北师大版八年级上册 一次函数的应用

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

北师大版八年级数学上册一次函数的应用教学课件(第一课时24张)

北师大版八年级数学上册一次函数的应用教学课件(第一课时24张)
(2)两种租书方式每天的收费是多少元?(x<10)
解:(1)设使用会员卡租书金额y1(元)与租书时间x(天)之间的关系式为y1=kx+b. 从图象可知它过(0,20),可得b=20,将(10,50),代入关系式得k=3.∴y1= 3x+20.设使用租书卡租书金额y2(元)与租书时间x(天)之间的关系式为y2=mx. 它经过(10,50),代入得10m=50,m=5.∴y2=5x (2)会员卡方式每天收费(50-20)÷10=3(元),租书卡方式每天收费5元
二 确定一次函数的表达式
例2:已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函 数的表达式.
解:设一次函数的表达式为y=kx+b,根据题意得, ∴-5=2k+b,5=b, 解得b=5,k=-5. ∴一次函数的表达式为y=-5x+5.
练一练
已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的表达式.
(1)设出式子中的未知系数;
将已知数据代入 (2)

(3) 求出未知系数的值 ;
(4) 写出一次函数表达式 .
1.正比例函数 y=kx 的图象如右图所示,则这个函数的表达式是(B ) A.y=x B.y=-x C.y=-2x
D.y=-12x
2.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B, 则该一次函数的表达式为( ) B
解:由题易得一次函数为 y=x+2,当 y=0 时,x+2=0, x=-2,∴C(-2,0),∴S△AOC=12×2×4=4
11.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用 租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下 图所示:
(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式 ;

北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)

北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)

5. 某地长途汽车客运公司规定旅客可随身携带一定质 量的行李,如果超过规定,则需要购买行李票,行李 票费用y元与行李质量的关系如图:
(1)旅客最多可免费携带多少 千克行李?
30千克
⑵超过30千克ห้องสมุดไป่ตู้,每千克需 付多少元?
0。2元
课堂小结
1、确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
新知探究
Ⅱ、在弹性限度内,弹簧的长度y(厘米)是所挂物 体质量x(千克)的一次函数。一根弹簧不挂物体时 长14.5厘米;当所挂物体的质量为3千克时,弹簧 长16厘米。写出y与x之间的关系式,并求当所挂 物体的质量为4千克时弹簧的长度。
解:设一次函数的表达式为:ykxb
x=0时,y=14.5;x=3时,y=16
4.4 一次函数的应用〔1〕
新知探究 Ⅰ、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒)的关系如下图。 (1)写出v与t之间的关系式;
解:正比例函数的表达式为:vkt
当t=2时,v=5
5t2
(2, 5)
k5 2
v 5t 2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
引例、由于持续高温和连日无雨,某水库的蓄水量随时间的增 加而减少。干旱持续时间t(天)与蓄水量v(万米3)的关系如下图, 答复以下问题: (2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少 天后将发出严重干旱警报? (3)按照这个规律,预计持续 多少天水库将干涸?
解〔1〕因为一次函数解析式为y=-20x+1200 蓄水量小于400万米3,即y=400时, -20x+1200=400 得
解:设干旱持续时间t与蓄水量v的关系式为y=kx+b 由图上可知:当x=0时,y=1200;当x=60时,y=0;

北师大版八年级数学上册:一次函数的应用

北师大版八年级数学上册:一次函数的应用
t/天
探究活动一
V/万米3
(10,1000) (23,740)
由于高温和连日无雨,水库 蓄水量V(万米3)和干旱时间t(天) 的关系如图:
⑴干旱前蓄水量是多少? 1200万m³
⑵干旱持续10天,蓄水量为多少? 连续干旱23天呢?
1000万m³ 740万m³
t/天
(3).蓄水量小于400 万立方米时,将发生严重的干旱
将数转化为形
由形定数
探究活动三:看图填空
⑴当y=0时,x=__-_2___
⑵直线对应的函数表
达式为y_=_0_._5_x__+_1_.
解:用函数表达式解第一问 将y=0代入原式为 0=0.5x+1解x, 解得x=-2
议一议
一元一次方程0.5x+1=0与一次函数y=0.5x+1有 什么联系?
1、从“数”的方面看,当一次函数
0.6元
/

150
100分钟后每分钟通话:200
110 100
0.4元
/

2.某植物t天后的高度为ycm,图中的直线l反映了 y与t之间的关系,根据图象回答下列问题:
Y/cm
24 21 18
l
(12,21)
(1)植物刚栽的时候多高?
9cm
(2)3天后该植物多高?
15
12 9
(3,12)
12cm
由于高温和连日无雨,水库 蓄水量V(万米3)和干旱时间t(天) 的关系如图:
⑴干旱前蓄水量是多少?
⑵干旱持续10天,蓄水量为多少? 连续干旱23天呢?
(3).蓄水量小于400 万立方米时,将发 生严重的干旱 警报.干旱多少天后将发 出干旱警报? (4).按照这个规律,预计持续干旱多少天 水库将干涸?

