高一基本初等函数练习精选
(完整版)必修一基本初等函数单元练习题(含答案),推荐文档

D. ∅
建议收藏下载本文,以便随时学习! 2、已知函数 f(x)的定义域为[-1,5],在同一坐标系下,函数 y=f(x)的图像与直线 x=1 的交点个
9.若函数 f(x)=
是奇函数,则 m 的值是( )
D.(-1,-∞)
数为( ).
A.0 个 B.1 个 C.2 个 D.0 个或 1 个均有可能
3 设函数
1
1
1
B.(2,1)∪(1,2) C.(2,1)∪(2,+∞) D.(0,2)∪(2,+∞)
A.(1),(4)
B. (2),(3)
C. (1)
D. (3)
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)
1 5.函数 f(x)=lnx-x的零点所在的区间是
A.(0,1)
B.(1,e) C.(e,3)
(2)当 A B B 时,有 A B ,所以 a 3 或 a 3 0 ,
解得 a 3 或 a 3
…………10 分
答:经过 8 秒后,汽车和自行车之间的距离最短,最短距离是 20 5 米. …12 分
21.解:(1)由题可知:
f f
(0) 0 (1) 2 25
a b
1 0
(2)函数 f (x) 在 (1,1) 上单调递增,
1 D.[7,1)
11.函数
f
(x)
2x x 2
x 2 ,0 x 3 6x,2 x 0
的值域是(
)
A. R
B. [1,)
C. [8,1]
D. [9,1]
1
1
12.定义在 R 的偶函数 f(x)在[0,+∞)上单调递减,且 f(2)=0,则满足 f(log4x)<0 的 x 的集合为( )
基本初等函数练习题

基本初等函数练习题基本初等函数练习题函数是数学中的重要概念,它描述了一种映射关系,将一个集合中的元素映射到另一个集合中的元素。
而初等函数则是指可以由有限次的四则运算、指数和对数运算以及三角函数和反三角函数运算得到的函数。
在数学学习中,初等函数是一个基础且重要的概念,下面我们来练习一些基本初等函数的题目。
1. 计算函数f(x) = 3x + 2在x = 5处的值。
解答:将x = 5代入函数f(x) = 3x + 2中,得到f(5) = 3 * 5 + 2 = 17。
所以函数在x = 5处的值为17。
2. 求函数g(x) = x^2 - 4x + 3的零点。
解答:零点即函数的解,即g(x) = 0。
将g(x) = x^2 - 4x + 3置零,得到x^2 -4x + 3 = 0。
通过求根公式,我们可以得到x = 1和x = 3。
所以函数的零点为x = 1和x = 3。
3. 计算函数h(x) = log2(x)在x = 8处的值。
解答:将x = 8代入函数h(x) = log2(x)中,得到h(8) = log2(8)。
由于2的多少次方等于8,所以log2(8) = 3。
所以函数在x = 8处的值为3。
4. 求函数k(x) = sin(x) + cos(x)的最大值和最小值。
解答:由于三角函数的取值范围在[-1, 1]之间,所以sin(x)和cos(x)的最大值和最小值都是1和-1。
所以函数k(x) = sin(x) + cos(x)的最大值为1 + 1 = 2,最小值为-1 - 1 = -2。
5. 计算函数m(x) = e^x在x = 2处的值。
解答:将x = 2代入函数m(x) = e^x中,得到m(2) = e^2。
e是一个数学常数,约等于2.71828。
所以函数在x = 2处的值为e^2。
通过以上的练习题,我们可以巩固对基本初等函数的理解和运用。
初等函数在数学中的应用非常广泛,它们可以描述各种各样的数学关系和现象。
高一基本初等函数练习题

基本初等函数练习题一.选择题1.函数y =a x -2+log (1)a x -+1(a >0,a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,1) D .(2,2) 2.已知221,0,0x y x y +=>>,且1lo g(1),l o g,1aaa xm n y x+==-则等于( ).A .m n +B .m n -C .()12m n + D .()12m n -3.函数f (x )=log a (a -a x)在其定义域上是( ). A .增函数B .减函数C .不是单调函数D .单调性与a 有关4.已知0<a <1,log log 0a a m n <<,则( ).A .1<n <mB .1<m <nC .m <n <1D .n <m <15.使不等式123x x >成立的x 的取值范围是( ) A .0x <或1x > B .0<x <1 C .x >1D .x <16.函数m y x -=--12的图象与x 轴有交点时,则A .01<≤-mB .10≤≤mC .10≤<mD .0≥m7.函数x y 3log=与()x y 9log31=的图象( )A.关于直线1=x 对称B.关于直线x y =对称C.关于直线1-=y 对称D.关于直线1=y 对称8.若a 2x=2-1,则xxx x aa aa--++33等于( )A .22-1B .2-22C .22+1D .2+19.已知⎩⎨⎧≥--=1,log 1,4)3()(x x x a x a x f ,<是(-∞,+∞)上的增函数,那么a的取值范围是(A )(1,+∞) (B )(-∞,3) (C)⎪⎭⎫⎢⎣⎡3,53 (D)(1,3)10.