系,根据数量关系找等量关系。
种方法一般适用于工程、路程、价格,教在教学三,不但要学生理解,学生熟“工作效率×工作=工作量;速度×=路程;价×件数=价〞等关系式。
如“汽平均每小行45千米,从甲地到乙地共225千米,汽共需行多少小?〞就可以根据“速度×=路程〞一数量关系,列出方程45X=225。
3.抓住关字,根据字的提示找等量关系。
种方法一般适用于和差关系、倍数关系的用,在中常有的提示:“一共有〞、“比⋯⋯多〔少〕〞、“是⋯⋯的几倍〞、“比⋯⋯的几倍多〔少〕〞等。
在解,可根据些关字来找等量关系,按表达的序列出方程。
如“四年有学生250人,比三年的2倍少70人,三年有学生多少人?〞,根据中“比⋯⋯少〞可知:三年的2倍减去70人等于四年的人数,从而列出方程2X-70=250。
找等量关系式的四种方法

找等量关系式的四种方法在数学中,等量关系式是指具有相等关系的数学表达式,即两个或多个数学表达式之间的数值相等。
寻找等量关系式的四种方法如下:1.代换法:通过代换法可以求得等量关系式。
首先,我们将一个数或变量代入另一个数或变量的表达式中,然后求解出两者之间的数值关系。
这种方法常见于解方程问题,例如解一次方程、二次方程或其他高次方程。
例如,对于方程2x+3=11,我们可以通过代换法找到等量关系式。
首先,我们将x代入方程中,得到2*4+3=11,进而可以得到等量关系式2x+3=112.化简法:通过化简法可以找到等量关系式。
化简就是对一个数学表达式进行简化,将复杂的表达式转化为简单的形式。
通过将两个或多个数学表达式化简为同一形式,可以得到等量关系式。
例如,对于表达式2x+3x,我们可以进行化简得到5x。
因此,可以得到等量关系式2x+3x=5x。
3.分解法:通过分解法可以找到等量关系式。
分解就是将一个复杂的数学表达式分解为几个简单的数学表达式之和或乘积的形式。
通过将两个或多个数学表达式进行分解,可以得到等量关系式。
例如,对于表达式4x+5,我们可以将其分解为2x+2x+1+1+1,进而得到等量关系式4x+5=2x+2x+1+1+14.变换法:通过变换法可以找到等量关系式。
变换就是对一个数学表达式进行等式变形,得到等价但形式不同的数学表达式。
通过对数学表达式进行变换,可以得到等量关系式。
例如,对于表达式4x=2x+6,我们可以通过变换法得到等量关系式4x-2x=6总结起来,寻找等量关系式的方法有代换法、化简法、分解法和变换法。
每种方法都有其应用的场景,根据具体问题选择适应的方法可以更快有效地求得等量关系式。
找等量关系式的四种方法

3支钢笔的价钱-5支圆珠笔的价钱=0.9元
解:设每支钢笔X元。
3X-0.6×5=0.9
2、用常见数量关系式作等量关系。
我们已学过了如“工效×工时=工作总量”、“速度×时间=路程”、“单价×数量=总价”、“单产量×数量=总产量”等常见数量关系式,可以把这些常见数量关系式作为等量关系式来列方程。
例如:甲乙两辆汽车同时从相距237千米的两个车站相向开出,经过3小时两车相遇,甲车每小时行38千米,乙车每小时行多少千米?
我们可以根据“速度(和)×时间=路程”找出等量关系:(甲速+乙速)×相遇时间=路程
解:设乙车每小时行X千米
(38+X)×3=237
3、把公式作为等量关系。
在解答一些几何形体的应用题时,我们可以把有关的公式作为等量关系。
找等量关关系。
应用题中反映等量关系的句子,如“合唱队的人数比舞蹈队的3倍多15人”、“桃树和杏树一共有180棵”这样的句子叫做应用题的关键句。在列方程解应用题时,同学们可以根据关键句来找等量关系。
例如:买3支钢笔比买5支圆珠笔要多花0.9元。 每支圆珠笔的价钱是0.6元,每支钢笔多少钱?
例如:一个梯形的面积是30平方分米,它的上底是4分米,下底是8分米。求梯形的高。我们就把梯形的面积公式作为等量关系即:“(上底+下底)×高÷2=梯形的面积”列出方程。
解:设梯形的高是X分米
(4+8)×X÷2=30
4、画出线段图找等量关系
对于数量关系比较复杂,等量关系不够明显的应用题我们可以先画出线段图,再根据线段图找出等量关系。
例如:东乡农场计划耕6420公顷耕地,已经耕了5天,平均每天耕780公顷,剩下的要3天耕完,平均每天要耕多少公顷?
找等量关系的几种方法