4.4.1 一次函数的应用八年级上册数学北师大版

4.4.1 一次函数的应用八年级上册数学北师大版

3k+b=5, ∴
-4k+b=-9,
k=2, 解得
b=-1,
∴ 这个一次函数的表达式为 y=2x-1.
由上面的例题你能归纳出求函数解析式的方法吗?
待定系数法:先设出函数表达式,再根据条件确定表达式中未 知的系数,从而得出函数表达式的方法,叫做待定系数法. 知识点一 用待定系数法求一次函数表达式所需的条件:
次 函 数


图象 画法
一次函数y=kx+b(k,b是常 数,k≠0)的图象是一条直 线,通常也称为直线y=kx+b.
①两点法:两点确定唯一一 条直线.②平移法:由直线 y=kx向上或向下平移.
①b>0,经过一、二、三象限,y
一 次 函
k>0
随x的增大而增大; ②b<0,经过一、三、四象限,y 随x的增大而增大;

的 性 质
k<0
①b>0,经过一、二、四象限,y 随x的增大而减小; ②b<0,经过二、三、四象限,y
随x的增大而减小;
学习目标
会求一次函数和正比例函数的表达式,并会解决有关问题.
课堂导入
1.确定正比例函数解析式 y=kx(k≠0),需要求出几个值?需要知道 几个条件?
正比例函数解析式 y=kx(k≠0)中 x, y 分别代表自变量和函数值,只 要求出 k 的值即可确定正比例函数解析式.
知识点二 用待定系数法求一次函数解析式的步骤:

设一次函数的表达式 y=kx+b(k≠0)

将已知的x,y的对应值(两组)代入所设表达式
中,得到关于k ,b的方程

解方程,求得k ,b的值

4.4.1一次函数的应用教学设计2024-2025学年北师大版八年级数学上册

4.4.1一次函数的应用教学设计2024-2025学年北师大版八年级数学上册
在讲解过程中,注意观察学生的反应,及时解答学生的疑问。
3.巩固练习(15分钟)
a.课堂练习(5分钟):教师布置几道一次函数在实际问题中的应用题,要求学生在课堂上独立完成,巩固所学知识。
b.小组讨论(5分钟):学生分为小组,讨论解题思路,分享解题经验,互相学习。
c.课堂提问(5分钟):教师针对练习题进行提问,检查学生对一次函数应用的掌握情况。
板书设计
①重点知识点:
-一次函数的定义与图象特征
-一次函数在实际问题中的应用
-建立一次函数模型的方法
②关键词与句:
-关键词:一次函数、图象、应用、模型、实际问题
-关键句:一次函数图象是一条直线;通过一次函数解决实际问题;建立数学模型分析数量关系
③艺术性与趣味性设计:
-使用不同颜色的粉笔,突出重点知识点和关键句;
6.课后作业(5分钟)
布置与一次函数应用相关的课后作业,巩固所学知识,提高学生的实际应用能力。
教学过程中,注意以下几点:
1.教师应密切关注学生的学习情况,根据学生的反应调整教学节奏和难度。
2.创设情境和提出问题时,要贴近学生的生活实际,激发学生的学习兴趣。
3.讲解过程中,注重师生互动,鼓励学生提问,培养学生的逻辑思维和问题解决能力。
2.教学软件:运用数学软件辅助教学,让学生更直观地观察一次函数的性质,提高教学效果。
3.网络资源:引导学生查阅相关资料,拓展知识面,培养自主学习能力。
教学过程设计
1.导入环节(5分钟)
创设情境:教师展示一次函数在实际生活中的应用实例,如“小明骑自行车去公园,速度与时间的关系”,引发学生思考一次函数在现实情境中的作用。
学情分析
八年级学生在知识层面,已具备一次函数的基本概念、图象特征及简单应用能力,但在将一次函数与实际问题结合解决方面,仍需加强。在能力方面,学生的逻辑思维能力、观察能力和分析能力逐渐提升,但问题解决能力、团队合作能力有待提高。素质方面,学生具备一定的自主学习能力和探究精神,但学习习惯、时间管理等方面存在差异,对学习效果产生影响。

4.4+一次函数的应用++知识考点梳理+课件+2024-2025学年北师大版数学八年级上册

4.4+一次函数的应用++知识考点梳理+课件+2024-2025学年北师大版数学八年级上册
求 x 的值,可以借助图象找点的横坐标.
4.4 一次函数的应用
返回目录

典例3 如图,直线 y =ax +b(a≠0)过点A(0,1),

清 B(2,0),则关于 x的方程 ax+b=0 的解为 _______.



