北京科技大学液态成形理论与工艺复习题

合集下载

北京科技大学-冶金物理化学-模拟三套卷及答案

北京科技大学-冶金物理化学-模拟三套卷及答案

北京科技大学-冶金物理化学-模拟三套卷及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN北京科技大学2012年硕士学位研究生入学考试模拟试题(一)试题编号:809 试题名称:冶金物理化学一.简答题(每题7分,共70分)1.试用热力学原理简述氧势图中各直线位置的意义。

2.简述规则溶液的定义。

3.简述熔渣分子结构理论的假设条件。

4.已知金属氧化反应方程式(1)、(2)、(3),判断三个方程式中,哪个M是固相,液相,气相?确定之后,计算M的熔点和沸点。

已知(1)2M+O2 = 2MO(s)ΔG1θ= -1215000 + 192.88T(2)2M+O2 = 2MO(s)ΔG2θ = -1500800 + 429.28T(3)2M+O2 = 2MO(s)ΔG3θ = -1248500 + 231.8T5. 简述三元系相图的重心规则。

6. 试推导当O2在气相中的分压小于0.1Pa时硫容量的一种表达式。

7. 试写出熔渣CaO-SiO2的光学碱度的表达式。

8. 推导在铁液深度为H的耐火材料器壁上活性空隙的最大半径表达式。

9. 简述双膜传质理论。

10. 试推气固相反应的未反应核模型在界面化学反应为限制环节时的速率方程。

二.计算题(30分)在600℃下用碳还原FeO制取铁,求反应体系中允许的最大压力。

已知:FeO(s) = Fe(s)+ 1/2 O2(g) Δr Gθ= 259600 –62.55T ,J/molC(s) + O2 = CO2(g) Δr Gθ= -394100 + 0.84T,J/mol2C(s) + O2(g) = 2CO(g) Δr Gθ= -223400 - 175.30T ,J/mol 三.相图题(25分)1)标明各相区的组织。

2)分析x点的冷却过程,画出冷却曲线,并用有关相图的理论解释。

四.对渣-钢反应 [A] +(B2+) = (A2+) + [B] (25分)(1)分析该反应有几个步骤组成。

北京科技大学液态成型理论与工艺期末复习要点

北京科技大学液态成型理论与工艺期末复习要点

液固相变驱动力:G H TS;GV GS GL HS TSS (HL TSL) (HS HL)T(SS SL) H TS; T=Tm (GV)TTm Hm TmSm 0
Sm Hm /Tm (近似认为H、S 不随温度变化) GV H(1T /Tm) HT /Tm 形核驱动力:GVt VHT/Tm; 形核阻力:Gi A 总自由能变化:△G= △GVt+Gi
tlti热流方向与晶体生长方向相反热流方向与晶体生长方向相反ti热流方向与晶体生长方向相同热流方向与晶体生长方向相同ttm??gvt?tm??hm?tm?sm?0??sm??hmtm近似认为?h?s不随温度变化??gv??h1?ttm??h?ttm形核驱动力
第一章 正温度梯度:TL>TI 热流方向与晶体生长方向相反 负温度梯度:TL <TI 热流方向与晶体生长方向相同 铸造:将满足化学成分要求的液态合金在重力场或其它力作用下引入到预制好的型腔中,经冷却使其凝固成为具有 型腔形状和相应尺寸的固体制品的方法。又称为凝固成形或铸造。 铸件:液态金属凝固成形获得的制品称为铸件。 充填:机械过程,改变材料的几何形状。 凝固:冷却过程,即热过程,改变材料性能。 工艺形态学角度描述如下:液态材料在场的作用下产生的质量力,为其有效的运动提供了能量,作为传递介质的铸 型,则为材料提供了形状信息,而材料的性能信息来自材料自身状态的转变特性和介质传热特性。 热量传递方式:传导、对流、辐射。微观上:金属原子由“近程有序”过渡到“远程有序”或“远程无序” ,得到 晶体或非晶体。宏观上:液态金属热量传递给环境,使之形成一定形状和性能的固体(铸件) 。 液态成形中的基本问题:① 凝固组织的形成与控制。② 传热分析和控制。③ 铸造缺陷的防止与控制。 凝固技术的发展:① 定向凝固技术② 快速凝固技术③ 复合材料制备技术。 第二章