找“等量关系”的几种方法列方程解应用题的关键是确定等量关系。
那么,解题时应如何寻找等量关系呢?下面告诉同学们几种常用的方法。
1.从题中反映的基本数量关系确定等量关系。
任何一道应用题,都可以根据条件和问题写出一个基本数量关系式,这个基本数量关系式就是题中的等量关系。
如“商店原来有一些饺子粉,又运来12袋,每袋5千克,卖出7袋以后,还剩40千克。
这个商店原来有多少千克饺子粉?”根据题目叙述顺序我们很容易写出:原有的重量+运来的重量-卖出的重量=剩下的重量。
2.紧扣几何形体周长、面积和体积公式确定等量关系。
同学们在学习几何知识时,已经掌握了平面图形的周长和面积的计算公式以及立体图形的表面积和体积的计算公式。
这些公式,是等量关系的具体化。
如“一个三角形的面积是100平方厘米,它的底是25厘米,高是多少厘米?”我们可以根据三角形面积计算公式直接列出方程。
3.根据常见的数量关系确定等量关系。
在三年级的时候,同学们已经学习了乘、除法应用题中常见的数量关系。
如,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等。
这些常见的基本数量关系,就是等量关系。
4.抓住关键句子确定等量关系。
好多应用题都有体现数量关系的句子。
解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系。
如,根据“合唱队的人数比舞蹈队的3倍多15人”可知:舞蹈队的人数×3+15=合唱队的人数。
根据“果园里桃树和杏树一共有180棵”可知:桃树的棵数+杏树的棵树=180棵。
5.借助线段图确定等量关系。
线段图能使抽象的数量关系具体化,使隐蔽的数量关系明朗化。
对于较复杂的题目,同学们可借助线段图找等量关系。
如“有两袋大米,甲袋大米的重量是乙袋的1.2倍。
如果再往乙袋里装5千克大米,两袋就一样重了。
原来两袋大米各有多少千克?”根据题意,可以画出下面的线段图。
从图中很容易得出:甲袋重量-乙袋重量=5千克。
找等量关系式的四种方法

找等量关系式的四种方法
等量关系式指的是具有相同数值的两个或多个数的关系。
以下是四种方法来找到等量关系式:
1.字母代换法:通过字母代换法,我们可以用一个字母或符号代替一个或多个未知数。
通过这种方式,我们可以将一个问题转化为一个或多个方程,从而找到等量关系式。
例如,假设一个数字与它本身加上12的和的两倍之差等于36,则可以设这个数字为x。
根据给定条件,我们可以列出等式2x-(x+12)=36、通过解这个方程,我们可以找到等量关系式x=24
2.图形法:图形法通过绘制图表或图形来找到等量关系式。
例如,如果给定一个线性方程y=2x+3,并要求找到使得y=7的x的值,我们可以绘制这个线性方程的图表。
通过在图表中找到y=7对应的x值,我们可以找到等量关系式x=2
3.实例法:实例法通过列举具体的实例来找到等量关系式。
例如,假设一辆汽车每小时以60公里的速度行驶,我们可以通过具体的实例来找到等量关系式。
如果汽车行驶了2小时,那么汽车行驶的总距离为60公里/小时×2小时=120公里。
通过这一实例,我们可以找到等量关系式总距离=60公里/小时×时间。
4.探究法:探究法通过不断的探究和推断来找到等量关系式。
例如,在解决几何问题时,我们可以根据已知条件和几何关系来推断出等量关系式。
通过不断地探究几何图形的特征和性质,我们可以找到等量关系式来解决问题。
需要注意的是,在寻找等量关系式时,我们还需要考虑问题的上下文和特定要求。
在确定等量关系式后,我们还需要进行验证和求解,以确保等量关系式的准确性和可行性。
列方程怎么找等量关系初中

列方程怎么找等量关系初中
在解决实际问题时,我们经常需要找到等量关系来列方程。
等量关系是指两个量之间相等的关系。
以下是一些常见的等量关系:
1. 总量等量关系:总量 = 部分量 + 部分量
2. 差量等量关系:差量 = 被减数 - 减数
3. 速度、时间、距离等量关系:速度 = 距离 / 时间,距离 = 速度× 时间,时间 = 距离 / 速度
4. 工作、效率、时间等量关系:工作效率 = 工作量 / 工作时间
5. 比例等量关系:比例关系 = 一个量 / 另一个量
例如,我们可以根据速度、时间和距离的关系来列方程。
假设我们有一个问题:一辆汽车以60公里/小时的速度行驶了3小时,求汽车行驶的距离。
我们可以根据速度、时间和距离的关系列出方程:
速度 = 60公里/小时
时间 = 3小时
距离 = 速度× 时间
所以,我们可以得到方程:60 × 3 = d,其中d是汽车行驶的距离。
通过这个例子,我们可以看到,找到等量关系是列方程的关键。
我们需要理解问题的背景,明确各个量之间的关系,然后根据这些关系列出方程。
找等量关系的方法技巧

