高二文科数学 竞赛
高中数学竞赛赛题精选(带答案)

高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。
以下是一些高中数学竞赛赛题的精选和解答。
1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。
解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。
由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。
2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。
解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。
sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。
3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。
给定P(n)+Q(n)=n,求最小的n。
解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。
当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。
4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。
解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。
5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。
高二文科数学竞赛试题及答案

高二文科数学竞赛试题2008.12.12一、选择题(50分) 1、不等式11112-≥-x x 的解集为( ) A .),1(+∞ B .),0[+∞ C .),1()1,0[+∞ D .),1(]0,1(+∞- 2、当x >1时,不等式a x x ≥-+11恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞﹞ C .[3,+∞﹞ D .(-∞,3]3、若直线10ax y +-=与直线4(3)40x a y +-+=平行,则实数a 的值等于( ) A .4 B .4或1- C .35D .32-4、下列命题在空间中正确的个数是( ) ○1三点确定一个平面; ○2一组对边平行且相等的四边形是平行四边形; ○3两组对边相等的四边形是平行四边形; ○4有三个直角的四边形是矩形. A .0 B .1 C .2 D .35、曲线422=+y x 与曲线))2,0[(sin 22cos 22πθθθ∈⎩⎨⎧+=+-=参数y x 关于直线l 对称,则直线l 的方程为( )A .02=+-y xB .0=-y xC .02=-+y xD .2-=x y6、椭圆192522=+y x 上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( ) A .2 B .4 C .6 D .237、若双曲线1922=-m y x 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为( )A .2B .14C .5D .258、已知A (1,0)-、B (1,0),以AB 为一腰作使∠DAB=90直角梯形ABCD ,且3A D B C =,CD 中点的纵坐标为1.若椭圆以A 、B 为焦点且经过点D ,则此椭圆的方程为( )A .22132x y +=B .22134x y +=C .22143x y +=D .22154x y +=9、设圆222(3)(5)x y r +++=上有且只有两个点到直线4320x y --=的距离等于1,则圆的半径r 的取值范围是( ) A .615r <<B .45r > C .4655r << D .1r > 10、设双曲线的左、右焦点为F 1,F 2,左、右顶点为M ,N ,若12PF F ∆的顶点P 在双曲线上,则12PF F ∆的内切圆在边F 1F 2上的切点是( )A .点M 或NB .线段MN 上的任意点C .线段F 1M 或NF 2上的任意点D .不能确定 二、填空题(25分)11、函数254()2x x f x x-+=-在(,2)-∞上的最小值是____________.12、函数f(x)=842222+-++-x x x x 的最小值是____________.13、已知动圆P 与定圆C :22)2(y x ++=1相外切,又与定值线L :1=x 相切,那么动圆 的圆心P 的轨迹方程是____________.14、如果双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且||4||21PF PF =,则此双曲线的离心率e 的最大值为____________. 15、右图是正方体的平面展开图.在这个正方体...