720 数学分析考试大纲
720 数学分析考试大纲

2015年数学与计算机科学学院硕士研究生入学考试大纲(科目:代码 720 数学分析)一、考查目标数学分析课程考核的主要目的是测试考生对数学分析各项内容的掌握程度。
要求考生熟悉数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法, 具有一定的抽象思维能力、较强的逻辑推理能力和运算能力。
二、考试形式与试卷结构1、试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。
2、答题方式答题方式为闭卷、笔试。
3、试卷内容结构各部分内容所占分值为:极限和函数的连续性约40分微分学约40分积分学约40分级数约30分4、试卷题型结构主要题型:计算题,判断题,证明题等。
三、考查范围1、数列和(一元,多元)函数极限:极限的概念;极限存在的条件和存在的各种判定方法;求极限的各种方法.2、(一元,多元)函数连续:连续的概念,性质(局部性质和整体性质)及应用.3、一元函数微分学:求导的各种方法(包括高阶导数);一元函数的微分中值定理(Rolle定理,Lagrange中值定理,Cauchy中值定理,Taylor公式)及应用.4、一元函数积分学:不定积分的各种计算方法;定积分的各种计算方法;函数可积的条件;定积分的各种性质及应用;反常积分值的计算和反常积分收敛性判别的各种方法.5、多元函数微分学:函数可微的讨论;微分、偏导数和高阶偏导数的各种计算方法;多元函数的微分中值公式和泰勒公式;隐函数的存在性和可微性的讨论,隐函数导数或偏导数的计算;方向导数和梯度;几何应用和极值问题(包括条件极值问题).6、多元函数积分学:重积分计算的各种方法和重积分的性质(包括二、三重积分和简单的n重积分);第一型曲线(曲面)积分的各种计算方法;第二型曲线(曲面)积分的各种计算方法;第一型曲线(曲面)积分与第二型曲线(曲面)积分的关系;Green公式及应用;Gauss 定理和Stokes定理及应用.7、数项级数的各种收敛的判别法;数项级数的求和方法.8、函数列和函数项级数收敛和一致收敛的各种判别法;极限函数与和函数的解析性(连续、可微和可积性)的讨论;含参量积分(包括含参量正常积分和含参量反常积分)及其应用.9、幂级数和Fourier级数及其应用.10、实数的完备性定理及其应用.主要参考书:1、《数学分析》,华东师范大学数学系编,高等教育出版社。
[精品]数学分析考试纲要.doc
![[精品]数学分析考试纲要.doc](https://img.taocdn.com/s3/m/7b82bb3276a20029bd642de6.png)
数学分析考试纲要课程目的与教学基本要求数学分析是数学与应用数学、信息与计算科学专业的一门主干基础课和必修课,本课程的目的是为后继课程提供必要的知识,同时通过本课程的教学,锻炼和提高学生的思维能力,培养学生掌握分析问题和解决问题的思想方法。
本课程不仅对许多后继课程的学习有直接影响,而且对学生基本功的训练与良好素质的培养起着十分重要的作用。
本课程学习经典数学分析的基本知识,包括极限论、一元微积分学、级数论和多元微积分等基本内容,并用〃连续量的演算体系及其数学理论"的观点统率整个体系。
在教学上要求学生能掌握四个基本方面,即基本概念、基本理论、基本方法和基本技巧。
在教学基本要求上分为三个档次,即牢固掌握、一般掌握和一般了解。
牢固掌握一基本概念明确,能联系几何与物理的直观背景,并能从正反两方面进行理解(极限论、一元微积分学和级数论的概念按此要求);基本理论较扎实,具有较好的推理论证和分析问题的能力(极限论、一元微积分学和级数论的理论一般按此要求,但实数理论和定积分可积性理论除外);基本方法较熟练,具备较好的运算和解决应用问题的能力,并能较灵活地运用基本技巧(本课程的一般方法和技巧按此要求,但含参变量积分的方法和技巧除外)。
一般掌握一对基本概念一般只要求能从正面理解(广义积分和多元微积分学的概念按此要求);对基本理论一般要求能应用和了解如何证明(实数理论、定积分可积性理论和多元微积分学的理论按此要求);对基本方法一般要求能掌握运用,但不要求很熟练和技巧性(含参变量积分的方法按此要求)。