如果函数y 2(31)(0x x a a a a =-->且1)a ≠在区间[0,)+∞上是增函数,那么实数a 的取值范围是(A )2(0,]3 (B)3(C)(0, (D )3[,)2+∞11.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<12.设()2212(3)2(2),2log (1)2,2x t t x f x x x -+⎧+<⎪=⎨-+≥⎪⎩,则不等式()2f x >的解集为( ). A .(1,+∞) B .(2,+∞)C .(1,2) (2,+∞)D .(1,2] 二.填空题13.设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________.14.已知函数()()b x f x-=2lg (b 为常数),若[)+∞∈,1x 时,()0≥x f 恒成立,则b 的取值范围是___________.15.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (21)=0,则不等式f (l og 4x )>0的解集是______________.16.若log a x=log b y=-21log c2,a,b,c均为不等于1的正数,且x>0,y>0,c=ab,则xy=________________.三.解答题17.如图,ABC∆中,,22,90==︒=∠BCACC一个边长2的正方形由位置Ⅰ沿AB边平行移动到位置Ⅱ,若移动的距离为x,正方形和三角形的公共部分的面积为)(xf,(1)求)(xf的解析式;(2)在坐标系中画出函数)(xfy=的草图;(3)根据图象,指出函数)(xfy=的最大值和单调区间.18.设1x和2x是方程22(3)(9)0x t x t+-+-=的两个实根,定义函数22200612()log()f t x x=+,(1)求函数)(tfy=的解析式及定义域;(2)求函数)(tfy=的单调区间;(3)若()332,2x-∈,试比较()2logf x与()3logf x的大小.19.某型号高脚杯的曲面是由一幂函数在x轴上侧的部分沿着y轴旋转一周得到,高脚杯的高度为9cm,曲面底部的高度为5cm,上缘面所在圆的半径为cm,如图所示.(1)求该幂函数的方程;(2)有种型号的易拉罐的底面半径为3cm,若使高脚杯能够倒套在这种易拉罐上(如图),则应该加长高脚杯的曲面部分.求高脚杯的高度不应小于多少.(精确到小数点后一位数字)20.已知函数()22x ax b f x +=+,且f (1)=52、f (2)=174.(1)求a b 、;(2)判断f (x )的奇偶性;(3)试判断函数在(,0]-∞上的单调性,并证明之; (4)求函数f (x )的最小值.基本初等函数参考答案1. 答案:D2.答案:D3.答案:B 4.答案:A5.答案:A 2. 6.答案:C7.答案:C8.答案:A 提示:在原式的分子、分母上同时乘以x a . 9.答案:D 10.答案:B 11.答案:D12.答案:A 提示:此题中()f x 的解析式看起来很复杂,但形式上不过是一个分段函数.由()2f x >可知: ()122222x x t -<⎧⎪⎨+>⎪⎩或()()2232log 122t x x +≥⎧⎪⎨-+>⎪⎩即:()()10222212x x t t -<⎧⎪⎨+>=+⎪⎩或()()()222332log 10log 1t t x x ++≥⎧⎪⎨->=⎪⎩注意到222131t t +>+>、,函数()22xy t =+和()23logty x +=在定义域上皆为增函数,210x x <⎧∴⎨->⎩或2x x x ≥⎧⎪⎨><⎪⎩1x >.作为选择题,此题用特值法更简单,只需验证2x =和3x =即可. 分段函数是高考考察的热点,应重点注意.13.答案:1ln2111(())(ln )222g g g e===.14.答案:1≤b . 15.答案:x >2或0<x <21 提示:因为f (x )是偶函数,所以f (-21)=f (21)=0.又f (x )在[0,+∞)上是增函数,所以f (x )在(-∞,0)上是减函数.所以f (l og 4x )>0⇒l og 4x >21或l og 4x <-21.解得x >2或0<x <21.16.答案:2117.解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<<-+-≤≤=)64(,)6(21)42(,66)20(,21)(222x x x x x x x x f ;(2)由解析式可得图像如下:(3)由图像可知:3=x 时,函数值最大为3;单调增区间为]3,0[,单调减区间为]6,3[.18.解:(1)首先,()()223490t t ∆=--->,即()()530t t +-<,解得53t -<< .........①再由根与系数的关系可得:123x x t +=-,2129x x t =-所以:()2221212122x x x x x x +=+- ()()22329t t =---2627t t =--+即:22006()log (627)f t t t =--+.由26270t t --+>可解得:93t -<< .........②由①②得定义域为()5,3-.