中,①ED BM 与平行; ②CN 与BE 是异面直线;③CN 与BM 成︒60角; ④DM 与BN 垂直;以上四个命题中,正确命题的序号是____________. 三、解答题(75分)16、(12分)已知:R y x b a b a ∈=+,1,,且满足正数.求证:222)(by ax by ax +≥+. 17、(12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C . (1)求轨迹C 的方程;(2)设直线y =kx +1与C 交于A 、B 两点,k 为何值时?⊥此时||的值是多少?18、(12分)如图,在棱长为4的正方体AC 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1,AD 的中点,求异面直线OE 与FD 1所成的角的大小.19、(12分)有一张长为8,宽为4的矩形纸片ABCD ,按图示方法进行折叠,使每次折叠后点B 都落在AD 边上,此时将B 记为B '(注:图中EF 为折痕,点F 也可落在边CD 上);过B '作B T CD '//交EF 于T 点,求T 点的轨迹方程.A B ' DE20、(13分)设实数x ,y 满足不等式组{41912422≤+≤+-≥+y x x x y (1)求点(x ,y )所在的平面区域的面积;CE1A 1 EA FB CMN D(2)设a >-1,求函数f(x ,y)=y-ax 的最大值和最小值,并指出取最值时的x ,y 的值.21、(14分)已知:双曲线22221(0,0)x y a b a b-=>>的离心率e ,过点(0,)A b -和(,0)B a(1)求双曲线方程;(2)若直线(0,0)y kx m k m =+≠≠与双曲线交于不同的两点,C D ,且,C D 两点都在以A 为圆心的同一个圆上,求m 的取值范围.高二文科数学竞赛试题答案一、选择题:1-5、DDABA ; 6-10、B CCCA. 二、填空题:11、2 ;12、10 ;13、x y 82-= ;14、35;15、③④. 三、解答题: 16、略.17、(1)1422=+x y ;(2)1765421=±=k . 18、arccos515. 19、解:以边AB 的中点O 为原点,AB 边所在直线为y 轴建立平面直角坐标系,则B (02,-),(2分 )因为|||'|'BT B T B T AD =⊥,,根据抛物线的定义,T 点的轨迹是以点B 为焦点、AD 为准线的抛物线的一部分(6分)设T x y (),,||AB =4,即定点B 到定直线AD 的距离为4,∴抛物线方程为x y 28=-. (9分) 在折叠中,线段AB '长度|'|AB 在区间[]04,内变化,而x AB =', ∴≤≤04x ,故T 点的轨迹方程为x y x 2804=-≤≤()(12分 ) 另解:以BC 所在直线为x 轴,AB 所在直线为y 轴建立平面直角坐标系,则A (0,4),B (0,0)设T 点坐标为()x y ,,||()BE t t =≤≤24,则|'|||B E t AE t ==-,4, 从而B '的坐标为()2244t -,,∴直线B T '的方程为x t =-224, ①又EF 是BB '的垂直平分线,直线BB '斜率k t BB '=-224,线段BB '的中点为()242t -,(6分)于是直线EF的方程y t x t -=----224224(),②联立①、②消去t 得:x y 282=--(),(9分)244≤≤∴0≤≤t x ,,故T 点的轨迹方程为x y x 28204=--≤≤()()(12分).20、(1)12;(2){21,122,13min max ),(;73),(≤<--->+-=+=a a a a y x f a y x f .21、解:(1)设c =:1x yAB a b-=. 整理得AB :bx -ay -ab =0与原点距离ab d c ===,又c e a ==,联立上式解得b =1,∴c =2,a =∴双曲线方程为2213x y -=.(2)设C (x 1,y 1),D (x 2,y 2)设CD 中点M (x 0,y 0),∴12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩,∴|AC|=|AD|,∴AM ⊥CD. 联立直线l 与双曲线的方程得22()13x kx m -+=,整理得(1-3k 2)x 2-6km x -3m 2-3=0,且22013()m k ∆>⇒+>*.∴12023213x x kmx k +==- , 12120()222y y k x x m y -++==, ∴202232(13)2(13)13k m m k my k k ⋅+-==--.∴223(,)1313km mM k k--,∴AM ⊥CD. ∴221113313AM mk k km k k +-==--,整理得2314k m -=, 则2413m k +=且k 2>0,,代入()*中得(4)0m m ->.∴1(,0)(4,)4m ∈-+∞.。
高中数学竞赛试题及答案

高中数学竞赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √4答案:B2. 已知函数f(x) = x^2 - 4x + 4,求f(2)的值。