一般了解一对基本理论只要求能应用,不要求掌握证明方法(隐函数存在定理、重积分一般变量替换公式和富里埃级数收敛性理论按此要求);对基本方法一般要求会做,不要求灵活技巧(如果讲授本大纲中的选讲内容,则按此要求)。
课程考试内容一、《数学分析I*》课程内容(一)函数1.熟练掌握函数、反函数、复合函数、单调函数、有界函数、奇偶函数与周期函数等概念。
《数学分析》考试大纲

《数学分析》考试大纲1.实数集与函数(1)掌握集合的概念与运算,区间与邻域。
理解映射与一一对应概念。
了解几个重要不等式。
理解确界原理。
(2)掌握函数概念。
掌握复合函数方法。
了解反函数存在定理。
理解初等函数。
(3)掌握函数的几种特性(单调性、有界性、奇偶性、周期性等)2. 数列极限(1)理解数列极限概念。
(2)掌握收敛数列的性质。
理解数列极限存在的条件。
3. 函数极限(1)理解函数极限概念,掌握ε-δ论证方法。
(2)掌握函数极限的性质。
理解函数极限存在的条件。
(3)掌握两个重要极限的应用。
(4)掌握无穷小与无穷大概念。
4. 函数的连续性(1)理解函数的连续与间断概念。
(2)了解连续函数的性质。
了解复合函数与反函数的连续性。
理解闭区间上连续函数的性质。
(3)理解函数的一致连续性。
理解初等函数的连续性。
5. 导数和微分(1)掌握导数概念。
(2)掌握求导法则与导数计算。
(3)理解微分概念。
(4)理解高阶导数与高阶微分6. 微分中值定理及其应用(1)理解Rolle中值定理,Lagrange中值定理,Cauchy中值定理。
(2)掌握Taylor公式和L’Hospital法则。
(3)理解函数的凸性及其性质。
(4)掌握利用导数研究函数的性态及函数作图。
7. 实数的完备性(1)理解子列概念。
理解致密性定理,区间套定理,有限覆盖定理。
理解实数连续性定理的等价性。
(2)了解上、下极限概念。
8.不定积分(1)理解原函数与不定积分概念。
掌握基本积分公式和不定积分的运算法则。
(2)掌握换元积分法与分部积分法。
(3)掌握有理函数的不定积分,三角函数的不定积分和某些无理函数的不定积分。
9. 定积分(1)理解定积分概念。
掌握Newton-Leibniz公式。
(2)了解Darboux上、下和与Darboux上、下积分。
理解可积充要条件和可积函数类。
(3)理解定积分性质。
掌握变限积分及其性质。
理解积分中值定理。
10. 定积分的应用(1)理解微元法的基本思想。
硕士研究生入学考试《数学分析》考试大纲

《数学分析》考试大纲Ⅰ考试形式和试卷结构一、试卷满分及考试时间本试卷满分为150分,考试时间为3小时。
二、答题方式答题方式为闭卷、笔试。
三、试卷题型结构1、填空题40 分2、计算题40 分3、证明题70分II 考试范围第一章实数集与函数1.运用实数的有序性、稠密性及封闭性论证有关问题,邻域概念的理解及应用;2.实数绝对值的有关性质及几个常见不等式的应用;3.实数集确界的概念及确界原理在有关问题中的正确运用;4.函数的概念及复合函数、反函数、有界函数、单调函数和初等函数等概念理解和运用;5.基本初等函数定义、性质及图象的识记,会求初等函数定义域,分析初等函数的复合关系。
第二章数列极限1.会用ε—N定义证明数列极限有关问题,并会用ε—N语言正确表述数列不以某数为极限;2.理解收敛数列的性质,极限的唯一性、保号性及不等式性质;3.会用极限的四则运算法则,迫敛性定理以及单调有界定理求收敛数列的极限;4.理解柯西准则在极限理论中的重要意义,能用该准则判定某些简单数列的敛散性。
第三章函数极限1.能运用函数极限定义证明与函数极限有关的某些命题,会给出函数不以某定数为极限的相应表述;2.掌握函数极限基本性质:唯一性、局部保号性、不等式性质及有理运算性质;3.理解Heine定理及Cauchy准则,初步掌握运用它们证明函数极限存在的基本思路;4.识记两个重要极限,能灵活运用其求一些相关函数极限;5.理解无穷小(大)量及其阶的概念,会用无穷小量求某些函数的极限,无穷小(大)量阶的比较。
