2020年北京市朝阳区初三期末数学考试逐题解析

合集下载

朝阳区初三数学期末试卷及答案

朝阳区初三数学期末试卷及答案

北京市朝阳区2020~2020学年度第一学期期末检测九年级数学试卷(选用) 2020.1(考试时间120分钟 满分120分) 成绩______________一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列交通标志中,既是轴对称图形又是中心对称图形的是ABCD2.下列事件为必然事件的是A. 任意掷一枚均匀的硬币,正面朝上B. 篮球运动员投篮,投进篮筐C. 一个星期有七天D. 打开电视机,正在播放新闻3.在平面直角坐标系中,点B 的坐标为(3,1),则点B 关于原点的对称点的坐标为A. (3,-1)B. (-3,1)C. (-1,-3)D. (-3,-1)4.如图,AC 与BD 相交于点E ,AD ∥BC .若AE=2,CE=3,AD=3,则BC 的长度是 A. 2 B. 3 C. 4.5 D. 65.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4,则sinA 的值是A. 43B. 34C. 53D. 54第4题图 第5题图第6题图6.如图,反比例函数2yx=-的图象上有一点A,过点A作AB⊥x轴于B,则AOBSV是A.12B. 1C. 2D. 47.如图,在⊙O中,∠BOC=100°,则∠A等于A. 100°B. 50°C. 40°D. 25°第7题图第8题图8.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A’OB’,若∠AOB=15°,则∠AOB’的度数是A. 25°B. 30°C. 35°D. 40°9.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③BCDEABAE=,④ABAEACAD=,⑤AEADAC⋅=2,使△ADE与△ACB一定相似的有A. ①②④B. ②④⑤C. ①②③④D. ①②③⑤图①图②第9题图第10题图10.小阳在如图①所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的A. 点QB. 点PC. 点MD. 点N二、填空题(本题共18分,每小题3分)11.在一个不透明的袋子中,装有2个红球和3个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是 .12.如图,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则»AB 的长为 .13.已知y 是x 的反比例函数,且在每个象限内,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 .FE ABCDBOA第12题图 第14题图 第15题图 第16题图14.如图,矩形ABCD 中,点E 是边AD 的中点,BE 交对角线AC 于点F ,则△AFE 与△BCF 的面积比等于 .15.如图,⊙O 的半径为6,OA 与弦AB 的夹角是30°,则弦AB 的长度是 .16.如图,已知反比例函数2y x=的图象上有一组点B 1,B 2,…,B n ,它们的横坐标依次增加1,且点B 1横坐标为1.“①,②,③…”分别表示如图所示的三角形的面积,记S 1=①-②,S 2=②-③,…,则S 7的值为 ,S 1+S 2+…+S n = (用含n 的式子表示).三、解答题(本题共72分,第17-26小题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:12cos45tan 60sin302︒-︒+︒--.18.如图,在Rt △ABC 中,∠C=90°,D 是AC 边上一点,DE ⊥AB 于点E .若DE=2,BC=3,AC=6,求AE 的长.19.如图,点A 的坐标为(3,2),点B 的坐标为(3,0).作如下操作:①以点A 为旋转中心,将△ABO 顺时针方向旋转90°,得到△AB 1O 1;文明 和谐 自由 平等A B C D②以点O 为位似中心,将△ABO 放大,得到△A 2B 2O ,使相似比为1∶2,且点A 2在第三象限. (1)在图中画出△AB 1O 1和△A 2B 2O ;(2)请直接写出点A 2的坐标:__________.20.党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家..层面的价值目标; “自由、平等、公正、法治”是社会..层面的价值取向; “爱国、敬业、诚信、友善”是公民个人....层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如右图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回...,再随机抽取一张卡片. (1)小光第一次抽取的卡片上的文字是国家..层面价值目标的概率是 ; (2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国.家.层面价值目标、一次是社会..层面价值取向的概率(卡片名称可用字母表示).21.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,点A 的横坐标为2,AC ⊥x 轴于点C ,连接BC. (1)求反比例函数的表达式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 的面积是△ABC 面积的一半,请直接写出点P 的坐标.22.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO ⊥CD 于点A ,求间径就是要求⊙O 的直径.