(2)设2627x t t =--+,此函数在(,3]-∞-上为增函数,在[3,)+∞上为减函数,而函数2006log y x =在定义域上为增函数,又因为)(t f y =的定义域为()5,3-,所以)(t f y =的单调递增区间为(5,3]--,单调递减区间为[3,3)-.(3)当()32,1x -∈时,233log log 0x x -<<<,因为()f t 在[3,3)-上为减函数,所以()()23log log f x f x >;当1x =时,23log log 0x x ==,所以()()23log log f x f x =; 当()31,2x ∈时,320log log 3x x <<<,因为()f t 在[3,3)-上为减函数,所以()()23log log f x f x <.19.解:(1)设所求幂函数为a y x =,则由已知可得,当x =954y =-=,所以:(4a=,解得32a =,从而32y x =.(2)当高脚杯上缘面的半径等于3cm 时,曲面部分的高度为323 5.2y =≈cm此时高脚杯的高度为5.2+5=10.2cm ,所以高脚杯的高度最小不应小于10.2cm .20.解:(1)由已知得:2522217424a ba b ++⎧=+⎪⎪⎨⎪=+⎪⎩,解得10a b =-⎧⎨=⎩. (2)由上知()22xxf x -=+.任取x R ∈,则()()()22x xf x f x ----=+=,所以()f x 为偶函数.(3)可知()f x 在(,0]-∞上应为减函数.下面证明: 任取12(,0]x x ∈-∞、,且12x x <,则()()()()1122122222xx x x fx f x ---=+-+()12121122()22x x x x =-+-=()()1212122222122x x x x xx --,因为12(,0]x x ∈-∞、,且12x x <,所以120221x x <<≤,从而12220x x -<,122210xx -<,12220xx >,故()()120f x f x ->,由此得函数()f x 在(,0]-∞上为减函数 (4)因为()f x 在(,0]-∞上为减函数,且()f x 为偶函数,所以f (x )在[0,+∞)上是增函数,所以当0x ≥时,()(0)f x f ≥;又因为()f x 在(,0]-∞上为减函数,所以当0x ≤时,()(0)f x f ≥,从而对于任意的x R ∈,都有:()()000222f x f ≥=+=, 所以()f x 的最小值为2.。
高中数学基本初等函数练习题

(一)指数运算例1 计算:526743642++--- 例2 求值:238、12100-、31()4-、3416()81- 例3 用分数指数幂表示下列各式(其中各字母均为正数)(1)34a a ⋅;(2)a a a ;(2)3324()a b +;(二)指数函数的性质例1 下列函数是指数函数的是( )A .2y x =B .2x y =C .12x y += D .132x y +=⨯ 例2 函数22(0,1)x y a a a -=->≠ 且的图象恒过定点________________例3 比较下列各组数的大小(1)0.245()6-与145()6- (2)1()ππ-与1 (3)2(0.8)-与125()4- 例4 设a 是实数,2()()21x f x a x R =-∈+ (1)证明:不论a 为何实数,()f x 均为增函数;(2)试确定a 的值,使得()f x 为奇函数 例5 已知0a >,且1a ≠,11()12x f x a =--,则()f x 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .函数的奇偶性与a 有关 例6 若函数221x x y aa =+-(01)a a >≠且在[1,1]x ∈-上的最大值为14,求a 的值.三、实战演练 1、化简:3322111143342(0,0)()a b ab a b a b a b ->>=_______________2、已知12102a -=,31032b =,则32410=a b +_______________ 3、函数2(33)x y a a a =-+是指数函数,则a 的值为4、函数()x b f x a -=的图像如图,其中a 、b 为常数,则下列结论正确的是( )A .B .C .D .5、比较大小:①0.70.8a =,0.90.8b =,0.81.2c =;②01, 2.50.4-,0.22-, 1.62.5; 7、已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数 (1)求a 、b 的值;(2)若对任意的,不等式恒成立,求k 的取值范围0,1<>b a 0,1>>b a 0,10><<b a 0,10<<<b a R t ∈0)2()2(22<-+-k t f t t f四、强化训练1、设a =b =c =,,a b c 的大小关系是_______________ 2、设137x =,则( ) A .21x -<<- B .32x -<<- C .10x -<< D .01x <<3、求函数的定义域和值域,并讨论函数的单调性、奇偶性4、已知定义在R 上的函数()22x xa f x =+,a 为常数 (1)如果()()f x f x =-,求a 的值;(2)当()f x 满足(1)时,用单调性定义讨论()f x 的单调性二、题型解析(一)对数计算例1 已知732log [log (log )]0x =,那么12x -=______________例2 