[答案] x=2
4.4 一次函数的应用
返回ቤተ መጻሕፍቲ ባይዱ录
重 ■题型一 借助两个一次函数图象解决问题
将(1,40)代入,得 m=40,所以 L2 的表达式为
s=40t;
4.4 一次函数的应用
(2)根据题意,得-60t+300=40t,解得 t=3.


答:两辆火车行驶 3 h 时相遇;


(3)由题意,得相遇前相距 100 km:-60t+300突
破 40t=100,解得 t=2;
相遇后相距 100 km:40t-(-60t+300)=100,解得
返回目录
归纳总结


从图象上获取信息可以从两个方面去分析:(1)根据函

单 数图象可判断函数类型;(2)从横轴、纵轴的实际意义去

读 理解函数图象上点的坐标的实际意义,进而结合所学知识解
决实际问题.
4.4 一次函数的应用
返回目录
对点典例剖析


典例2 如图所示的是某种蜡烛在燃烧过程中高度与时间

单 之间关系的图象,此蜡烛经过 ____ h 燃烧完毕.
函数;
(2)画图象:画出一次函数的图象;
(3)找交点:找出一次函数的图象与 x
轴交点的横坐标,即为一元一次方程的解

北师大版八年级数学上册4.4.3一次函数的应用教学设计

北师大版八年级数学上册4.4.3一次函数的应用教学设计
2.教学过程:
-导入新课:通过生活中的实例,引出一次函数的概念,激发学生的学习兴趣。
-新知探究:引导学生通过绘制一次函数图像,观察和分析图像特征,理解斜率和y轴截距的意义。
-应用拓展:设计一些实际问题,让学生尝试建立一次函数模型,解决具体问题,培养学生的建模能力和解决问题的能力。
-巩固提高:通过设置不同层次的练习题,巩固学生对一次函数的理解,提高其运用能力。
教师在批改作业时,应关注学生的解题过程和思路,及时给予反馈和指导,帮助学生发现并改正错误,提高学生对一次函数的理解和应用能力。同时,教师应鼓励学生在课堂上分享作业成果,促进生生之间的交流与学习。
(四)课堂练习
1.教学内容ቤተ መጻሕፍቲ ባይዱ设计不同难度的练习题,让学生巩固一次函数的应用知识。
2.教学方法:采用个别指导和小组讨论相结合的方式,关注学生的个体差异。
3.教学步骤:
-步骤1:教师发放练习题,学生独立完成。
-步骤2:教师针对学生答题情况进行个别指导,帮助学生解决疑问。
-步骤3:组织学生进行小组讨论,共同解决难题。
1.学生在图像识别和分析方面的能力,引导他们通过图像直观地理解一次函数的性质,从而加深对一次函数的理解。
2.学生在解决实际问题时,往往难以将问题转化为数学模型,教师应引导学生学会从实际问题中抽象出一次函数关系,培养学生的建模能力。
3.针对学生个体差异,教师应设计不同难度的练习题,使每个学生都能在原有基础上得到提高,增强学生的学习成就感。
-结合现实生活中的问题,设计一个一次函数的应用案例,要求原创性,并在课堂上分享。
作业要求:
1.学生需认真完成作业,确保作业质量。
2.对于必做题,要求学生在课后自主完成,巩固课堂所学知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年12月10日8时 37分
2、甲、乙两个工程队分别同时开挖两段等长的河渠,所 挖河渠的长度y(m)与挖掘时间x(h)之间关系如图所示.请根 据所提供的信息解答下列问题: (1)乙队开挖到30m时,用了 2 h,开挖6h时,甲队 10 比乙队多挖了 m .
(2)两图象的交点表示了 什么意思? (3)在哪一段时间内,甲 工程队挖掘的河渠比乙工程 队挖掘的河渠长?
y1 y2
M(60,150)
2018年12月10日8时 37分
学校组织冬令营需要租用汽车,准备与汽车租赁公 司签订租车合同,以用车路程 x km计算.甲汽车租赁公司 的租费是y1元,乙汽车租赁公司的租费是y2元.
(3)若学校租车的预算是200元,那么租用哪家租赁公司的 汽车合算?为什么?
y1 y2
2018年12月10日8时 37分
1、如图, lB、lA分别表示A步行与B骑车在同一路上行驶 的路程s与时间t的关系. (4)若B的自行车不发生故障, 保持出发时的速度前进,则出 发 1 h与A相遇,相遇点离A 5.你能在图中 的出发点 km 表示出这个相遇点C吗?