A. 0B. 4C. -4D. 8答案:A3. 一个等差数列的前三项分别为1, 4, 7,求第四项的值。
A. 10B. 11C. 13D. 15答案:A4. 计算复数z = 1 + i的模。
A. √2B. 2C. 1D. √3答案:A二、填空题(每题5分,共20分)5. 已知等比数列的公比为2,首项为1,求第5项的值。
答案:326. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。
答案:-67. 计算函数y = x^3 - 6x^2 + 11x - 6在x = 2处的导数值。
答案:18. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标。
答案:(2, 3)三、解答题(每题10分,共60分)9. 求证:对于任意正整数n,n^2 + 3n + 2总是能被3整除。
证明:设n = 3k, 3k + 1, 3k + 2,其中k为整数。
当n = 3k时,n^2 + 3n + 2 = 9k^2 + 9k + 2 = 3(3k^2 + 3k + 1),能被3整除。
当n = 3k + 1时,n^2 + 3n + 2 = 9k^2 + 6k + 1 + 9k + 3 + 2 =3(3k^2 + 5k + 2),能被3整除。
当n = 3k + 2时,n^2 + 3n + 2 = 9k^2 + 12k + 4 + 9k + 6 + 2 = 3(3k^2 + 7k + 4),能被3整除。
因此,对于任意正整数n,n^2 + 3n + 2总是能被3整除。
10. 已知函数f(x) = x^3 - 3x^2 + 2x,求f(x)的单调区间。
解:首先求导数f'(x) = 3x^2 - 6x + 2。
高二数学竞赛试题及答案

高二数学竞赛试题及答案一、选择题(每题5分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 5 \),则\( f(-1) \)的值为多少?A. 12B. 10C. 8D. 62. 已知圆的半径为5,圆心在原点,求圆上一点到原点的距离最远是多少?A. 10B. 5C. 15D. 203. 一个等差数列的前三项分别为2,5,8,求这个数列的第20项是多少?A. 47B. 49C. 52D. 554. 一个直角三角形的两条直角边分别为3和4,求斜边的长度?A. 5B. 6C. 7D. 85. 已知\( \sin(\alpha) = \frac{3}{5} \),求\( \cos(\alpha) \)的值(假设\( \alpha \)在第一象限)?A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)6. 一个函数\( g(x) \)满足\( g(x) = x^2 + 2x + 3 \),求\( g(-1) \)的值?A. 1B. 3C. 5D. 7二、填空题(每题5分,共20分)7. 已知\( a \)和\( b \)是方程\( x^2 + 5x + 6 = 0 \)的根,求\( a + b \)的值。
______(答案:-5)8. 一个数列的前五项为1, 1, 2, 3, 5,这个数列是斐波那契数列,求第10项的值。
______(答案:55)9. 已知三角形的三边长分别为3, 4, 5,求这个三角形的面积。
______(答案:6)10. 已知\( \tan(\beta) = 2 \),求\( \sin(\beta) \)的值。
______(答案:\( \frac{2\sqrt{5}}{5} \))三、解答题(每题25分,共50分)11. 证明:对于任意实数\( x \),不等式\( e^x \ge x + 1 \)恒成立。
高中数学竞赛试题及解题答案

高中数学竞赛试题及解题答案在高中数学竞赛中,试题是考察学生数学思维和解决问题的能力的重要手段。
下面将为大家提供一部分高中数学竞赛试题及解题答案,希望能够帮助大家更好地理解和应用数学知识。
一、整数与多项式试题1:已知多项式P(x)满足P(x)=x^3-5x^2+ax+b,其中a、b均为整数。
若多项式P(x)除以(x-1)得到余数4,则多项式P(x)除以(x+2)的余数为多少?解题思路:我们知道,多项式f(x)除以x-a的余数等于把a带入f(x)中所得到的值。
那么,题目中给出了P(x)除以(x-1)的余数为4,即P(1)=4,我们可以将1代入P(x)中,得到一个方程。
同理,题目要求求解P(x)除以(x+2)的余数,即P(-2)=?根据题意,我们有以下方程:P(1) = 4,即1^3 - 5(1^2) + a(1) + b = 4P(-2) = ?,即(-2)^3 - 5((-2)^2) + a(-2) + b = ?解题步骤:1. 代入P(1)的方程求解:1 - 5 + a + b = 4化简得 a + b = 82. 代入P(-2)的方程求解:-8 - 20 - 2a + b = ?化简得 -2a + b = ?将两个方程合并求解可得:-2a + b = a + b - 16当两边消去b时,可得:-2a = a - 16a = -8将a代入第一个方程a + b = 8,可得:-8 + b = 8b = 16因此,通过计算可得多项式P(x)除以(x+2)的余数为-16。