第四章函数的连续性1.明确函数在一点连续定义的几种等价叙述;2.会熟练准确地求出一般初等函数或分段函数的间断点并判别其类型;3.理解连续函数的性质,并能在相关问题的讨论中正确运用这些重要性质;4.深刻理解初等函数的连续性,应用连续性求极限;5.掌握闭区间上连续函数的性质,理解其几何意义,并能在各种有关具体问题中加以运用;6.理解一致连续的概念,能认识到函数在区间上连续与一致连续两者之间的联系与区别。
数学分析考试大纲.doc

数学与应用数学专业《数学分析》课程考试大纲一、大纲依据(1)参照高等专科学校的数学系数学与应用数学专业专科本数学分析教学大纲。
(2)华东师范大学数学系编《数学分析》,2001年6月第3版,高等教育出版社。
(3)刘玉琏、傅沛仁编《数学分析讲义》,1992年6月第3版,高等教育出版社。
二、考试耍求1、本考试为专升本数学分析考试。
2、考试要求分为四个由低到高的层次:(A)认识、记忆、了解(B)理解、判断、思考(C)掌握、丿应用、推理(D)分析、综合、系统三、考试内容与要求下表所列为考试内容与耍求。
考试内容分别按:(-)基本概念、基本理论(二)基本定理与应用1.函数掌握函数概念及一些特殊类型的函数(有界函数、单调函数、奇函数和偶函数、周期函数)。
函数的有理运算、复合函数、反函数。
基本初等函数。
初等函数。
2.极限了解数列与函数极限定义、极限存在的条件及其收敛性质。
掌握极限的四则运算及复合运算法则。
灵活运用两个重要极限。
3.函数的连续性理解函数的连续性概念。
掌握间断点及其分类、连续函数的有理运算。
了解闭区间上连续函数的性质——有界性、取得最大值性、介值性、一致连续性。
反函数的连续性。
初等函数连续性。
4.导数与微分理解导数及微分定义、导数的儿何意义、物理意义、经济意义、无穷大导数。
掌握求导法则,会求反函数、复合函数、初等函数的导数及高阶导数。
掌握微分的运算法则。
5.中值定理与导数应用hospital)法则。
V 理解费马(Fermat)定理、罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西中值定理、泰勒(Taylor)定理(泰勒公式及其拉格朗H型余项)。
掌握函数单调性的判别法、极值、最大值和最小值、曲线的凹凸性、拐点、渐近线及其应用。
掌握罗比塔(L6.实数的一些基本定理了解确界与确界存在定理、区间套定理、数列的柯西(Cauchy)收敛准则、聚点定理、有限覆盖定理。
7.不定积分了解原函数与不定积分概念。
《数学分析》考试大纲 .doc

《数学分析》考试大纲一、考试的性质数学分析是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。
为帮助考生明确考试范围和有关要求,特制订出本考试大纲。
本考试大纲主要根据北京林业大学数学与应用数学本科《数学分析》教学大纲编制而成,适用于报考北京林业大学数学学科各专业(基础数学、概率论与数理统计、计算数学、应用数学)硕士学位研究生的考生。
二、考试内容和基本要求1.实数集与函数(1)确界概念,确界原理(2)函数概念与运算,初等函数要求:理解确界概念与确界原理,并能运用于有关命题的运算与证明。
深刻理解函数的意义,掌握函数的四则运算。
2.数列极限(1)数列极限的ε一N定义(2)收敛数列的性质(3)数列的单调有界法则,柯西收敛准则,重要极限要求:深刻理解数列极限的ε一N定义,并会运用它验证给定数列的极限;掌握数列极限的性质,并会运用它证明或计算给定数列的极限;掌握数列极限存在的充要条件与充分条件,并能运用这些条件证明或判断数列极限的存在性;掌握重要极限并能运用它计算某些数列极限。
3.函数极限(1) 函数极限的ε一M定义和ε一δ定义,单侧极限(2) 函数极限的性质(3) 海涅定理(归结原则),柯西收敛准则,两个重要极限(4) 无穷小量与无穷大量的定义、性质,无穷小(大)量阶的比较要求:理解各类函数极限的定义,并能按定义验证给定的函数极限;掌握函数极限的性质,并能用它证明或计算给定的函数极限。
掌握函数极限的归结原则,并能用它来判断函数极限的存在性和计算某些数列极限。
掌握函数极限的柯西准则,了解单侧极限的单调有界定理;熟练掌握两个重要极限,并运用它们进行有关函数极限的计算;掌握各类无穷小量与无穷大量的定义与性质,理解无穷小(大)量的阶的概念。