材料成形复习试题及答案解析

材料成形复习试题及答案解析

材料成形部分复习题一、液态成形部分(一)填空1、形状复杂、体积也较大的毛坯常用砂型铸造方法。

2、铸造时由于充型能力不足,易产生的铸造缺陷是浇不足和冷隔。

3、液态合金的本身流动能力,称为流动性。

4、合金的流动性越好,则充型能力好。

5、铸造合金的流动性与成分有关,共晶成分合金的流动性好。

6.合金的结晶范围愈小,其流动性愈好7、同种合金,结晶温度范围宽的金属,其流动性差。

8、为防止由于铸造合金充型能力不良而造成冷隔或浇不足等缺陷,生产中采用最方便而有效的方法是提高浇注温度。

9、金属的浇注温度越高,流动性越好,收缩越大。

10、合金的收缩分为液态收缩、凝固收缩和固态收缩三个阶段。

11、合金的液态、凝固收缩是形成铸件缩孔和缩松的基本原因。

13、同种合金,凝固温度范围越大,铸件产生缩松的倾向大。

14、同种合金,凝固温度范围越大,铸件产生缩孔的倾向小。

15、顺序凝固、冒口补缩,增大了铸件应力的倾向。

16、为防止铸件产生缩孔,便于按放冒口,铸件应采用顺序凝固原则。

17、控制铸件凝固的原则有二个,即顺序原则和同时原则。

18、按铸造应力产生的原因不同,应力可分为热应力和机械应力。

19、铸件厚壁处产生热应力是拉应力。

铸件薄壁处产生热应力是压应力。

20、铸件内部的压应力易使铸件产生伸长变形。

21、铸件内部的拉应力易使铸件产生缩短变形。

23、为防止铸件产生热应力,铸件应采用同时凝固原则。

24、防止铸件变形的措施除设计时使壁厚均匀外,工艺上应采取反变形法。

25、为防止铸件热裂,应控铸钢、铸铁中含 S 量。

26、为防止铸件冷裂,应控铸钢、铸铁中含 P 量。

27、灰铸铁的石墨形态是片状。

28、常见的铸造合金中,普通灰铸铁的收缩较小。

29、可锻铸铁的石墨形态是团絮状。

30、球墨铸铁的石墨形态是球形。

31、常见的铸造合金中,铸钢的收缩较大。

32、手工砂型铸造适用于小批量铸件的生产。

33、形状复杂、体积也较大的毛坯常用砂型铸造方法。

(二)选择1、形状复杂,尤其是内腔特别复杂的毛坯最适合的生产方式是( B )。

(吴国华)《材料加工原理》复习题

(吴国华)《材料加工原理》复习题

材料加工原理(液态成型部分)复习题:名词解释:1、自发形核在不借助任何外来界面的均匀熔体中形核的过程。

2、非自发形核在不均匀熔体中,依靠外来杂质界面或各种衬底形核的过程。

3、气孔为梨形、圆形、椭圆形的孔洞,表面较光滑,一般不在铸件表面露出,大孔独立存在,小孔则成群出现。

4、非金属夹杂物在炼钢过程中,少量炉渣、耐火材料及冶炼中反应产物可能进入钢液,形成非金属夹杂物。

5、残余应力产生应力原因消除后,铸件中仍然存在的应力。

6、充型能力液态金属充满铸型型腔,获得尺寸精确、轮廓清晰的成型件的能力。

7、缩孔指铸件在冷凝过程中收缩而产生的孔洞,形状不规则,孔壁粗糙。

8、缩松铸件断面上出现的分散而细小的缩孔。

9、铸造应力铸件在发生体积膨胀或收缩时,往往受到外界的约束或铸件各部分之间的相互制约而不能自由地进行,于是在变形的同时产生应力10、单相合金凝固过程中只析出一个固相的合金 (固溶体,金属间化合物,纯金属)11、多相合金凝固过程中同时析出两个以上新相的合金(共晶、包晶、偏晶转变的合金)12、溶质再分配合金在凝固时,随着温度不同,液固相成分发生改变,且由于固相成分与液相原始成分不同,排出溶质在液-固界面前沿富集,并形成浓度梯度,从而造成溶质在液、固两相重新分布,这种现象称之为“溶质再分配”现象。