lB lA
C
2018年12月10日8时 37分
同学们,人生就如同一个以 时间为横轴,以人的价值为纵轴 的平面直角坐标系,我相信同学 们一定能用自己的勤奋和智慧在 这个坐标系中画出一个个光彩夺 目的点,构画出辉煌的人生!
2018年12月10日8时 37分
2018年12月10日8时 37分
(1)若目的地距离学校40km,租用哪家租赁公司的汽车合 算?你用什么方法来判断?
y1 y2
P Q
2018年12月10日8时 37分
学校组织冬令营需要租用汽车,准备与汽车租赁公 司签订租车合同,以用车路程 x km计算.甲汽车租赁公司 的租费是y1元,乙汽车租赁公司的租费是y2元.
(2)目的地距离学校多远时,租用两家租赁公司的汽车所需 的费用相同?
A.N处
Q
B.P处 C.Q处
P R M N y
D.M处
(图1)
O
4
9
x
(图2)
2018年12月10日8时 37分
1.某车油箱现有汽油50升,行驶时,油箱中的余油量y(升) 是行驶路程x(km)的一次函数,其图象如图所示 求y与x的函数关系式,并写出自变量x的取值范围。
解:设函数解析式为y = kx+b,且图象过 点(60,30)和点(0,50),所以
2018年12月10日8时 37分
2、甲、乙两个工程队分别同时开挖两段等长的河渠,所 挖河渠的长度y(m)与挖掘时间x(h)之间关系如图所示.请根 据所提供的信息解答下列问题:
(4)在哪一段时间内,乙工程队挖掘的河渠比甲工程 队挖掘的河渠长? (5)谁先完成任务?
2018年12月10日8时 37分
• 某蔬菜基地要把一批新鲜蔬菜运往外地,有两种运 输方式可供选择,主要参考数据如下: 运输方式 汽车 运输速度 (km/h) 60 装卸费用 (元) 200 途中综合费用 (元/h) 270
火车
100
410
240
(1)请分别写出汽车、火车运输的总费用y1(元)、y2 (元)与运输路程 x(km)之间的函数关系;
2、小明和小亮进行了百米赛跑,小丽把他们的竞赛过程 用函数图象一一记录下来,若两人在赛跑中距起点的路程 s(m)与时间t(s)之间的关系如图所示,根据图象你能叙述他 们的跑步过程吗?

2018年12月10日8时 37分

2、小明和小亮进行了百米赛跑,小丽把他们的竞赛过程 用函数图象一一记录下来,若两人在赛跑中距起点的路程 s(m)与时间t(s)之间的关系如图所示,根据图象你能叙述他 们的跑步过程吗?
D. y 2( x 1)
y 3 A
2.如图,正比例函数图像经过点A, 3 y x 该函数解析式是______ 2
x o 2
四 象限 3.一次函数y=x+2的图像不经过第____
4.点P(a,b)点Q(c,d)是一次函数y=-4x+3图像 b>d 上的两个点,且a<c,则b与d的大小关系是____
60k b
解得
30 0 b 50
1 k 3
① ②
y/升 50
30
b 50
y与x的函数关系式为 0 1 2018 年12 月10日8 时 50 0 x 150 y x 37分 3
60
x/km
2、正比例函数y=k1x与一次函数y=k2x+b的 图象如图所示,它们的交点A的坐标为 (3,4),并且OB=5 (1)求△OAB的面积 (2)求这两个函数的解析式 y A O B
2018年12月10日8时 37分
1、某校八年级同学到距学校6千米的郊外秋游,一部分同 学步行,另一部分同学骑自行车,如图,l1、l2分别表示 步行和骑车的同学前往目的地所走的路程y(千米)与所用时 间 x(分)之间的函数图象,则以下判断错误的是( ) C
A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学从出发到追上步行的同学用了20分钟 C.骑车的同学和步行的同学同时到达目的地 D. 步行的速度是6千米/时
点评:此类动点问题中,应根据点P的不同运动路线,找出对应 的函数图像以及每段图像对应的自变量取值范围,抓住几个关键 点,并理解函数图像中横、纵坐标的实际意义。
2018年12月10日8时 37分
x A. y 6
1.下列函数中,不是一次函数的是
B. y 1 x 10 C. y x
(C )
10cm
B P 图甲 C
o
5 8
图乙