试题2:已知整数序列a1, a2, a3, ...,其中a1 = 1,a2 = 2,an = an-1 + an-2(n ≥ 3)。
求证:对于任意正整数n,任务子序列a1, a2, ..., an中必定存在一个数可以被11整除。
解题思路:根据题意,我们需要证明对于任意正整数n,序列a1, a2, ..., an中必定存在一个数可以被11整除。
竞赛数学高中试题及答案

竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。
解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。
解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。
解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。
试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。
解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。
丽水高二数学竞赛试题及答案
丽水高二数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数不是无理数?A. πB. √2C. 0.1010010001...D. 22/72. 函数f(x) = 2x^2 - 3x + 1的顶点坐标是?A. (3/4, -1/8)B. (-3/4, 1/8)C. (3/2, -1/4)D. (-3/2, 1/4)3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}4. 已知等差数列的首项a1=2,公差d=3,第10项a10的值是多少?A. 29B. 32C. 35D. 425. 直线y = 2x - 4与x轴的交点坐标是?A. (2, 0)B. (-2, 0)C. (4, 0)D. (0, -4)二、填空题(每题4分,共20分)6. 圆的半径为5,圆心到直线x + 2y - 3 = 0的距离是_________。
7. 已知函数g(x) = x^3 - 3x^2 + 2,求g'(x) = ________。
8. 已知等比数列的首项a1=8,公比q=2,求第5项a5的值是_________。
9. 抛物线y^2 = 4x的焦点坐标是_________。
10. 已知正弦函数y = sin(x),求其在x=π/4处的导数值是_________。
三、解答题(每题10分,共65分)11. 证明:对于任意正整数n,n^5 - n 能被30整除。
12. 已知椭圆的方程为x^2/9 + y^2/4 = 1,求椭圆的长轴和短轴长度。
13. 解不等式:|2x - 1| + |x + 2| ≥ 5。
14. 已知函数f(x) = 3x^3 - 2x^2 - 5x + 6,求其极值点。
15. 已知向量a = (2, -1),b = (-1, 3),求向量a在向量b上的投影。
四、附加题(10分)16. 一个圆内接正六边形的边长为a,求圆的半径。
高中数学竞赛试题
高中数学竞赛试题一、选择题(每题5分,共50分)1. 若一个等差数列的首项为3,公差为4,那么它的第10项是多少?A. 37B. 41C. 43D. 472. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f(x)的极值点。
A. x = 1B. x = 2C. x = 3D. x = 43. 一个圆的半径是5cm,求圆的面积(π取3.14)。
A. 78.5平方厘米B. 154平方厘米C. 78.5平方厘米D. 157平方厘米4. 若a, b, c是等比数列,且a + b + c = 0,那么b^2是多少?A. acB. -acC. a^2D. -a^25. 在直角坐标系中,点A(2,3)和点B(-2,-1)之间的距离是多少?A. 2√13B. √13C. 2√5D. √376. 已知一个等边三角形的边长为4cm,那么它的高是多少?A. 2√3 cmB. 4√3 cmC. √3 cmD. 2 cm7. 一个圆的周长是20π cm,那么它的直径是多少?A. 10 cmB. 20 cmC. 30 cmD. 40 cm8. 已知一个二次函数y = ax^2 + bx + c在点x = 2时取得最小值,且a > 0,那么a + b + c等于多少?A. -2B. 0C. 2D. 49. 若一个圆的面积是100π平方厘米,那么这个圆的半径是多少?A. 10 cmB. 5 cmC. 20 cmD. 50 cm10. 一个等差数列的前5项和为35,公差为3,求这个数列的首项。
A. 4B. 5C. 6D. 7二、填空题(每题5分,共50分)11. 若一个等差数列的前3项和为9,公差为2,那么它的首项是_______。
12. 已知函数g(x) = |x - 3| + |x - 5|,求g(x)的最小值是_______。