13、平衡凝固在接近平衡凝固温度的低过冷度下进行的凝固过程。

14、溶质分配系数一定温度下,处于平衡状态时,组分在固定相中的浓度和在流动相中的浓度之比15、动力学过冷度物体实际结晶温度与理论结晶温度的差。

液态成型理论基础:1、纯金属和实际合金的液态结构有何不同?举例说明。

答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。

原子集团的空穴或裂纹内分布着排列无规则的游离原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。

实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏、成分起伏。

液态成形原理名词解释及简答题

液态成形原理名词解释及简答题

一、名词解释。

过冷度:金属的理论结晶温度和实际结晶温度的差值均质形核:在没有任何外来的均匀熔体中的形核过程异质形核:在不均匀的熔体中依靠外来杂质或者型壁面提供的衬底进行形核的过程异质形核速率的大小和两方面有关,一方面是过冷度的大小,过冷度越大形核速率越快。

二是和界面有关界面和夹杂物的特性形态和数量来决定,如果夹杂物的基底和晶核润湿,那么形核速率大。

形核速率:在单位时间单位体积内生成固相核心的数目液态成型:将液态金属浇入铸型之,凝固后获得具有一定形状和性能的铸件或者铸锭的方法复合材料:有两种或者两种以上物理和化学性质不同的物质复合组成一种多相固体定向凝固:使金属或者合金在熔体中定向生长晶体的方法溶质再分配系数:凝固过程当中,固相侧溶质质量分数和液相侧溶质质量分数的比值流动性是确定条件下的充型能力,液态金属本身的流动能力叫做流动性液态金属的充型能力是指液态金属充满铸型型腔获得完整轮廓清晰的铸件能力影响充型能力的因素:(1)金属本身的因素包括金属的密度、金属的比热容、金属的结晶潜热、金属的粘度、金属的表面张力、金属的热导率金属的结晶特点。

(2)铸型方面的因素包括铸型的蓄热系数、铸型的温度、铸型的密度、铸型的比热容、铸型的涂料层、铸型的透气性和发气性、铸件的折算厚度(3)浇注方面的因素包括液态金属的浇注温度、液态金属的静压头、浇注系统中的压头总损失和影响液态金属凝固过程的因素:主要因素是化学成分冷却速度是影响凝固过程的主要工艺因素液态合金的结构和性质以及冶金处理(孕育处理、变质处理、微合金化)等对液态金属的凝固也有重要影响液态金属凝固过程当中的液体流动主要包括自然对流和强迫对流,自然对流是由于密度差和凝固收缩引起的流动,由密度差引起的对流成为浮力流。

凝固过程中由传热。

传质和溶质再分配引起液态合金密度的不均匀,密度小的液相上浮,密度大的下沉,称为双扩散对流,凝固以及收缩引起的对流主要主要产生在枝晶之间,强迫对流是由液体受到各种方式的驱动力产生的对流,例如压力头。

北京科技大学液态成型考试试卷

北京科技大学液态成型考试试卷
6
7
8
四、名词解释(10分,每题2分)
1、表面张力 2、液态金属的充型能力 3、过热度 4、铸件模数 5、内冷铁
五、简答题(30分,每题5分)
1、简述结晶温度范围很窄的合金的停止流动的机理。 2、影响异质形核的因素都有哪些?
3、试述热过冷与成分过冷的联系与区别。
4、简述铸件中铁豆缺陷是如何形成的。 5、试述减少和排除铸件中夹杂物的措施。
10
二、选择题,将正确的答案写在横线上(10分,每题1分)
1、界面前沿没有成分过冷时,界面倾向于以平面方式生长。是 。 (a)正确的;(b)错误的 2、铸钢的铸造工艺性比铸铁差,其主要原因是:铸钢的浇注温度和收缩率 分别是______。 (a)高、小;(b)低、小;(c)低、大;(d)高、大 3、正常偏析与析出性气孔产生的根本原因是凝固过程中的溶质再分配。是 。(a)正确的;(b)错误的 4、内浇口与横浇道的合理连接形式( )。
1
• • • • • • • • • • •
二、判断题(10分,共10题,每题1分) 1、凝固区域的宽度是由铸件断面的温度梯度决定的。 2、界面前沿没有成分过冷时,界面倾向于以平面方式生长。 3、常规铸造工艺过程的冷却速度一般在104℃/s~109℃/s之 间。 4、水平区熔法是一种快速凝固方法。 5、铸件中的非金属夹杂物主要是二次氧化夹杂物。 6、实型铸造工艺中的铸型无分型面。 7、球墨铸铁的强度和塑性比灰铸铁高,铸造性能比灰铸铁 好。 8、顶注式浇注系统的优点之一是金属液流动平稳、不易氧 化、无激溅。 9、铸件中的气孔是一种特殊的夹杂。 10、冷裂的形成机理有液膜理论与强度理论。
三、推导题(10分,每题5分)
1、试推导平衡结晶时的溶质再分配公式
k0C0 C 1 (1 k0 ) f S