计算:(1);(2);(3);(4)(二)对数运算例1 计算下列各式的值(1)1324lg 2493-(2(3) ; 例2 已知 , ,用,表示例3 若3484log 4log 8log log 16m ⋅⋅=,则m =______________例4 设3436x y ==,求21x y +的值四、强化训练1、已知2(3)4log 3233x f x =+,则的值等于例1 在(2)log (6)a x a -=-中,实数a 的取值范围是( )A .6a >或2a <B .26a <<C .23a <<或36a <<D .34a << 例2函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3例3 若4log 15a<(01)a a >≠且,求实数a 的取值范围 2121x x y -=+9log27((2log20.4log 10.21log 35-2log 3a =3log 7b =a b 42log 568(2)(4)(8)(2)f f f f ++++例4 比较下列各组数中两个值的大小:(1),;(2),;(3),例5 求函数22log (56)y x x =-+的定义域、值域、单调区间例6 函数在上的最大值比最小值大,求的值;三、实战演练1、求下列函数的定义域(1)2(1)log (23)x y x x -=-++;(2)y =(01)a a >≠且2、已知log (31)a a -恒为正数,求a 的取值范围3、比较下列各题中两个数值的大小: ; ; ;4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = 5、若log (2)a y ax =-在[0,1]上是减函数,则a 的取值范围是 ( )A .(0,1)B .(0,2)C .(1,2)D .(2,)+∞四、强化训练1、已知函数()f x 满足:4x ≥,则1()()2x f x =;当4x <时()(1)f x f x =+,则2(2log 3)f += A .124 B .112 C .18 D .382、设01a a >≠且,函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 .3、已知01a a >≠且,21(log )()1a a f x x a x=-- (1)求()f x ;(2)判断()f x 的奇偶性与单调性;(3)对于()f x ,当(1,1)x ∈-时,有2(1)(1)0f m f m -+-<,求m 的集合M4、若x 满足21422(log )14log 30x x -+≤,求2()log 2x f x =最大值和最小值2log 3.42log 8.50.3log 1.80.3log 2.7log 5.1a log 5.2a (0,1)a a >≠log a y x =[2,4]1a 22log 3log 3.5和0.30.2log 4log 0.7和0.70.7log 1.6log 1.8和23log 3log 2和。
高一基本初等函数习题(有答案)

1.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( )A .42B .22C .41D .21 2.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则( )A .2,2a b ==B .2a b ==C .2,1a b ==D .a b ==3.已知x x f 26log )(=,那么)8(f 等于( )A .34B .8C .18D .21 4.函数lg y x =( )A . 是偶函数,在区间(,0)-∞ 上单调递增B . 是偶函数,在区间(,0)-∞上单调递减C . 是奇函数,在区间(0,)+∞ 上单调递增D .是奇函数,在区间(0,)+∞上单调递减5.已知函数=-=+-=)(.)(.11lg )(a f b a f xx x f 则若( ) A .b B .b - C .b 1 D .1b- 6.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( )A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值1.若a x f x x lg 22)(-+=是奇函数,则实数a =_________。
2.函数()212()log 25f x x x =-+的值域是__________.3.已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 。
4.设(){}1,,lg A y xy =, {}0,,B x y =,且A B =,则x = ;y = 。
5.计算:()()5log 22323-+ 。
6.函数x x e 1e 1y -=+的值域是__________. 三、解答题2.解方程:(1)192327x x ---⋅= (2)649x x x += 3.已知,3234+⋅-=x x y 当其值域为[1,7]时,求x 的取值范围。
高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。
基本初等函数练习题与答案
5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.