4.函数的连续性(1) 函数在一点连续,单侧连续和在区间上连续的定义,间断点的类型(2) 连续函数的局部性质。
复合函数的连续性,反函数的连续性。
闭区间上连续函数的性质。
数学分析考试大纲word
《数学分析》考试大纲Ⅰ 考试性质与目的本科插班生考试是针对专科毕业生参加的选拔性考试,我院将根据考生的成绩,按已确定的招生计划,德、智、体育、全面衡量,择优录取。
考试应有较高的信度,效度,必要的区分度和适当的难度。
Ⅱ 考试内容一、考试基本要求要求考生理解和掌握《数学分析》的基本概念,基本原理和基本方法,能运用本科目知识进行,具体分析问题和解决问题的基本能力。
二、考核知识点与考核要求第一章 函数一、考核知识点1、函数的概念函数的定义 函数的表示法 分段函数2、函数的简单性质单调性 奇偶性有界性 周期性3、复合函数、反函数的概念 反函数的图像4、函数的四则运算与复合运算5、基本初等函数类幂函数 指数函数 对数函数 三角函数 反三角函数6、初等函数的概念二、考核要求1.识记:①基本初等函数的简单性质及图像。
②初等函数的概念。
2.理解:①函数的概念②函数的单调性、奇偶性、有界性、周期性。
3.应用:复合函数的复合过程。
第二章 极限一、考核知识点1.数列N -ε定义2.数列极限的性质唯一性,有界性,保号性,保不等式,四则运算定理子数列的概念和性质3.数列极限存在的条件,单调有界定理,数列极限存在的柯西准则,夹逼定理4.函数当x 趋向∞时的极限的概念和函数当x 趋向0x 时的极限的概念和δε-定义 单侧极限的概念5.极限与单侧极限的关系6.函数极限的性质唯一性 有界性保号性 保不等式性 四则运算定理7.函数极限存在的条件单调有界定理 函数极限存在的柯西准则 夹逼定理 函数极限存在的归结原则8.两个重要的极限9.无穷小量与无穷大量,无穷小量阶的概念,无穷小量阶的比较二、考核要求1、识记:①数列、函数极限的性质②无穷小量阶的比较③归结原则2、理解:①数列ε-N定义,函数极限ε-δ定义②无穷小量、无穷大量的概念,无穷小量与无穷大量的关系③单调有界定理,柯西准则3、应用:①极限的四则运算法则②夹逼定理③用两个重要的极限求极限④无穷小量的性质求极限第三章函数的连续性一、考核知识点1.函数连续的概念函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类2.函数在一点处连续的性质连续函数的四则运算复合函数连续性反函数的连续性3.闭区间上连续函数的性质有界性定理最大值与最小值定理介值性定理4.初等函数的连续性二、考核要求1识记:①函数在一点连续与间断的概念②函数在一点连续与极限存在的关系2.理解:①函数在一点处连续的性质连续函数的四则运算,复合函数连续性,反函数的连续性②闭区间上连续函数的性质③初等函数在其定义区间上的连续性3.应用:①求函数的间断点及确定其类型②运用介值定理推证简单命题③用连续性求极限第四章导数和微分一、考核知识点1.导数的定义,导数的几何意义,可导与连续的关系2.求导法则与导数的基本公式,导数的四则运算,反函数的导数3.求导方法复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数4.高阶导数的概念高阶导数的定义,高阶导数的计算5.微分的定义微分与导数的关系微分法则一阶微分形式的不变性二、考核要求1识记:导数的概念及其几何意义,可导性与连续性的关系,2理解:①导数的基本公式、四则运算法则及复合函数求导方法②隐函数的求导法、对数求导法以及由参数方程确定的函数的求导方法3.应用:①使用各种求导法则和微分法则求导数和微分。
《数学分析》考试大纲 - 河北教师教育网
第3章 函数极限
(1)熟练掌握使用"ε-δ"语言,叙述各类型函数极限。
(2)掌握函数极限的性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个重要极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
例题:P62: 例1,2.