13. 在直角坐标系中,直线y = 2x + 5与x轴的交点的x坐标是_______。
2023全国高中数学联合竞赛加试卷及参考答案
2023年全国高中数学联合竞赛加试卷习题及参考答案一.(本题满分40分)如图,ABC 的外心为O ,在边AB 上取一点D ,延长OD 至点E ,使得,,,A O B E 四点共圆.若2,3,4,5OD AD BD CD ,证明:ABE 与CDE 的周长相等.证明:由,,,A O B E 共圆得AD BD OD DE ,又2,3,4OD AD BD ,所以6DE . ……………10分由OA OB 得OAD OEA ,故OAD OEA ∽,故OA OE AEOD OA AD. 所以22(26)16OA OD OE ,得4OA .进而26OEAE AD AD OA.同理可得OBD OEB ∽ ,28BE BD . ……………20分 由于22OC OA OD OE ,故OCD OEC ∽. ……………30分因此EC OC CD OD. 由2,8OD OE OD DE 知4OC ,又5CD ,故210EC CD . 计算得76821AB AE BE ,561021CD DE EC ,即ABE 与CDE 的周长相等. ……………40分二.(本题满分40分)设,m n 是给定的整数,3m n ≥≥.求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在m 个红色的数12,,,m x x x (允许相同),满足121m m x x x x -+++< ,或者存在n 个蓝色的数12,,,n y y y (允许相同),满足121n n y y y y -+++< .C E O A BD C EO A B D解:答案是1mn n -+.若k mn n =-,将1,2,,1n - 染为蓝色,,1,,n n mn n +- 染为红色.则对任意m 个红色的数12,,,m x x x ,有121(1)m m x x x n m x -+++≥-≥ ,对任意n 个蓝色的数12,,,n y y y ,有1211n n y y y n y -+++≥-≥ ,上述例子不满足要求.对k mn n <-,可在上述例子中删去大于k 的数,则得到不符合要求的例子.因此所求1k mn n ≥-+. ………………10分下面证明1k mn n =-+具有题述性质.假设可将1,2,,1mn n -+ 中的每个数染为红色或蓝色,使得结论不成立. 情形一:若1是红色的数,则红色的数均不超过1m -,否则可取一个红色的数m x m ≥,再取1211m x x x -==== ,则11m m x x x -++< ,与假设矛盾. ………………20分故,1,,1m m mn n +-+ 均为蓝色的数,此时取121,1n n y y y m y mn n -=====-+ ,有121(1)11n n y y y m n mn m mn n y -+++=-<-+≤-+= ,(*) 与假设矛盾. ………………30分情形二:若1是蓝色的数,则同情形一可知蓝色的数均不超过1n -,故,1,,1n n mn n +-+ 均是红色的数.此时取121,1m m x x x n x mn n -=====-+ ,与(*)类似,可得矛盾.故1k mn n =-+时结论成立.综上,所求最小的正整数1k mn n =-+. ………………40分三.(本题满分50分)是否存在2023个实数122023,,,(0,1]a a a ,使得20236120231110i j i j k ka a a证明你的结论.解:记20231202311i j i j k kS a a a. 假设存在122023,,,(0,1]a a a ,使得610S . 不妨设12202301a a a ,则将12023i j i j a a去掉绝对值后,k a 的系数为22024k ,从而202311(22024)k k kS k a a. ……………10分 当11011k 时,由基本不等式知 11(22024)(20242)220242k k kkk a k a k a a. ……………20分当10122023k 时,由于1()(22024)k f x k x x在(0,1]上单调增,故1(22024)(1)22025k k kk a f k a. 从而1011202311012220242(22025)k k S k k1011110101012202422k k k. ……………30分注意到202422(20242)2202444k k k k ,故61010101210114410S ,这意味者不存在122023,,,a a a 满足条件. ……………50分四.(本题满分50分)设正整数,,,a b c d 同时满足: (1) 2023a b c d +++= ; (2) ab ac ad bc bd cd +++++ 是2023的倍数; (3) abc bcd cda dab +++是2023的倍数. 证明:abcd 是2023的倍数. 证明:易知22023717=⨯. 