x
|
x
1
,y
|
y
0,
且y
1
2x
1
0,
x
1
;
y
1
8 2 x 1
0, 且y
1
2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3
2log2 3
log2
1 8
2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)
log a
(1
1 a
)
②
log a
(1
a)
log a
(1
1 a
)
③ a1a
必修1第二章_基本初等函数练习题
必修1第二章_基本初等函数练习题§2.1.1 指数与指数幂的运算(1)1. 44(3)-的值是( ).A. 3B. -3C. ±3D. 81 2. 625的4次方根是( ).A. 5B. -5C. ±5D. 25 3. 化简22()b -是( ).A. b -B. bC. b ±D. 1b4. 化简66()a b -= .5. 计算:33(5)-= ;243 . 做一做1. 计算:(1)510a ; (2) 397.2. 计算34a a -⨯和3(8)a +-,它们之间有什么关系? 你能得到什么结论?3. 对比()nnnab a b =与()n nna a bb=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. mmnn a a a ÷= B. m n mn a a a ⋅=C. ()nm m n a a += D. 01n n a a -÷=2. 化简3225的结果是( ).A. 5B. 15C. 25D. 125 3. 计算()1222--⎡⎤-⎢⎥⎣⎦的结果是( ).A .2B .2- C.22D .22-4. 化简2327-= .5. 若102,104mn==,则3210m n-= .做一做1. 化简下列各式: (1)3236()49; (2)233aba b ab.2. 计算:34333324381224a abb a a ab a⎛⎫-÷- ⎪ ⎪++⎝⎭. §2.1.1 指数与指数幂的运算(练习)1. 329的值为( ).A. 3B. 33C. 3D. 729 2.354aa a(a >0)的值是( ).A. 1B. aC. 15aD. 1710a3. 下列各式中成立的是( ).A .1777()nn m m= B .4312(3)3-=-C .33344()x y x y +=+ D .3393=4. 化简3225()4-= .5. 化简2115113366221()(3)()3a b a b a b -÷= .做一做1. 已知32x a b --=+, 求42362x a x a ---+的值.2. 探究:()2n n n n a a a +=时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)1. 函数2(33)xy a a a =-+是指数函数,则a 的值为( ). A. 1 B. 2 C. 1或2 D. 任意值 2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1) B. (0,2) C. (2,1) D. (2,2) 3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是().4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 .做一做 1. 求函数y =1151xx --的定义域2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x(b >0,b ≠1)的图象关于y 轴对称,则有( ). A. a >b B. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x-1的定义域、值域分别是( ). A. R , R B. R ,(0,)+∞ C. R ,(1,)-+∞ D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减C. 若a2>a21-,则a >1 D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-();0.7633()0.753-().5. 在同一坐标系下,函数y =a x , y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 . 做一做1. 已知函数f (x )=a -221x+(a ∈R),求证:对任何a R∈, f (x )为增函数.2. 求函数2121xxy -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)1. 若2log 3x =,则x =( ). A. 4 B. 6 C. 8 D. 92. (1)log (1)n n n n +-++= ( ).A. 1B. -1C. 2D. -23. 对数式2lo g (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5) 4. 计算:21log(322)++= .5. 若log (21)1x +=-,则x =________,若2l og 8y =,则y =___________.做一做1. 将下列指数式化成对数式,对数式化成指数式. (1)53243=; (2)51232-=; (3)430a=(4)1() 1.032m=; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =. 2. 计算:(1)9log 27; (2)3log 243; (3)43log 81;(3)(23)log (23)+-; (4)345log 625.§§2.2.1 对数与对数运算(2)1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+= D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ). A .x =a +3b -c B .35ab x c=C .35ab x c=D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x = 4. 计算:(1)99log 3log 27+= ; (2)2121log log 22+=.5. 计算:315lg lg523+=.做一做 1. 计算: (1)lg27lg 83lg 10lg 1.2+-;(2)2lg 2lg 2lg 5lg 5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b-=.§2.2.1 对数与对数运算(3)1. 25log ()5a -(a ≠0)化简得结果是( ). A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ). A. 3 B. 23 C. 22 D. 32 3. 已知35a b m ==,且112a b +=,则m 之值为( ).A .15B .15C .±15D .2254. 若3a =2,则log 38-2log 36用a 表示为 .5. 已知lg 20.3010=,lg1.07180.0301=,则lg 2.5= ;1102= .做一做 1. 化简: (1)222lg 5lg 8lg 5lg 20(lg 2)3+++;(2)()()24525log 5+log 0.2log 2+log 0.5. 