液态成形理论及工艺_复习题及解答

液态成形理论及工艺_复习题及解答

液态成形理论及工艺复习题及解答一、选择题1、下述描述影响异质形核速率的因素中错误的是( B )。

A接触角θ越小,形核速率越大 B 接触角θ越大,形核速率越大C 形核基底数量多,形核速率越大D 过冷度越大,形核速率越大2、在常见的凝固条件下,单相合金的凝固过程是以( C )生长方式进行的。

A平面状 B 胞状 C 枝晶状 D 上述所有3、在下述共晶组织形态中,属于不规则共晶组织的是( D )。

A层片状 B 棒状 C 球状 D 针状4、下述关于影响液态金属充型能力的描述中,错误的是( D )。

A合金的结晶温度范围越宽,充型能力越差B 铸型的蓄热系数越大,充型能力下降C 浇注温度越高,充型能力越好D 充型压头越大,充型能力下降5、下述所谓防止铸造变形的措施中,错误的是( C )。

A铸型上放置压铁 B 在铸造模样上设置预变形量C 过早打箱D 设置防变形筋6、不能减小铸造应力的措施是( C )。

A预热铸型 B 铸件厚大部位放置冷铁C 选择弹性模量大和收缩系数小的合金D 合理控制打箱时间7、下述防止析出性气孔的措施中,错误的是( D )。

A采用真空熔炼 B 浮游去气C 提高金属凝固时的外压D 减小铸件冷却速度8、高压造型法的目的就在于制出均匀的高紧实度铸型。

在下述各种压实方法中,紧实度最高、最均匀的是( D )。

A上压法 B 下压法 C 上压、下压两次进行 D 两面压实法9、金属铜、铁、铝、镁的氧化物中,不能起致密保护作用的是( D )。

A铜 B 铁 C 铝 D 镁10、型砂最适宜水分含量的确定依据是( B )。

A湿压强度峰值 B 透气性峰值 C 紧实度 D 过筛性11、在下述铸造方法中,无需分型面的是( D )。

A砂型铸造 B 压力铸造 C 低压铸造 D 熔模铸造12、在下述铸造方法中,生成率最高的是( B )。

A砂型铸造 B 压力铸造 C 低压铸造 D 熔模铸造13、压力铸造生产条件下,铸件最容易产生的铸造缺陷是( B )。

液态成型试题

液态成型试题

第一章、金属的液态成型试题一、选择题1、铸件易产生冷隔与浇不足等缺陷,主要原因是合金的()。

A、收缩性大B、流动性不好C、力学性能不高D、氧化性太强2、不同铸造合金的缩孔和缩松倾向不同,下列几类合金中,缩孔倾向小,缩松倾向大的是()。

A、纯金属B、共晶合金C、逐层凝固的合金D、糊状凝固的合金3、能有效防止缩孔和宏观缩松的凝固原则为()。

A、定向凝固B、同时凝固C、糊状凝固D、中间凝固4、确定不同铸造合金所能铸出的“最小壁厚”大小,所依据的性能是()A、铸造合金的收缩性B、铸造合金的流动性C、铸造合金的吸气性D、铸造合金的氧化性5、大口径铸铁污水管生产,常采用的铸造方法是()。

A、熔模铸造B、离心铸造C、金属型铸造D、压力铸造6、象汽轮机叶片这类形状复杂、难以采用切削加工成形的零件,常采用的铸造方法为()。

A、金属型铸造B、离心铸造C、熔模铸造D、砂型铸造7、为有效减少铸件产生铸造内应力,防止变形与裂纹,常采用的凝固原则为()A、定向凝固B、同时凝固C、逐层凝固D、中间凝固8、铸件进行人工时效的主要目的是()。

A、细化晶粒B、消除内应力C、防止冷隔D、防止缩松9、下列铸造合金中,流动性最好的是()A、铜合金B、铝合金C、铸钢D、灰铸铁二、填空题1、液态金属结晶过程遵循和这个基本规律进行的。

