高数一全套公式
(完整版)高数1全套公式

o
x
极限的计算方法 一、初等函数: 1.lim C C(C是常值函数)
2.若 f x M(即 f x 是有界量),lim (0 即 是无穷小量), lim f x
0,
特别 : f x C lim C 0
fx
3.若 f x M(即 f x 是有界量) lim
0,
特别 : f x C C 0
lim C 0
2.特殊角的三角函数值
f( ) cos sin tan cot
0 (0 )
1 0 0 不存在
6
(30 ) 3/ 2 1/ 2
1/ 3 3
4
( 45 ) 2 /2 2 /2
1 1
3
( 60 ) 1/ 2 3/ 2
3 1/ 3
2
( 90 )
0 1 不存在 0
只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值
(3)、 d( ax ) a x ln adx ,特别地,当 a e时, d (ex ) exdx ;
(4)、 d(log a x)
1 dx ,特别地,当 a e 时, d (ln x) 1 dx ;
1。
45 2
1
60
2 1
45
30
1 3 诱导公式:
3
函数
角A
sin cos tg ctg
-α 90 °- α 90 °+ α 180 °-α 180 °+α 270 °-α 270 °+α 360 °-α 360 °+α
-sin α cos α -tg α -ctg α cos α sin α ctg α tg α cos α -sin α -ctg α -tg α sin α -cos α -tg α -ctg α -sin α -cos α tg α ctg α -cos α -sin α ctg α tg α -cos α sin α -ctg α -tg α -sin α cos α -tg α -ctg α sin α cos α tg α ctg α
高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
(完整版)高数1全套公式

一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值1。
高数(一)全公式

初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2.特殊角的三角函数值θ)(θf0 )0(6π )30( 4π )45( 3π )60( 2π)90(θcos 1 2/32/2 2/10 θsin 0 2/12/22/3 1 θtan 0 3/1 1 3不存在 θcot不存在313/1只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
最完整高数公式大全,赶紧收藏了,以后用

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/ sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+s inα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-si nαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数一公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n n n arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数学基础知识一、三角函数1 .公式同角三角函数间的基本关系式:平方关系:sin A2( a )+cos A2( a )=tan^2( a )+1= sec A2( ;cOt A2( a )+1= csc A2( a) 商的关系:tan a =sin a /cos a ot a =cos a /sin a倒数关系:tan a・ cot a; =sin a・ csc a =1cos a・ sec a =1三角函数恒等变形公式:两角和与差的三角函数:cos( a + 3 )=cos a・ coin Ba・ sin 3cos( a 3 )=cos a・ cos 3 +sin a・ sin 3sin( a±3 )=sin a・ cos 3 土 cos a・ sin 3tan( a + 3 )=(tan a +tan -tan(a^ tan 3)tan( a 3 )=(tan -tan 3 )/(1+tan a・ tan 3)倍角公式:sin(2 a )=2sin a・ cos acos(2 a )=cosA2( -s)n人2( a )=2cosA2( -a=1- 2si门人2( a)tan(2 a )=2tan a #1 门人2( a )]半角公式:sinA2( a /2X1-C0S a )/2cosA2( a /2)=(1+cos a )/2tan A2( a /2)=(1cos a )/(1+cos a)tan( a /2)=sin a /(1+cos ot-()os1a )/sin a万能公式:sin a =2tan( a /2)/[1+ta门人2( a /2)]cos a =[1-tanA2( a /2)]/[1+ta门人2( a /2)]tan a =2tan( a /2)/{t1a门人2( a /2)]积化和差公式:sin a・cos 3 =(1/2){sin(a + 3-)+s]n( acos a・sin 3=(1/2){sin(-si a+ a))]cos a・cos 3 =(1/2){cos( a + 3 )+^$1 asin a・sin-(1=){cos( a +-co)( a- 3 )] 和差化积公式:sin a +sin 3 =2sin{( a + 3 )/2]cos{)/2] asin asin3 =2cos[( a + 3 )/2]sin{© )/2}x cos a +cos 3 =2cos[( a + 3 )/2]cos{(3 )2 cos a-cos 3=2S in{(a + 3 )/2]sin{- 3 )/a2.特殊角的三角函数值f (衿、0 (0=)JI■6(30 JJT~4(45)JI~3(60 °)31"2(90°)cos日 1 73/2 V2/2 1/2 0si n日0 1/2 v'2 / 2 V3/2 1tan日0 1/V3 1 不存在cot日不存在43 1 1小0只需记住这两的三角值。
、\函数角A、sin cos tg ctg-a -sin a cos a -tg a -ctg a90 °- a cos a sin a ctg a tg a90 °+ a cos a -sin a -ctg a -tg a180 ° a sin a -cos a -tg a -ctg a180 -a -sin a -cos a tg a ctg a270 °- a -cos a -sin a ctg a tg a270 °+a -cos a sin a -ctg a -tg a360 °- a -sin a cos a -tg a -ctg a360 °+a sin a cos a tg a ctg a即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)二、一元二次函数、方程和不等式也=b2 -4acA >0 △=0 i <0一元二次函数2y=ax +bx+c(a>0)iI i l i u.记忆规律:竖变横不变(奇变偶不变)三、因式分解与乘法公式(1) a2-b2=(a b)(a —b)(2) a22ab b2= (a b)22 2 2(3) a -2ab b =(a -b)3 3 2 2(4) a b -(a b)(a -ab b )3 3 2 2(5) a -b -(a -b)(a ab b )(6) a33a2b 3ab2b3=(a b)3(7) a3-3a2b 3ab2-b3=(a -b)3(8) a2b2c22ab 2bc 2ca = (a b c)2(9) a -b =(a-b)(a a b |l( ab b ),(n _ 2)四、等差数列和等比数列1. 等差数列通项公式:a n =印• n -1 dn n " d 前n项和公式 S n丿引 *或 S n^na,2 22. 等比数列GP通项公式a n二玄內心 a n q = 0前n项和公式.印(1-q n)S』——佔)S n 二 1 -qW (q=1)五、常用几何公式c —咼圆柱r-底半径h —高C —底面周长S底一底面积S侧一侧面积S表表面积C = 2 nrS 底一nrS 侧=Ch2 S 表=Ch+2S 底=Ch+2nr2V = S 底h = n r h圆锥r-底半径 h —高2V = n r h/3球r半径 d —直径V = 4/3 n 3 =nd3/6S= 4 n 2=nd2基本初等函数表达式定义域常数函数y =Cyd 随而异, 但在R 上均有定义过点(1,1);J- 0时在R 单增;丄” 0时在R单减.指数函数xy = aa 0a =14.5y 0 . 过点0,1 .a 1单增.0 ::a 1单减.mm n m n a m-n “ m na a =a r =a , a 】=aa mn过点1,0 •a 1单增. 0 ::: a ::: 1 单减.Iog a a=1,log a 1=0, M,N 0log a MN =log a M log a N, log a M二 log a M - log a N,N log a M P 二 Plog a M, ..log c bj小‘log a b^ 一 c 0, = 1 ,log c alog a a x= x(x 0)alog aX=x(x 0)奇函数.T =::. 在每个周期 内单减.对 数 函 数y = log a x a 0 a =1 正 弦 函 数y 1述1 O -1Tt 12兀X奇函数. T = 2二.