2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是().2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是().A. (2,)+∞B. (0,2) B. 1(,)2+∞ D. 1(0,)24. 比大小: (1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8.5. 函数(-1)log (3-)x y x =的定义域是 . 做一做1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域: (1)2log (35)y x =-;(2)0.5log 43y x =-.§2.2.2 对数函数及其性质(2)1. 函数0.5log y x =的反函数是( ).A.0.5log y x =-B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2x y =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减 3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x =>C. (0)y x x =->D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x=,4log a y x =的图象,则底数之间的关系为 .做一做1. 现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 30.477,lg 20.301==). 2. 探究:求(0)ax b y ac cx d +=≠+的反函数,并求出两个函数的定义域与值域,通过对定义域与值域的比较,你能得出一些什么结论? §2.2 对数函数(练习) 1. 下列函数与y x =有相同图象的一个函数是( ) A. 2y x= B. 2xy x=C. log (01)a xy aa a =>≠且 D. log xa y a =2. 函数12log (32)y x =-的定义域是( ). A. [1,)+∞ B. 2(,)3+∞ C. 2[,1]3D. 2(,1]33. 若(ln )34f x x =+,则()f x 的表达式为( ) A. 3ln x B. 3ln 4x + C. 3x e D. 34x e +4.函数2()lg (8)f x x =+的定义域为 ,值域为 .5. 将20.3,2log 0.5,0.5log 1.5由小到大排列的顺序是 . 做一做1. 若定义在区间(1,0)-内的函数2()lo g (1)a f x x =+满足()0f x >,则实数a 的取值范围.2. 已知函数211()log 1x f x x x+=--,求函数()f x 的定义域,并讨论它的奇偶性和单调性.§2.3 幂函数1. 若幂函数()f x x α=在(0,)+∞上是增函数,则( ).A .α>0 B .α<0 C .α=0 D .不能确定2. 函数43y x =的图象是().A. B. C. D.3. 若11221.1,0.9a b -==,那么下列不等式成立的是( ).A .a <l<bB .1<a <bC .b <l<aD .1<b <a4. 比大小:(1)11221.3_____1.5;(2)225.1______5.09--.5. 已知幂函数()y f x =的图象过点(2,2),则它的解析式为 . 做一做1. 已知幂函数f (x )=13222pp x -++(p ∈Z )在(0,)+∞上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x ). 2. 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比. (1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率. 第二章 基本初等函数复习 1. 函数2322x x y --+=的单调递增区间为( ).A. 3(,)2-∞ B. 3(,)2+∞ C. 3(,)2-∞- D. 3(,)2-+∞2. 设2(log )2(0)xf x x =>,则(3)f 的值是( ).A. 128B. 256C. 512D. 8 3. 函数22log (1)y x x =++的奇偶性为( ).A .奇函数而非偶函数B .偶函数而非奇函数C .非奇非偶函数D .既奇且偶函数4. 函数2y x -=在区间1[,2]2上的最大值是 .5. 若函数12(lo g )x y a =为减函数,则a 的取值范围是 .做一做1. 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y 元,存期为x ,写出本利和y 随存期x 变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)? 2. 某公司经过市场调查,某种商品在最初上市的几个月内销路很好,几乎能将所生产的产品全部销售出去. 为了追求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后设法将该商品的生产量翻两番,求平均每月生产量的增长率.课堂练习 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( ) A .41B .21C .2D .42.下列函数是幂函数的是( )A、22y x = B 、3y x x =+ C 、3xy = D 、12y x = 3.计算331log 12log 22-=( )A. 3B. 23C.21 D.34.在区间),0(+∞上不是增函数的是( ) A.2xy = B x y log2=C.xy 2=D.122++=x x y5.方程lg lg(3)1x x +-=的解为 ( ) A 、5或-2 B 、5 C 、-2 D 、无解 6.函数)1(log )(++=x a x f a x在]1,0[上的最大值与最小值之和为a ,则a 的值为 ( )A. 41B. 21C. 2D. 47函数22()log (2)x f x x =-的定义域是 .8.若lg2=a ,lg3=b ,则log 512=_____.9.已知函数)]91(f [f ,)0x (20)(x x log )x (f x3则,,⎩⎨⎧≤>=的值为10.函数(2)x y a =-在定义域内是减函数,则a 的取值范围是 11.计算:4160.2503432162322428200549-⨯+--⨯--()()()()12.设函数421()log 1x x f x x x -⎧<=⎨>⎩, 求满足()f x =41的x 的值. 13.已知()2x f x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.14.画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3x -1|=k 无解?有一解?有两解?15.已知定义域为R 的函数12()22xx b f x +-+=+是奇函数。
高一数学基本初等函数练习题
高一数学基本初等函数练习题高一网免费发布高一数学下册练习册答案:基本初等函数,更多高一数学下册练习册答案相关信息请访问高一网。