《数学综合》考试大纲
一、《数学分析》考试大纲
教材:《数学分析》(华东师范大学数学系编)(第三版)
一、 课程的性质、目的与要求:
《《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。 是从事数学理论及其应用工作的必备知识。要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
二、课程内容与考核要求:
第1章 实数集与函数
(1)了解实数域及性质
(2)掌握几种主要不等式及应用。
(3)熟练掌握上确界,下确界定义和确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
例题:P6:例2;P7:例3;P17: 例2;
(2)掌握函数列、函数项级数一致收敛的判别法。
(3)了解函数列的极限函数,函数项级数的和函数性质。
例题:P30: 例3.
习题:P35:1(1)(2)(4),2,4,8(2);P41: 7.
第14章 幂级数
(1)熟练幂级数收敛域,收敛半径,及和函数的求法。
《数学分析考试大纲》1.doc
《数学分析考试大纲》I.考试性质《数学分析》课程考试是由经系办公室审查后具有考试资格的学生参加的结业考试,以此成绩确定该学生本课程结业、通过还是重修。
因此,考试应具有较高的信度、效度、必要的区分度和适当的难度。
《数学分析》考试,要发挥《数学分析》作为基础课程的作用,既要重视考查学生知识掌握程度,又要注重考查学生继续学习的能力。
II.考试要求作为数学分析试题的命题范围是数学分析《教学大纲》的教学内容。
《数学分析》是数学类各专业最重要的基础课,《数学分析》课程的考试,要求考生比较系统地理解数学分析的基本概念、基本理论,掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力。
III.考试内容第一章实数集与函数一、考试内容1、实数(1)实数及性质。
(2)绝对值与不等式。
2、数集、确界原理(1)区间与邻域。
(2)有界集与无界集。
(3)上确界与下确界,确界定理。
3、函数概念(1)函数的定义。
(2)函数的几种常用表示。
(3)函数四则运算。
(4)复合函数。
(5)反函数。
(6 )初等函数,基本初等函数,非初等函数。
4、具有某些特征的函数(1)有界函数,无界函数。
(2)单调函数与反函数:单调函数,严格单调函数。
(3)奇函数与偶函数。
(4)周期函数。
二、考试具体要求(1)了解实数域及性质。
(2)掌握几种不等式及应用。
(3)熟练掌握邻域、上确界、下确界的概念和确界原理。
(4)牢固掌握函数复合、基本初等函数、初等函数及其某些特性(单调性、周期性、奇偶性、有界性等)。
第二章数列极限一、考试内容1、极限概念(1)数列极限定义,数列的收敛与发散性。
(2)无穷小数列。
2、收剑数列的性质收剑数列的性质:唯一性、有界性、保号性、保不等式性、迫敛性(或称两边夹法则)和四则运算法则。
子列、平凡子列和非平凡子列及其有关性质。
3、数列极限存在的条件(1)单调有界定理。
(2)柯西收敛准则。
二、考试具体要求(1)熟练掌握数列极限的定义。
(2)掌握收敛数列的若干性质。
《数学分析》考试大纲
三、 一元积分学
1. 不定积分法与可积函数类 2. 定积分的概念、性质与计算
级数 数项级数的敛散判别与性质 函数项级数与一致收敛性 幂级数 Fourier 级数
五、 1、 2、 3、 4、 5、 6、 7、 8、
多元微分学 欧式空间 多元函数的极限 多元连续函数 偏导数与微分 隐函数定理 Taylor 公式 多元微分学的几何应用 多元函数的极限
求某些级数的和(如
1 )。
