线代知识点
线性代数的知识点

线性代数的知识点线性代数是数学中的一个重要分支,它研究向量空间和线性映射的性质以及它们的代数表示。
它在许多学科中都有广泛的应用,包括物理学、计算机科学和工程学等。
本文将按照逐步思考的方式介绍几个线性代数的重要知识点。
1.向量和向量空间向量是线性代数中的基本概念,它表示具有大小和方向的量。
我们可以用一个有序的数对来表示二维空间中的向量,或者用一个有序的数列表示n维空间中的向量。
向量之间可以进行加法和数量乘法运算。
一个向量空间是由一组向量组成的集合,满足以下几个条件:(1)对于任意两个向量u和v,它们的和u+v也属于该向量空间;(2)对于任意一个向量u和任意一个标量c,它们的乘积cu也属于该向量空间。
2.矩阵和矩阵运算矩阵是线性代数中另一个重要的概念,它是一个由数排成的矩形阵列。
矩阵可以表示向量的线性组合、线性映射以及其他数学运算。
矩阵之间可以进行加法、数量乘法和矩阵乘法等运算。
矩阵乘法是矩阵运算中最重要的一种运算,它可以用来表示线性映射的复合、向量空间的变换等。
3.行列式和特征值特征向量行列式是一个与矩阵相关的概念,它可以用来判断矩阵是否可逆、计算矩阵的逆矩阵等。
行列式的值可以为零或非零,非零行列式表示矩阵是可逆的。
特征值和特征向量是线性代数中的另一个重要概念,它们描述了线性映射对向量的变换方式。
特征值表示了线性映射对特定方向的缩放倍数,而特征向量则表示了这个特定方向。
4.线性方程组和矩阵的解线性方程组是线性代数中的一个基本问题,它可以表示为一个矩阵乘以一个向量等于另一个向量的形式。
求解线性方程组就是要找到满足这个等式的向量。
对于一个线性方程组,它可能有唯一解、无解或者无穷多解。
这取决于矩阵的秩、行列式的值以及矩阵的特征等性质。
5.正交和正交投影正交是线性代数中的一个重要概念,它表示两个向量之间的垂直关系。
如果两个向量的内积为零,则它们是正交的。
正交投影是一种常见的线性变换,它可以将一个向量投影到另一个向量上。
线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
线性代数知识点总结汇总

线性代数知识点总结汇总线性代数知识点总结行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=kn|A|(2)|AB|=|A|·|B|(3)|AT|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
线代知识点总结 (个人整理,非官方)

●行列式1、逆序数(向前取大法)2、行列式展开(去年高数求几何向量的时候用过的那玩意儿)3、行列式的性质行列式与其转置行列式相等交换行列式的任意两行,行列式改变符号行列式的某行的所有元素乘以k,等于用k 乘以该行列式行列式中有两行的所有对应元素成比例,则该行列式为0如果行列式的某行的各元素是两数之和,则该行列式等于两个行列式的和把行列式的任一行的所有元素乘以k,加到另一行,该行列式不变4、克莱姆法则如果线性方程组的系数行列式不等于零,即线性方程组有解,并且解是唯一的如果线性方程组无解或有两个不同的解,则它的系数行列式必为零如果齐次线性方程组的系数行列式D非0则齐次线性方程组只有零解如果齐次线性方程组有非零解,则它的系数行列式必为零。
5.行列式的计算特殊形式的行列式(对角线行列式,三角形行列式) 或低阶的行列式用定义。
将行列式化为三角形行列式。
用性质将行列式化简,再按一行(或一列)展开。
●矩阵1。
方阵的行列式2.逆矩阵的运算规律原矩阵右增加单位阵,再将原矩阵化为单位阵,此时右边的即为所求逆矩阵3.一些等价命题(1)A 可逆(2)A 是非异阵(3)A 可经过若干次初等变换化为E(4)A为满秩矩阵(5)非齐次线性方程组Ax=b有唯一解(6)齐次线性方程组Ax=0只有零解4.初等阵与初等变换矩阵->行阶梯型->行最简型5。
矩阵的秩行阶梯型矩阵中的非零行行数即为矩阵的秩●向量组的线性相关性则称向量组A是线性相关的,否则称它线性无关.含有零向量的向量组一定线性相关。
向量空间●线性方程组线性方程组基础解系的求法非齐次线性方程的通解PS.。
线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
线代知识点总结全部

线代知识点总结全部一、向量和矩阵1. 向量的定义向量是指具有大小和方向的几何体,通常用箭头表示。
在数学中,向量通常用有序数对或有序数组表示。
例如,在二维空间中,一个向量可以表示为(a, b),表示向量在x轴上的分量为a,在y轴上的分量为b。
2. 向量的线性运算向量的线性运算包括向量的加法和数量乘法。