2.1指数函数211指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2某(某∈N).5.(1)2.(2)5.6.8a7.7.原式=|某-2|-|某-3|=-1(某<2),2某-5(2≤某≤3),1(某>3).8.0.9.2022.10.原式=2y某-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.211指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)某∈R|某≠0,且某≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.211指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.47288,00885.10.提示:先由已知求出某-y=-(某-y)2=-(某+y)2-4某y=-63,所以原式=某-2某y+y某-y=-33.11.23.212指数函数及其性质(一)1.D.2.C.3.B.4.AB.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当某=2时,y有最小值0;当某=4时,y有值6.10.a=1.11.当a>1时,某2-2某+1>某2-3某+5,解得{某|某>4};当0212指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.>.(4)>.5.{某|某≠0},{y|y>0,或y1=π0>0.90.98.8.(1)a=0.5.(2)-4某4>某3>某1.10.(1)f(某)=1(某≥0),2某(某<0).(2)略.11.am+a-m>an+a-n.212指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)某≤0.08,由于0.51.91=0.2667,所以某≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815某(1+2%)3≈865(人).10.指数函数y=a某满足f(某)·f(y)=f(某+y);正比例函数y=k某(k≠0)满足f(某)+f(y)=f(某+y).11.34,57.2.2对数函数221对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)某=z2y,所以某=(z2y)2=z4y(z>0,且z≠1).(2)由某+3>0,2-某<0,且2-某≠1,得-310.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以e某,去分母解得e2某=3,则某=12ln3. 221对数与对数运算(二)1.C.2.A.3.A.4.03980.5.2lo某-loga某-3logaz.6.4.7.原式=log2748某12÷142=log212=-12.8.由已知得(某-2y)2=某y,再由某>0,y>0,某>2y,可求得某y=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.221对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.25.10.a=log34+log37=log328∈(3,4).11.1.222对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤某≤2.8.提示:注意对称关系.9.对loga(某+a)<1进行讨论:①当a>1时,0a,得某>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(某)=2某即某2+lga·某+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.222对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log2047.logbab0得某>0.(2)某>lg3lg2.9.图略,y=log12(某+2)的图象可以由y=log12某的图象向左平移2个单位得到.10.根据图象,可得0222对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2某.10.可以用求反函数的方法得到,与函数y=loga(某+1)关于直线y=某对称的函数应该是y=a某-1,和y=loga某+1关于直线y=某对称的函数应该是y=a某-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-某)+f(-1+某)=0,证明略.23幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(某)=某2.8.图象略,由图象可得f(某)≤1的解集某∈[-1,1].9.图象略,关于y=某对称.10.某∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.某>1.13.④.14.258.提示:先求出h=10.15.(1)-1.(2)1.16.某∈R,y=12某=1+lga1-lga>0,讨论分子、分母得-117.(1)a=2.(2)设g(某)=log12(10-2某)-12某,则g(某)在[3,4]上为增函数,g(某)>m对某∈[3,4]恒成立,m18.(1)函数y=某+a某(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=某+c某(c>0)在[1,2]上是减函数,所以当某=1时,y有值1+c;当某=2时,y有最小值2+c2.19.y=(a某+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,yma 某=(a+1)2-2=14,此时a=3;当020.(1)F(某)=lg1-某某+1+1某+2,定义域为(-1,1).(2)提示:假设在函数F(某)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(某1,y),B(某2,y)(某1≠某2),则f(某1)-f(某2)=0,而f(某1)-f(某2)=lg1-某1某1+1+1某1+2-lg1-某2某2+1-1某2+2=lg(1-某1)(某2+1)(某1+1)(1-某2)+某2-某1(某1+2)(某2+2)=①+②,可证①,②同正或同负或同为零,因此只有当某1=某2时,f(某1)-f(某2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)。
必修一基本初等函数练习题(含详细答案解析)