首先,由(1),(3)知2()()()()() a b a c a d a a b c d abc bcd cda dab +++=+++++++是2023的倍数,故,,a b a c a d +++中至少有一个是 7的倍数. ……………10分由对称性,不妨设a b +是7的倍数,则) 2023( c d a b +=-+也是7的倍数,()()ac ad bc bd a b c d +++=++也是7的倍数,故结合(2)知ab cd +是7的倍数,因此22) (()()a c a a b c c d ab cd +=+++-+也是 7的倍数.又平方数除以 7的余数只能是0,1,2,4,因此22,a c 只能同时是 7的倍数, 这表明,,,a b c d 都是 7的倍数. ………………20分同上面分析可知:) ()()( a b a c a d +++是217的倍数,故或者其中有一个因子是217的倍数,或者其中有两个因子是 17的倍数.如果有一个因子是217的倍数,不妨设a b +是217的倍数,结合 ,a b 都是7的倍数知,a b +是 22023717=⨯的倍数,但这与2023a b c d +++=及,,,a b c d 是正整数相矛盾! ………………30分因此,,a b a c a d +++中至少有两个是17的倍数.不妨设,a b a c ++都是17的倍数,那么b d +也是17的倍数,由2()()(2)()ab ac ad bc bd cd a b d b d c a a b a a c a +++++=+++++++-知,22a 是17的倍数,故a 是17的倍数.因此,,,a b c d 都是17的倍数,这就说明了abcd 是44717⨯的倍数,也就是2023的倍数.………………50分。
高中数学竞赛赛题精选(带答案)
高中数学竞赛赛题精选一、选择题(共12题)1.定义在R 上的函数()y f x =的值域为[m,n ],则)1(-=x f y 的值域为( ) A .[m,n ]B .[m-1,n-1]C .[)1(),1(--n f m f ]D .无法确定解:当函数的图像左右平移时,不改变函数的值域.故应选A.2.设等差数列{n a }满足13853a a =,且n S a ,01>为其前n 项之和,则)(*∈N n S n 中最大的是( ) A. 10S B. 11S C. 20S D. 21S 解:设等差数列的公差为d,由题意知3(1a +7d)=5(1a +12d),即d=-3921a , ∴n a = 1a +( n-1)d= 1a -3921a (n-1)= 1a (3941-392n),欲使)(*∈N n S n 最大,只须n a ≥0,即n ≤20.故应选C.3.方程log 2x=3cosx 共有( )组解.A .1B .2C .3D .4解:画出函数y=log 2x 和y=3cosx 的图像,研究其交点情况可知共有3组解.应选C .4.已知关于x 的一元二次方程()02122=-+-+a x a x 的一个根比1大,另一个根比1小,则()A.11<<-a B.1-<a 或1>aC.12<<-aD.2-<a 或1>a解:令f(x)= ()2122-+-+a x a x ,其图像开口向上,由题意知f(1)<0,即 ()211122-+⨯-+a a <0,整理得022<-+a a ,解之得12<<-a ,应选C .5.已知βα,为锐角,,cos ,sin y x ==βα53)cos(-=β+α,则y 与x 的函数关系为( ) A .1)x 53( x 54x 153y 2<<+--= B .1)x (0 x 54x 153y 2<<+--=C .)53x (0 x 54x 153y 2<<---= D .1)x (0 x 54x 153y 2<<---= []xx y 54153sin )sin(cos )cos()(cos cos 2+-⋅-=⋅+++=-+==αβααβααβαβ解: 而)1,0(∈y 15415302<+-⋅-<∴x x , 得)1,53(∈x .故应选A. 6.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a-的最大值是( )A. πB. π2C.34πD. 35π解:如右图,要使函数sin y x =在定义域[],a b 上,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是74()663πππ--=.故应选C. 7.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为 ( )A .6B .12或512C .6或512D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B . 8.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是 ( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .9.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .10.设点O 在ABC 的内部,且有+2+3=,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .11.