向量的加法就是将两个向量相加,得到一个新的向量。
数量乘法是将一个实数与一个向量相乘,得到一个新的向量。
3. 矩阵的定义矩阵是一个由数排成的矩形阵列,它是线性代数中的一个重要概念。
矩阵中的数称为元素,矩阵的行数和列数分别称为矩阵的阶数。
例如,一个m×n的矩阵有m行n列。
4. 矩阵的基本运算矩阵的基本运算包括矩阵的加法、数量乘法和矩阵的乘法。
矩阵的加法是将两个相同阶数的矩阵相加得到一个新的矩阵,矩阵的数量乘法是将一个实数与一个矩阵相乘得到一个新的矩阵。
矩阵的乘法是将一个m*n的矩阵与一个n*p的矩阵相乘得到一个m*p的矩阵。
5. 矩阵的转置矩阵的转置是将矩阵的行向量转换为列向量,列向量转换为行向量。
矩阵的转置操作可以用来表示矩阵的对称性和几何意义,也有利于简化矩阵的计算。
二、向量空间和子空间1. 向量空间的定义向量空间是指具有加法和数量乘法两种运算的集合,并且满足一定的性质。
向量空间可以是有限维的,也可以是无限维的。
例如,n维实数向量空间可以表示为R^n,它包含所有n维的实数向量。
2. 子空间的定义子空间是指在一个向量空间V中的一个非空集合W,并且满足在W中任意两个向量的线性组合仍然在W中。
子空间的一个重要性质是它也是一个向量空间,可以继承向量空间的性质。
3. 线性相关和线性无关一组向量中的向量如果存在线性组合能够得到零向量,则称这组向量线性相关;如果不存在这样的线性组合,则称这组向量线性无关。
4. 基和维数在一个向量空间中,如果存在一组线性无关的向量可以组成整个空间中的任意向量,则称这组向量是一组基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数知识点总结
第一章 行列式
1一个排列中的任意两个元素对换,排列改变奇偶性.
2奇排列调成标准排列的对换次数为奇数,
偶排列调成标准排列的对换次数为偶数
3定理2 阶行列式也可定义为 其中 t 为行标排列p1p2…pn 的逆序数
4推论 如果行列式有两行(列)完全相同,则此行列式为零.
5性质3 行列式的某一行(列)中所有的元素都乘以同一数 ,等于用数 乘此行列式.
6推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面
7性质4 行列式中如果有两行(列)元素成比例,则此行列式为零.
8性质5 若行列式的某一列(行)的元素都是两数之和.
9性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上 去,行列式不变.
10 叫做元素aij 的代数余子式。
11引理 一个n 阶行列式,如果其中第i 行所有元素除a(ij)外都为零,那么这个行列式等于a(ij)与它的代数余子式的乘积,即D=a(ij)*A(ij) . 12定理3 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即
13推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
14关于代数余子式的重要性质
15克拉默法则 重要定理
定理1 如果线性方程组 1 的系数行列式 D ≠0 则 1 一定有解,且解是唯一的 .
定理2 如果线性方程组 1 无解或有两个不同的解,则它的系数行列式必为零.
定理3 如果齐次线性方程组 的系数行列式D ≠0 则齐次线性方程组 没有非零解.
定理4 如果齐次线性方程有非零解,则它的系数行列式必为零.既D=0
第二章 矩阵
1矩阵加法的运算规律 2、数乘矩阵的运算规律 3矩阵与矩阵相乘 并把此乘积记作 4矩阵乘法的运算规律 ()n p p p t n a a a D 21211∑-=(),记ij j i ij M A +-=1in
in i i i i A a A a A a D +++= 2211in in i i i i A a A a A a D ++
+= 2211()n i ,,2,1 =.,02211j i A a A a A a jn in j i j i ≠=+++ ⎩⎨⎧≠===∑
=;,0,,1j i j i D D A a ij n k kj ki 当当δ⎩⎨⎧≠==.
,0,1j i j i ij 当,当其中δ();1A B B A +=+()()().
2C B A C B A ++=++()()();1A A μλλμ=()();2A A A μλμλ+=+()().
3B A B A λλλ+=+∑==+++=s k kj
ik sj is j i j i ij b a b a b a b a c 12211 (),
,,2,1;,2,1n j m i ==.