余 弦 函 数y = cosxy ■ 1r. 斗 -- -凭O-1兀3呢沅偶函数. T =2二. 廿.正 切 函 数y = tan xJIx = k 二、_2 k Zi 1 i ! J\y 11 丿 1\J-职!l 1rrx奇函数.T » . 在每个周期 内单增 余 切 函 数奇函数.单增.JI31■— :y :: 一2 2极限的计算方法 一、初等函数:l.lim C 二C (C 是常值函数)2•若 f (x j^M (即 f (x )是有界量),lim a =0(即 a 是无穷小量),二 lim f (x )^=0, 特别:f x =C= lim C : =03•若 f (x [^M (即 f (x 是有界量)二 limB® = 0,oO—C特别:f X 二 C C = 0 二 limC (-■■■ C 0 4.lim =i0 C <0反正弦 函 数y = arcsin x 1-1,1 1-1yI1 o1x........诜奇函数. 单增.JIJIy .22反 余弦 函 数1-1,1 1y 二 arccosx y:"i ・・ ■JIi-1o1x单减.0 _ y _ 二.反余切函数y 二 arccot xy 1JT3/2ox单减. 0 :: y ::二.反 正切 函 数y = arcta nx5未定式 1 0型A. 分子,分母含有相同的零因式,消去零因式B. 等价无穷小替换(常用sin x ~ x,e x-1 ~ x,ln x 1 ~ x )C. 洛必达法则 :要求f x ,^ x 存在,且lim 二■匕 存在,此时,lim 丄彳 二lim 丄上、 g g g (x ) g (x )2二型A •忽略掉分子,分母中可以忽略掉的较低阶的无穷大 ,保留最高阶的无穷大,再化简计算B •分子,分母同除以最高阶无穷大后 ,再化简计算. C.洛必达法则. 3 二-::型通过分式通分或无理函 数有理化,转化为"0"型或"二"型0 旳"oO oO(4 )0 R 转化为< 00 _0 厂0 匸5 00型求对数> 0 ::6 ::0型求对数>0::17 1型 通过1]鸟(1 +x 》=e 或求对数来计算.二、分段函数:分段点的极限用左,右极限的定义来求解•(1) (C)、0, C 是常数* 1(lOg a X)応⑸(sinx)=cosx ⑹(cosx)=sinx(10) (cscx ) =-(cscx ) cotx专业文档供参考,如有帮助请下载。
切线方程为:y -y 0 二 f (X 0)(X-X 0) 基本初等函数的导数公式 1 f(X 。
)(X-X 。
) (a x ^-a xln a ,特别地,当a = e 时,(ta nx)1 2 —二 sec x cos X(8) (cot x)1 2〒二一 csc Xsin x(9) (secx) =(secx)ta nx特别地,当a =e 时,u(x)及v(x)的和、差、商(除分母为0的点外)都在点x 可导,(1) [u(x)_v(x)] =u(x) _v (x)(2) [u(x)v(x)f = u (x)v(x) u(x)v (x)u(x) u (x)v(x) —u(x)v(x) IL v(x) -v 2(x)基本初等函数的微分公式(1) 、dc=0(c为常数);(2) 、d(x^ = A x^dxC [为任意常数);(3) 、d(a x) =a xln adx ,特别地,当 a=e 时,d(e x)二e xdx ;1 1(4) 、d(log a x)dx ,特别地,当 a=e 时,d(ln x) dx ; x In a x(5) 、d(sin x)二 cosxdx ; (6) 、d(cos x) = -sin xdx ;2(7) 、d(tan x) =sec xdx ;2(8) 、d(cotx) - -csc xdx ; (9) 、d(secx) =secxtan xdx ;曲线的切线方程(11) (arcsin x)二(12) (arccosx)=(13)(14)(arccot x)=1 1 x 2函数u =u(x)及v=v(x)都在点x 可导 (v(x) = 0)(10)、 d(cscx)二-cscxcot xdx ; (11)、 1 d (arcsin x):-——=dx;(12)、 1d (arccos x)二- ---- dx ; (13)、 1d (arctan x) 2 dx ; 1 +x(14)、 1d(arccot x)2dx .y -y° = f '(x°)(x -x°)幕指函数的导数[u(x V(X)1'=u f x®i极限、可导、可微、连续之间的关系可微条件A =:条件B, A为B的充分条件条件B = 条件A,A为B的必要条件条件A = 条件B, A和B互为充分必要条件边际分析边际成本 MC =C(q);边际收益 MR = R(q);边际利润 ML = L(q),L (q)二R(q) -C(q) = MR — MC弹性分析匚Ey =$vY x)y = f (x)在点X。