设三位数n=,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个 解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .12.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2.而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,S B 11OABCABPO H C而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则V P —AOB =16R 3sin cos =112R 3sin2,V B -PCO =124R 3sin2. PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3. ∴ 令y=sin23+cos2,y=2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33, ∴ OB=263,选D .二、填空题(共10题)13. 设n S 为等差数列{}n a 的前n 项和,若510S =,105S =-,则公差为 解:设等差数列{}n a 的首项为1a ,公差为d .由题设得⎩⎨⎧-=+=+,,545101010511d a d a 即 ⎩⎨⎧-=+=+,,1922211d a d a 解之得1-=d .14. 设()log ()a f x x b =+(0a >且1)a ≠的图象经过点(21),,它的反函数的图象经过点(28),,则b a +等于 4 .解:由题设知 log (2)1log (8)2a a b b +=⎧⎨+=⎩,, 化简得 2(2)(8).b a b a +=⎧⎨+=⎩,解之得 1131a b =⎧⎨=⎩,; 2224.a b =-⎧⎨=-⎩,(舍去). 故a b +等于4.15.已知函数()y f x =的图象如图,则满足22221()(lg(620))021x x f f x x x x --⋅-+≤-+的 x 的取值范围为 [21)x ∈-, .解: 因为 ()()22lg 620lg (3)11lg111x x x -+=-+≥>,所以()2lg 6200x x -+<. 于是,由图象可知,2111x x +≤-,即 201x x +≤-,解得 21x -≤<. 故x 的取值范围为 [21)x ∈-,.16.圆锥曲线0|3|102622=+--+-++y x y x y x 的离心率是 2 .解:原式变形为|3|)1()3(22+-=-++y x y x ,即=2|3|2+-y x .所以动点),(y x 到定点(31)-,的距离与它到直线03=+-y x 的距离之比为2.故此动点轨迹为双曲线,离心率为2.17.在ABC ∆中,已知3tan =B ,322sin =C ,63=AC ,则ABC ∆的面积为ABC S ∆=解:在ABC ∆中,由3tan =B 得︒=60B .由正弦定理得sin 8sin AC CAB B⋅==.因为︒>60322arcsin,所以角C 可取锐角或钝角,从而31cos ±=C .sin sin()sin cos cos sin A B C B C B C =+=+=sin 2ABC AC ABS A ∆⋅== 18. 设命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>. 命题P 与Q 中有 且仅有一个成立,则实数a 的取值范围是 021≤<-a 或 121<≤a . 解:由a a <2得10<<a .由0142>++ax x 对于任何x ∈R 成立,得04162<-=∆a ,即2121<<-a .因为命题P 、Q 有且仅有一个成立,故实数 a 的取值范围是 021≤<-a 或 121<≤a .19.22cos 75cos 15cos75cos15++⋅的值是 . 解:22cos 75cos 15cos75cos15++⋅ =cos²75°+sin²75°+sin15°·cos15° =1+°30sin 21=5420.定义在R 上的函数()f x 满足(1)2f =,且对任意的x R ∈,都有1()2f x '<,则不等式22log 3(log )2x f x +>的解集为 . 解:令g ﹙x ﹚=2f ﹙x ﹚-x ,由f '(x ) <1/2得,2f '(x ) -1<0,即'g ﹙x ﹚<0,g(x)在R 上为减函数,且g(1)=2f(1)-1=3,不等式f(log2X)>2log 2X化为2f(log2X)—log2X≥3,即g(log2X)>g(1),由g(x)的单调性得:log2X<1,解得,0<x<2. 21.圆O 的方程为221x y +=,(1,0)A ,在圆O 上取一个动点B ,设点P 满足()AP OB R λλ=∈且1AP AB ⋅=.则P 点的轨迹方程为 .解:设P(x,y), AB =λOB (λϵR)得B(k(x —1),ky),(λ=k1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2n S S -=+输出n 开始
10
n S ==,S p <?