2、铸造合金的收缩经历、和固态收缩三个阶段。

3、影响铸铁石墨化的主要因素是和。

4、灰铸铁的显微组织是由和组成的。

5、铸件凝固的方式有、和中间凝固三种。

6、为绘制铸造工艺图,在铸造工艺方案初步确定后,还必须选定铸件的机械加工余量、、、型芯头尺寸等工艺参数。

5、铸件凝固的方式有、和中间凝固三种。

6、为绘制铸造工艺图,在铸造工艺方案初步确定后,还必须选定铸件的机械加工余量、、、型芯头尺寸等工艺参数。

五、简答题1、什么是铸造生产方法?它有哪些主要优点?2、铸件的凝固方式有哪些?凝固方式受哪些因素影响?3、什么是液态合金的充型能力?它与合金的流动性有何关系?影响合金流动性的因素有哪些?如何提高合金流动性?4、试分析铸件产生缩孔、缩松、变形和裂纹的原因及防止方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业11、哪些现象说明金属的熔化并不是原子间结合力的全部破坏?以下现象说明金属的熔化并不是原子间结合力的全部破坏:(1)物质熔化时体积变化、熵变(及焓变)一般均不大。

[注意:简答题此部分可略:如金属熔化时典型的体积变化△Vm/V(多为增大)为3~5%左右,表明液体原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

](2)金属熔化潜热比其汽化潜热小得多(1/15~1/30),表明熔化时其内部原子结合键只有部分被破坏。

2、实际液态金属的结构是怎样的?实际液态金属和合金由大量时聚时散、此起彼伏游动着的原子集团、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构十分复杂。

1.过冷度对液固态转变单位体积自由能变化的作用,对均质形核临界形核半径、临界形核功、形核速率有何影响;PPT20之前2.试推导均质形核临界晶核半径;PPT16 173.试推导液固相转变单位体积自由能变化:PPT124.影响异质形核的因素:形核温度T:合金成分一定,过冷度大于某一值时,T↓,形核速率υ↑。

形核时间:满足形核条件时,形核时间↑,形成晶核的数量n↑。

形核基底的数量:其他条件一定时,形核基底数量↑,形成晶核的数量n↑接触角θ:接触角θ↓,形核速率υ↑。

形核基底的形状:形核基底界面为凹面时,临界晶核体积最小,形核功也最小,最易形核。

5.促进形核、抑制形核的措施及其应用举例促进形核:增大冷却速率;T;晶粒细化剂,异质形核;机械、超声振动,电磁搅拌,枝晶破碎。

抑制形核:快冷,非晶;去除固相质点;悬浮熔炼或熔融玻璃隔离,避免坩埚表面成为异质形核的基体。

6.粗糙界面与光滑界面的生长方式粗糙界面(金属):连续长大光滑界面(非金属、亚金属):侧面长大(二维晶核台阶、晶体缺陷台阶)连续生长:粗糙面的界面结构,有许多位置可供原子着落,液相扩散来的原子很容易被接纳并与晶体连接起来,且在生长过程中仍可维持粗糙界面结构。

只要原子供应不成问题,就可以不断地进行“连续生长”。

侧面生长:光滑面的界面结构,单个原子与晶面的结合较弱,容易跑走,因此,只有依靠在界面上出现台阶,然后从液相扩散来的原子沉积在台阶边缘,依靠台阶向侧面生长,故称为“侧面生长”。

作业2(少很多看PPT)3、随着凝固速度的增加,定向凝固组织的变化规律极低速凝固→平面状;凝固速率增大→平界面失稳而形成胞晶;当生长速率达到一定值时→胞晶向枝晶转变;进一步增大生长速率→枝晶生长转变为更细的胞晶;在极高速下生长→平面凝固的界面4、二次枝晶臂的间距与局部凝固时间的关系λ2=A2t f 13t f:局部凝固时间;当合金成分一定时,A2为常数t f=∆ToG T R△To:合金凝固温度间隔一次枝晶:λ1=A1G T-1/2R-1/4λ1:一次枝晶间距;A1:常数;G T:温度梯度;R:凝固速度5、什么叫溶质分配因数,平衡、近平衡、非平衡溶质分配因素的凝固条件有何特点溶质分配因数k:凝固过程固相溶质质量分数CS与液相溶质质量分数CL之比。