AB C =()()();1BC A C AB =()(),2AC AB C B A +=+();CA BA A C B +=+
5若A 是n 阶矩阵,则k A 为A 的k 次幂,即
个k k A A A A =并且,k m k m A A A +=()mk k m A A =(m,k 为正整数)。
矩阵的其他运算
定义 把矩阵A 的行换成同序数的列得到的新矩阵,叫做 A 的转置矩阵,记作 T A
转置矩阵的运算性质 2、方阵的行列式
定义 由 n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作 /A/或derA
3、对称阵与伴随矩阵
定义 设A 为n 阶方阵,如果满足()n j i a a ji ij ,,2,1, ==,那么A 称为对称阵.
定义 行列式/A/的各个元素的代数余子式ij A 所构成的如下矩阵
称为矩阵A 的伴随矩阵。
性质
二、逆矩阵的概念和性质
定义 对于n 阶矩阵 A ,如果有一个 n 阶矩阵B, 使得E BA AB == 则说矩阵A 是可逆的,并把矩阵
B 称为 A 的逆矩阵 定理1 矩阵 A 可逆的充要条件是 /A/ ≠ 0 ,且,11*-=A A
A
推论 ()1,-===A B E BA E AB 则或若 逆矩阵的运算性质
第三章 矩阵的初等变换
矩阵的秩 初等变换求矩阵秩的方法:把矩阵用初等行变换变成为行阶梯形矩阵,行阶梯形矩阵中非零行的行数就是矩阵的秩.
矩阵的秩的性质
(1) (2) A B B 1-1-A ()=-1()()()()B A B A AB λλλ==3(其中 为常数 λ();4A EA AE ==()();1A A T T =()();2T T T B A B A +=+()();3T T A A λλ=()().
4T T T A B AB =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=*nn n n n n A A A A A A A A A A 212221212111.E A A A AA ==**.
1-A A 的逆矩阵记作.的伴随矩阵为矩阵其中A A *()().
,,111
1A A A A =---且亦可逆则可逆若() ,,0,2且可逆则数可逆若A A λλ≠().111--=A A λλ()且亦可逆则为同阶方阵且均可逆若,,,3AB B A ).
()(A R A R T =显有()().
,~1 B R A R B A =则若定理};
,m in{)(0n m A R n m ≤≤⨯);()(A R A R T =
(3) (4) (5) (6)
(7) (8)
一、线性方程组有解的判定条件
齐次线性方程组:系数矩阵化成行最简形矩阵,便可写出其通解;
非齐次线性方程组:增广矩阵化成行阶梯形矩阵,便可判断其是否有解.若有解,化成行最简形矩阵,便可写出其通解;
定理3:矩阵方程AX=B 有解的充要条件是R(A)=R(A,B).
定理4: 初等矩阵
定义 由单位矩阵 经过一次初等变换得到的方阵称为初等矩阵.
定理2 方阵A 可逆的充要条件是存在有限个初等矩阵.,,,,2121l l P P P A P P P =使
推论1:
第三章 N 维向量
定理1
推论1
线性相关
);()(,~B R A R B A =则若);()(A R PAQ
R Q P =可逆,则、若.1)(),()(),()(),()}(),(max{+≤≤=+≤≤A R b A R A R b B B R A R B A R B R A R 为列向量时,有特别地,当).()()(B R A R B A R +≤+)}.(),(min{B R A R AB R ≤)(.)()(,n B R A R o B A l n n m ≤+=⨯
⨯则若().01n A R x A n n m <=⨯矩阵的秩的充分必要条件是系数有非零解元齐次线性方程组定理().,2的秩阵的秩等于增广矩矩阵的充分必要条件是系数有解元非齐次线性方程组定理b A B A b x A n n m ==⨯)}.(),(m in{)(,B R A R C R C AB ≤=则设
E
A A ~可逆的充要条件是方阵()().,,(,,211--⎪⎪⎭
⎫ ⎝⎛A E E A E A A E E A E A 对应部分即为后划为单位阵将变换施行初等列或对对应部分即为右边后化为单位矩阵将施行初等行变换对 .),,(),( 2121的秩,,的秩等于矩阵,,条件是矩阵线性表示的充分必要能由向量组向量b B A A b m m αααααα ==).,()(),,,,,(),(),,,(,,,:,,,:211212121B A R A R b b a a B A a a a A a a a A b b b B l m m m l ===即的秩,秩等于矩阵的矩阵线性表示的充要条件是能由向量组向量组定理 .).,()()(,,,:,,,:2121所构成的矩阵和是向量组和其中等价的充要条件是与向量组向量组B A B A B A R B R A R b b b B a a a A l m == ,,,,,,,: 2121m m k k k A ααα 使全为零的数如果存在不给定向量组。