是 输入p
结束
否
1
n n =+棉湖二中2013-2014学年高二数学(文)竞赛
(本卷共16小题,每小题5分,总分80分,用时45分钟)
班级 姓名 评分 1.复数
在复平面中所对应的点到原点的距离为( ) A .
B .1
C .
D .
2.已知集合}13|{},1|12||{>=<-=x x N x x M ,则N M ⋂=( ) A .φ
B .}0|{<x x
C .}10|{<<x x
D .}1|{<x x
3.已知△ABC 中,C=45°,则sin 2
A=sin 2
B 一2sinAsinB=( )
A .
14 B .22
C .12
D .34 4. 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a-c )·(b 一c )=0,
则|c|的最大值是( )
A . 1
B .
22
C .2
D .2
5. 执行如图的程序框图,若输出的5=n ,则输入整数p 的最小值...
是( ) A. 15 B. 14 C. 8 D. 7
6. 如图是某简单组合体的三视图,则该组合体的体积为( )
A. 363(2)π+
B.
108(32)π+
C. 1083π D . 363(2)π+
7.在平面直角坐标系中,不等式组0401x y x y x +≥⎧⎪
-+≥⎨⎪≤⎩
表示的平面区域面积是( )
A .9
B .6
C .
9
2
D .3 8.设P 为曲线C :2
23y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为
0,4π⎡⎤
⎢⎥⎣⎦
,则点P 横坐标的取值范围为( ) A .[]1,0- B .11,2
⎡⎤--⎢⎥⎣
⎦
C .[]0,1
D .1,12⎡⎤⎢⎥⎣⎦
9. 已知a >0,b >0,a ,b 的等差中项是12,且α=a +1a , β=b +1
b 则α+β的最小值是( )
A .3
B .4
C .5
D .6
10.已知函数()sin cos (0)f x x x ωωω=+>,如果存在实数x 1,使得对任意的实数x ,
都有11()()(2012)f x f x f x ≤≤+成立,则ω的最小值为( )
A .
1
2012
B .
4024π C .14024 D .2012
π
11.过双曲线22
221(0,0)x y a b a b
-=>>的右顶点A 作斜率为一1的直线,该直线与双曲线
的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的
离心率为( )
A .3
B .5
C .10
D .13
12.圆心为)1,1(且与直线4=+y x 相切的圆的方程是_______________
13.函数⎪⎩
⎪⎨⎧>+-≤-=1,341,
22)(2x x x x x x f 的图象与函数()()ln 1g x x =-的图象的公共点个数
是
14.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,向量
)2 , 2( n m a --=,)1 , 1( =b ,则 a 和 b 共线的概率为
15.若对于任意[1,1]a ∈-,函数2
()(4)42f x x a x a =+-+-的值恒大于零,则x 的取值范围是
16. 已知数列}{n a 的首项21=a ,且对任意的*∈N n 都有n
n
n a a a -+=
+111, 则=⋅⋅201321a a a
CCCDDDABCDC12.2)1()1(22=-+-y x ;13.2;14.
2
1
;15.2.16);,3()1,(+∞-∞。