必修一基本初等函数练习题(含详细答案解析)一、选择题1.对数式log32-(2+3)的值是().A.-1 B.0 C.1 D.不存在1.A解析:log32-(2+3)=log32-(2-3)-1,故选A.2.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是().A B C D2.A解析:当a>1时,y=log a x单调递增,y=a-x单调递减,故选A.3.如果0<a<1,那么下列不等式中正确的是().A.(1-a)31>(1-a)21B.log1-a(1+a)>0C.(1-a)3>(1+a)2D.(1-a)1+a>13.A解析:取特殊值a=21,可立否选项B,C,D,所以正确选项是A.4.函数y=log a x,y=log b x,y=log c x,y=log d x的图象如图所示,则a,b,c,d的大小顺序是().A.1<d<c<a<bB.c<d<1<a<bC.c<d<1<b<aD.d<c<1<a<b4.B解析:画出直线y=1与四个函数图象的交点,它们的横坐标的值,分别为a,b,c,d的值,由图形可得正确结果为B.(第4题)5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34 B .8 C .18 D .21 5.D6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥36.D7.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R7.C+∞).8.已知-1<a <0,则( ).A .(0.2)a <a⎪⎭⎫⎝⎛21<2aB .2a <a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a8.B9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫ ⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,9.C解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)10.B解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数 y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数 y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.满足2-x >2x 的 x 的取值范围是 .11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 12.参考答案:f (3)<f (4).解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4). 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 .16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 解析:∵ f (x )为奇函数,三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.17.参考答案:a =100,b =10.解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100.18.已知函数f (x )=lg (ax 2+2x +1) .(1)若函数f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围.18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值.②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.求下列函数的定义域、值域、单调区间: (1)y =4x +2x +1+1; (2)y =2+3231x -x ⎪⎭⎫⎝⎛.19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.20.参考答案:(1){x |-1<x<1};(2)奇函数;(3)当0<a<1时,-1<x<0;当a>1时,0<x<1.(2)设F(x)=f(x)-g(x),其定义域为(-1,1),且F(-x)=f(-x)-g(-x)=log a(-x+1)-log a(1+x)=-[log a(1+x)-log a(1-x)]=-F(x),所以f(x)-g(x)是奇函数.(3)f(x)-g(x)>0即log a(x+1)-log a(1-x)>0有log a(x+1)>log a(1-x).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1第二章《基本初等函数》练习
一、选择题
1、下列四个函数中,与y=x 表示同一函数的是( ) A 、2)
(x y =
B 、3
3x y =
C 、2
x
y =
D 、x
x
y 2
=
2、对于0,1a a >≠,下列说法中,正确的是( )
①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =。
A 、①②③④
B 、①③
C 、②④
D 、② 3、设)(x f 是R 上的任意函数,下列叙述正确的是( )
A 、)()(x f x f -是奇函数;
B 、)()(x f x f -是奇函数;
C 、)()(x f x f -+是偶函数;
D 、)()(x f x f -是偶函数
4、如图的曲线是幂函数n x y =在第一象限内的图象. 已知n 分别取2±,2
1±
四个值,
与曲线1c 、2c 、3c 、4c 相应的n 依次为( ) A 、2,2
1,2
1-
,2- B 、2,
2
1,2-,2
1-
C 、 21-
,2-,2,2
1 D 、 2-,2
1-,
2
1,2
5、函数x y 2log 2+=,1≥x 的值域为( )
A 、()2,+∞
B 、(),2-∞
C 、[)2,+∞
D 、[)3,+∞
6、设 1.5
0.90.4812314,8,2y y y -⎛⎫
=== ⎪
⎝⎭
,则( )
A 、312y y y >>
B 、213y y y >>
C 、132y y y >>
D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范围是( )
A 、52a a ><或
B 、2335a a <<<<或
C 、25a <<
D 、34a <<
4
2
5
c 4
c 3
c 2
c 1
8、计算lg52lg2)lg5()lg2(22∙++等于( )
A 、0
B 、1
C 、2
D 、3 9、已知幂函数)(x f 过点(2,2
2),则)4(f 的值为( )
A 、
2
1 B 、 1 C 、
2 D 、8
10、若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )
A
、
4
B
、
2
C 、
14
D 、
12
二、填空题
11、函数)23(log 3
2-=x y 的定义域为 。
12、函数2)23x (lg )x (f +-=恒过定点 。
13、计算:453log 27log 8log 25⨯⨯= 。
14、已知函数⎩
⎨
⎧>≤≤-=)
2(,2)20(,
4)(2x x x x x f ,则=)2(f ;若8)(0=x f ,则0x = 。
15、函数⎪⎩
⎪
⎨⎧>+-≤≤+≤+=)1(,5)10(,
3)0(,
32)(x x x x x x x f 的最大值是 。
三、解答题
16、试讨论函数f(x)=log a 1
1-+x x (a >0且a ≠1)在(1,+∞)上的单调性,并予以证明。
17、已知函数1])2
1
[(log )x (f x 2
1-=,
(1)求f(x)的定义域; (2)讨论函数f(x)的增减性。
18、已知函数)1a (log )x (f x a -= )1a 0a (≠>且, (1)求f(x)的定义域; (2)讨论函数f(x)的增减性。