k =CS/CL 平衡凝固:极缓慢结晶条件下,充分进行固液界面附近的溶质迁移、固液相内部的溶质扩散。

平衡凝固:在凝固的每个阶段,固、液两相中的成分均能及时、充分扩散均匀,液、固相溶质成分完全达到平衡状态图对应温度的平衡成分。

近平衡凝固:凝固速率稍快时,固液界面附近的溶质迁移达到平衡;固液相内部的溶质扩散不能充分进行。

非平衡凝固:凝固速率进一步加快,固液相内部的溶质扩散不能充分进行;固液界面附近的溶质迁移偏离平衡。

作业33、名词解释:能量起伏、结构起伏、浓度起伏、粘度、运动粘度、雷诺数、层流、紊流、表面张力和表面能。

1.能量起伏:液态金属中的原子热运动强烈,原子所具有的能量各不相同,且瞬息万变,这种原子间能量的不均匀性,称为能量起伏2.结构起伏: 由于液态原子处于能量起伏之中,原子团是时聚时散,时大时小,此起彼伏的,称为结构起伏3.浓度起伏: 对于多元素液态金属而言,同一种元素在不同原子团中的分布量不同,也随着原子的热运动瞬息万变,这种现象称为成分起伏4.粘度: 流体在层流流动状态下,流体中的所有液层按平行方向运动。

在层界面上的质点相对另一层界面上的质点作相对运动时,会产生摩擦阻力。

当相距1cm的两个平行液层间产生1cm/s的相对速度时,在界面1cm2面积上产生的摩擦力,称为粘滞系数或粘度5.运动粘度:液体在重力作用下流动时内摩擦力的量度,数值等于γ=η/ρ。

6.表面张力:产生新的单位面积表面时系统自由能的增量。

与表面能大小、单位一致,从不同角度描述同一现象。

7.表面能:表面自由能(简称表面能)为产生新的单位面积表面时系统自由能的增量。

8.雷诺数: 流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。

用符号Re 表示。

Re是一个无因次量。

9.层流:流体流动时,如果流体质点的轨迹(一般说随初始空间坐标x、y、z和时间t而变)是有规则的光滑曲线(最简单的情形是直线),这种流动叫层流。

10.紊流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋。

4.提高浇注温度会带来什么负作用?(看PPT找)1.纯金属、共晶合金、固溶体合金液态金属充型的停止流动机理;纯金属、共晶成分合金和结晶温度范围很窄的合金停止流动机理I区——在金属的过热量未散失尽以前为纯液态流动,II区——先形成凝固壳,又被完全熔化,而后的金属液是在被加热了的管道中流动,冷却强度下降;III区——未被完全熔化而保留下来的一部分固相区,在该区的终点金属液耗尽了过热热量。

IV区——液相和固相具有相同的温度——结晶温度。

由于在该区的起点处结晶开始较早,断面上结晶完毕也较早,往往在它附近发生堵塞。

宽结晶温度范围合金的停止流动机理纯液态流动->形核,晶粒数量增多,金属液粘度增加->结成连续网络->发生堵塞停止流动2.影响液态金属充型能力的因素;影响因素通过两个途径发生作用:影响金属与铸型之间热交换条件→改变金属液的流动时间;影响金属液在铸型中的水力学条件→改变金属液的流速。

四类因素:金属性质、铸型性质、浇铸条件和铸件结构第一类——金属性质方面①金属的密度②金属的比热容③金属的导热系数④金属的结晶潜热⑤金属的粘度⑥金属的表面张力⑦金属的结晶特点第二类——铸型性质方面①铸型的蓄热系数②铸型的密度ρ2③铸型的比热容c④铸型的导热系数λ2⑤铸型的温度;⑥铸型的涂料层;⑦铸型的发气性和透气性。