t(s)
(2)图甲中BC的长是多少?
(3)图乙中的a在图甲中具有什么实际意义?a的值是多少?
2018年12月10日8时 37分
解:(1) P点在整个的移动过程中△ABP的面积 先逐渐从0增大到30,然后在3分钟内保持30不 变,再从30逐渐减小; (2)BC=10; (3)a=30. a的值表示点P在CD边上运动时, △ABP的面积;
2018年12月10日8时 37分
1、 已知一次函数 y kx b( k 0)的图象经过点 A( 3, 0), 与y轴交于点B , 若AOB的面积为6, 试求一次函数的解析式 .
y
B
o
A
x
2018年12月10日8时 37分
B'
解: 直线y kx b经过点A( 3, 0), 与y轴 交于点B 点B的坐标为 (0,b ). OA 3, 1 1 OB b , S OA OB 3 b 6 2 2 B点的坐标为 (0,4)或(0,4). 当B点的坐标为 (0,4)时, 用坐标表示线段 0 3k 4 4 长度时应用绝对 k 3 值符号。 4 此时一次函数的析式为y x 4. 3 同理, 当B点的坐标为 (0,4)时, 4 一次函数的解析式为y x 4. 3 符合条件的一次函数的解析式为 4 4 y x 4或y x 4. 3 3
37分
D. ① ② ③
3.如图,矩形沿 图甲的边框按B→C→D→A的路径移动,相应的△ABP的面 积s关于时间t的函数图象如图乙.根据下图回答问题:
问题:(1)P点在整个的移动过程中△ABP的面积是怎样变化的?
A
2) s ( cm D 30a p
能力提升3
(2) 你能说出用哪种运输方式较好吗? 2018年12月10日8时
37分
1、如图, lA 、 lB 分别表示A步行与B骑车在同一路上 行驶的路程s与时间t的关系. (1)B出发时与A相距 10 km; (2)走了一段路后,自行车发生 故障,进行修理,所用的时间 是 h; 1
lB lA
(3)根据图象,你还能说出一条 信息吗?
AOB
2018年12月10日8时 37分
课堂小结
1、两直线交点的意义:
(1)几何意义:两直线交点是它们的公共点;
(2)代数意义:两直线交点的坐标同时满足两个 解析式。
2、利用图象比较函数值的方法:
(1)先找交点坐标,交点处y1=y2; (2)再看交点左右两侧,图象位于上方的直线函 数值较大。
2018年12月10日8时 37分

2018年12月10日8时 37分

某水电站的蓄水池有2个进水口,1个出水口,每个进 水口进水量V(万m3)与时间x(h)的关系如图①,出水口出水 量 V(万m3)与时间x(h)的关系如图 ②,已知某天0点到6点, 进行机组试运行,试机时至少打开一个水口,该水池的蓄 水量V(万m3)与时间x(h)的关系如图③.

2018年12月10日8时 37分


给出以下3个判断:
① (进水口)
② (出水口)

①0点到3点只进水不出水;
②3点到4点不进水只出水;
③4点到6点不进水不出水.
上述判断中,一定正确的是(
A
观察图象③ ,你能 猜测出各时间段, 进水口、出水口的 工作情况吗? )
A. ① B. ② 2018年12 月10 日8时 C. ② ③
2018年12月10日8时 37分
y
1.一次函数 y 1=kx+b与y 2=x+a的 图像如图所示,则下列结论(1) k<0;(2)a>0;(3)当x<3时,y 1<y 2 1 中,正确的有____ 个 2.如图,已知一次函数y=kx+b的 图像,当x<1时,y的取值范围是 y<-2 ____
y 2=x+a x o y o 2 3 y 1=kx+b x
M
2018年12月10日8时 37分
学校组织冬令营需要租用汽车,准备与汽车租赁公 司签订租车合同,以用车路程 x km计算.甲汽车租赁公司 的租费是y1元,乙汽车租赁公司的租费是y2元. (4)如果根据用车路程来选择汽车租赁公司,你能给些建议 吗?说说你的理由.
相关文档
最新文档