n1 n 2
五、多元微分学 1、理解欧式空间中的概念及欧式空间的内积与模、开集、开区域与闭区域的意义,了解 完备性定理及紧性定理。 2、理解多元函数的概念,掌握多元函数的重极限、累次极限和特殊路径极限的意义,并 能够根据定义计算多元函数极限,或证明二元极限不存在,能计算多元函数的重极限和累 次极限。 3、理解多元连续函数的概念及其性质。并能够判断多元函数的连续性,了解多元函数的 一致连续性。 4、理解偏导数的概念,掌握其计算法则,能够熟练计算多元函数的偏导数和复合函数的 导函数,能计算给定函数在给定方向上的导函数。 5、理解多元函数的微分的概念,并能够判断函数的可微性。 6、理解隐函数存在定理和反函数存在定理,熟练掌握隐函数的微分法。 7、理解 Taylor 公式的意义,并能够求出二元函数的具有指定阶数的 Taylor 公式。 8、能应用偏导数求空间的切线、法平面及空间曲面的法线和切平面的方程。 9、理解多元函数的极限和最值的意义,极值的充分必要条件,掌握求多元函数极值、条 件极值及在闭区域上的最值的方法,并用于解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年数学与计算机科学学院硕士研究生入学考试大纲(科目:代码720 数学分析)
一、考查目标
数学分析课程考核的主要目的是测试考生对数学分析各项内容的掌握程度。
要求考生熟悉数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法, 具有一定的抽象思维能力、较强的逻辑推理能力和运算能力。
二、考试形式与试卷结构
1、试卷成绩及考试时间
本试卷满分为150分,考试时间为180分钟。
2、答题方式
答题方式为闭卷、笔试。
3、试卷内容结构
各部分内容所占分值为:
极限和函数的连续性约40分
微分学约40分
积分学约40分
级数约30分
4、试卷题型结构
主要题型:计算题,判断题,证明题等。
三、考查范围
1、数列和(一元,多元)函数极限:极限的概念;极限存在的条件和存在的各种判定方法;求极限的各种方法.
2、(一元,多元)函数连续:连续的概念,性质(局部性质和整体性质)及应用.
3、一元函数微分学:求导的各种方法(包括高阶导数);一元函数的微分中值定理(Rolle定理,Lagrange中值定理,Cauchy中值定理,Taylor公式)及应用.
4、一元函数积分学:不定积分的各种计算方法;定积分的各种计算方法;函数可积的条件;定积分的各种性质及应用;反常积分值的计算和反常积分收敛性判别的各种方法.
5、多元函数微分学:函数可微的讨论;微分、偏导数和高阶偏导数的各种计算方法;多元函数的微分中值公式和泰勒公式;隐函数的存在性和可微性的讨论,隐函数导数或偏导数的计算;方向导数和梯度;几何应用和极值问题(包括条件极值问题).
6、多元函数积分学:重积分计算的各种方法和重积分的性质(包括二、三重积分和简单的n重积分);第一型曲线(曲面)积分的各种计算方法;第二型曲线(曲面)积分的各种计算方法;第一型曲线(曲面)积分与第二型曲线(曲面)积分的关系;Green公式及应用;Gauss 定理和Stokes定理及应用.
7、数项级数的各种收敛的判别法;数项级数的求和方法.
8、函数列和函数项级数收敛和一致收敛的各种判别法;极限函数与和函数的解析性(连续、可微和可积性)的讨论;含参量积分(包括含参量正常积分和含参量反常积分)及其应用.
9、幂级数和Fourier级数及其应用.
10、实数的完备性定理及其应用.
主要参考书:
1、《数学分析》,华东师范大学数学系编,高等教育出版社。
2、《数学分析》,陈传璋等编,高等教育出版社。
3、《数学分析》,陈纪修等编,高等教育出版社。