找等量关系的方法技巧
找等量关系是数学中常用的一种解决问题的方法,特别是在代数和几何问题中。
以下是一些找等量关系的方法技巧:
1. 画出图形: 在几何问题中,画出图形可以帮助找到等量关系。
例如,在解决三角形的问题时,可以画出三角形并标出未知量的位置,然后寻找其他线段或角度与未知量的关系。
2. 列出方程式: 在代数问题中,可以通过列出方程式来找到等量关系。
例如,如果已知两个变量x和y之间的关系为y=2x,则可以将这个关系写成一个方程式y=2x,并通过改变未知数的量值来找到其他等量关系。
3. 使用比例: 在解决一些几何问题时,可以使用比例来找到等量关系。
例如,如果已知两条线段的长度分别为a和b,并且想要知道它们的比例关系,则可以将它们的长度表示为变量x和y,然后写出比例关系式x/y=a/b。
4. 利用函数关系: 在解决一些代数和几何问题时,可以利用函数关系来找到等量关系。
例如,如果已知两个变量x 和y之间的函数关系为y=2x+1,则可以将这个关系写成一个方程式y=2x+1,并通过改变未知数的量值来找到其他等量关系。
总之,找等量关系是数学中常用的一种解决问题的方法,需要根据具体情况灵活运用上述方法技巧。
找等量关系的四种方法

多元一次方程组
代数法可以用于解决包含多个未知数 的一次方程组,例如:a + b + c = 10。
代数法的优缺点
优点
代数法具有通用性和抽象性,能够解决各种复杂的等量关系问题,特别是涉及多个变量和复杂运算的问题。此外, 通过代数变换和化简,可以简化问题并找到等量关系。
缺点
使用代数法需要一定的数学基础和技巧,对于初学者可能有一定的难度。此外,在某些情况下,代数法可能比较 繁琐,需要花费较多的时间和精力。
场景三
解决涉及不同单位的问题, 例如解决涉及长度、面积、 体积等不同单位的问题, 找出等量关系。
单位法的优缺点
优点
单位法简单易行,适用于各种不同单 位的问题,能够快速找出等量关系。
缺点
对于一些复杂的问题,可能需要多次 换算才能找出等量关系,计算过程可 能较为繁琐。
04
CHAPTER
代数法
定义与特点
缺点
对于一些复杂的问题,方程法可能会 比较繁琐,需要花费较多的时间和精 力来建立等式关系和求解。
02
CHAPTER
图表法
定义与特点
定义
图表法是通过绘制图表来直观地展示数据和数量关系的方法 。
特点
图表法能够清晰地呈现数据的变化趋势和等量关系,便于理 解和分析。
图表法的应用场景
线性关系
适用于展示两个变量之间线性 关系的情况,如y=ax+b形式的
01
02
03
代数问题
在代数问题中,方程法是 最常用的方法之一,可以 通过设立未知数和建立等 式关系来求解。
几何问题
在几何问题中,方程法也 经常被用来解决与长度、 角度等有关的等量关系问 题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找“等量关系”的几种方法
列方程解应用题的关键是确定等量关系。
那么,解题时应如何寻找等量关系呢?下面告诉同学们几种常用的方法。
1.从题中反映的基本数量关系确定等量关系。
任何一道应用题,都可以根据条件和问题写出一个基本数量关系式,这个基本数量关系式就是题中的等量关系。
如“商店原来有一些饺子粉,又运来12袋,每袋5千克,卖出7袋以后,还剩40千克。
这个商店原来有多少千克饺子粉?”根据题目叙述顺序我们很容易写出:原有的重量+运来的重量-卖出的重量=剩下的重量。
2.紧扣几何形体周长、面积和体积公式确定等量关系。
同学们在学习几何知识时,已经掌握了平面图形的周长和面积的计算公式以及立体图形的表面积和体积的计算公式。
这些公式,是等量关系的具体化。
如“一个三角形的面积是100平方厘米,它的底是25厘米,高是多少厘米?”我们可以根据三角形面积计算公式直接列出方程。
3.根据常见的数量关系确定等量关系。
在三年级的时候,同学们已经学习了乘、除法应用题中常见的数量关系。
如,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等。
这些常见的基本数量关系,就是等量关系。
4.抓住关键句子确定等量关系。
好多应用题都有体现数量关系的句子。
解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系。
如,根据“合唱队的人数比舞蹈队的3倍多15人”可知:舞蹈队的人数×3+15=合唱队的人数。
根据“果园里桃树和杏树一共有180棵”可知:桃树的棵数+杏树的棵树=180棵。
5.借助线段图确定等量关系。
线段图能使抽象的数量关系具体化,使隐蔽的数量关系明朗化。
对于较复杂的题目,同学们可借助线段图找等量关系。
如“有两袋大米,甲袋大米的重量是乙袋的1.2倍。
如果再往乙袋里装5千克大米,两袋就一样重了。
原来两袋大米各有多少千克?”
根据题意,可以画出下面的线段图。