第三类——浇注条件方面①液态金属的浇注温度②液态金属的静压头③浇注系统中压头损失总和Σh浇;④外力场。

第四类——铸件结构方面①铸件的折算厚度R②由铸件结构所规定的型腔的复杂程度引起的压头损失。

提高充型能力的措施有:金属性质方面,合理选择合金成分以提高其流动性,如在可能的情况下,可优先选择纯金属、共晶成分和金属间化合物。

铸型性质方面,可降低铸型的蓄热系数或提高铸型的温度。

浇铸条件方面,提高浇注温度和充型压头,简化浇注系统结构。

铸件结构方面,依据折算厚度大、结构简单铸件的充型能力高的特点,合理设计铸件结构。

3.流动性与充型能力的联系和区别;影响流动性的因素。

区别:1)概念不同。

合金的流动性指液态合金本身的流动能力,是合金本身的铸造性能之一。

合金的充型能力是指液态合金充满型腔,形成轮廓清晰,形状完整的铸件的能力。

2)影响因素不同。

合金流动性与金属的成分、温度、杂质含量及其物理性质有关。

充型能力金属性质、铸型性质、浇铸条件和铸件结构这四类因素的影响。

联系:1) 合金的流动性愈好,合金的充型能力愈强。

2) 通常在相同的条件下,浇注各种合金的流动性试样,以试样的长度表示该合金的流动性,并以所测得的合金流动性表示合金的充型能力。

因此可认为,合金的流动性是在确定条件下的充型能力。

作业4(没有对应的PPT)1.温度场的三个要素:时间、位置、温度在X、Y、Z直角坐标系中,连续介质各个地点在同一时刻t的温度分布叫做温度场。

铸件温度场的作用:预计断面上各时刻的凝固区域大小及变化、凝固前沿向中心推进的速度缩孔、缩松的位置、凝固时间2.由不同位置点的冷却曲线可以获得温度场,再加上何条件,可以获得凝固的动态曲线全部液态合金几乎同时从浇注温度很快降至凝固温度;接近铸件表面的合金释放结晶潜热->平台区(保持在凝固温度上);拐点—该等温面上拐点—该等温面上。

故可以由不同位置点的冷却曲线可以获得温度场。

把液相线和固相线与温度—时间曲线相交的各点分别标在坐标系中,再将各点连接起来,即得凝固的动态曲线。

3.影响铸件温度的因素,这四大方面因素也应用什么方面的分析上金属性质的影响1) 金属的热扩散率a ;2) 结晶潜热3) 金属的凝固温度铸型性质的影响1)铸型蓄热系数b2 ;2) 铸型预热温度T型浇注条件的影响1)金属过热量远远小于结晶潜热;2)增加过热度,相当于提高铸型温度,从而减小铸件温度梯度;3)浇注温度影响不很明显。

铸件结构的影响1) 铸件壁厚2) 铸件形状这四大方面因素也应用在对充型能力的影响分析上。

作业51.凝固区域可分为哪两个区,之间边界是什么,还有其它何边界,各有什么特点?(找具体答案)固—液区、液—固区;倾出边界;补缩边界2.何为平方根定律,有何物理意义?用折算厚度代替凝固厚度,有何实际意义?平方根定律:(t时间内铸件凝固厚度)ξ=k√t物理意义:反映铸件凝固厚度随时间的变化关系(抛物线形状)。

对时间求导,可得凝固速度V,折算厚度R=V/S,在较复杂的铸件中,其几何参数和凝固厚度很难确定,因此在实际问题中常用折算厚度代替凝固厚度。

3.凝固时间包括哪两部分?铸件的凝固时间:从液态金属充满铸型后至凝固完毕所需时间。

(t1+ t2)凝固过程大致分三个阶段:第一阶段:导出金属液过热热量所需的时间t1第二阶段:从液相线温度冷却至凝固完毕的时间t2第三阶段:凝固完毕冷却至开箱温度的时间t34.比较同样体积大小的球状、块状、板状、杆状铸件凝固时间的长短。

球状>块状>板状>杆状。

体积相同条件下,球状铸件散热面积最小,折算厚度最大,因此,其凝固时间最长;板状铸件散热面积最大,折算厚度最小,因此,其凝固时间最短。

3、根据凝固区域的宽度不同,凝固方式如何分类?试述各凝固方式的概念、特点。

根据合金固液相区宽度,可将凝固过程分为三种方式:逐层凝固:合金结晶温度范围很小或断面温度梯度很大时,铸件断面的凝固区域很窄,固液体几乎由一条界线分开,随温度下降,固体层不断加厚,逐步到达铸件中心。

体积/糊状凝固:合金结晶温度范围很宽或断面温度梯度很小时,铸件断面的凝固区域很宽,在凝固的某一段时间内,凝固区域在某时刻贯穿整个铸件断面时,在凝固区域里既有已结晶的晶体也有未凝固的液体。

相关文档
最新文档