再次阅读后,发现AB=______寸,CD=____寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O 的直径.图①图②23. 如图,在一次户外研学活动中,老师带领学生去测一条东西流向的河流的宽度(把河两岸看做平行线,河宽即两岸之间的垂线段的长度).某同学在河南岸A 处观测到河对岸水边有一棵树P ,测得P 在A 北偏东60°方向上,沿河岸向东前行20米到达B 处,测得P 在B 北偏东45°方向上.求河宽(结果保留一位小数.1.4142≈, 1.7323≈).24. 如图,已知△ABC 是等边三角形,以AB 为直径作⊙O ,交BC 边于点D ,交AC 边于点F ,作DE ⊥AC 于点E . (1)求证:DE 是⊙O 的切线;(2)若△ABC 的边长为4,求EF 的长度. 25.如图①,在Rt △ABC 中,∠C=90°.将△ABC 绕点C 逆时针旋转得到△A ’B ’C ,旋转角为α,且0°<α<180°.在旋转过程中,点B ’可以恰好落在AB 的中点处,如图②. (1)求∠A 的度数;(2)当点C 到AA ’的距离等于AC 的一半时,求α的度数.FE D OA B图①图②备用图26. 有这样一个问题:探究函数262--=xxy的图象与性质.小慧根据学习函数的经验,对函数262--=xxy的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:(1)函数262--=xxy的自变量x的取值范围是___________;(2)列出y与x的几组对应值.请直接写出m的值,m=__________;x …-3 -2 0 1 1.5 2.5 m 4 6 7 …y … 2.4 2.5 3 4 6 -2 0 1 1.5 1.6 …(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出该函数的两条性质:①;②.x–1–2–3–412345678–1–2–3–412345678O27. 我们将能完全覆盖某平面图形的最小圆...称为该平面图形的最小覆盖圆......例如线段AB的最小覆盖圆就是以线段AB为直径的圆.(1)请分别作出图①中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);80°AB100°B C图①(2)三角形的最小覆盖圆有何规律?请直接写出你所得到的结论(不要求证明);(3)某城市有四个小区E F G H,,,(其位置如图②所示),现拟建一个手机信号基站,为了使这四个小区居民的手机都能有信号,且使基站所需发射功率最小(距离越小,所需功率越小),此基站应建在何处?请写出你的结论..并说明研究思路.28.如图①,在平面直角坐标系中,直径为32的⊙A经过坐标系原点O(0,0),与x轴交于点B,与y轴交于点C(0,3).(1)求点B的坐标;(2)如图②,过点B作⊙A的切线交直线OA于点P,求点P的坐标;(3)过点P作⊙A的另一条切线PE,请直接写出切点E的坐标.图①图②33.88°48°48.12°44°54°51°50°31°HG图②29.在数学活动课上,老师提出了一个问题,希望同学们进行探究.在平面直角坐标系中,若一次函数6y kx =+的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数xy 6=的图象交于C 、D 两点,则AD 和BC 有怎样的数量关系?同学们通过合作讨论,逐渐完成了对问题的探究.小勇说:我们可以从特殊入手,取1k =-进行研究(如图①),此时我发现AD=BC .小攀说:在图①中,分别从点C 、D 两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时1k ≠- ,这一结论仍然成立,即_______的面积=_______的面积,此面积的值为____.小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与AD 和BC 都相等,这条线段是 .xy123456654321I FA BH G DC Oxy123456654321IF A BH GDCO图① 图②(1)请完成以上填空;明AD=BC ;小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,AD BC =总是成立的,但我发现当k 的取值不同时,这两个交点有可能在不同象限,结论还成立吗?(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.图北京市朝阳区2020~2020学年度第一学期期末检测 九年级数学试卷答案 2020.1(考试时间120分钟 满分120分) 成绩______________三、解答题(本题共72分,第17-26小题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17. 解:22130sin 60tan 45cos --︒+︒-︒ 21213222-+-⨯= …………………………………………………………………………4分32-= ………………………………………………………………………………………5分18.解:∵︒=∠90C ,AB DE ⊥, ∴︒=∠=∠90C AED . …………………………………………………………………………1分又∵A A ∠=∠, ∴AED∆∽ACB ∆. ……………………………………………………………………………2分 ∴CB EDCAEA =. ……………………………………………………………………………………3分又∵2=DE ,3=BC ,6=AC , ∴326=EA . ………………………………………………………………………………………4分 ∴4=AE . ………………………………………………………………………………………5分 19.(1)每个三角形2分 …………………………………………………………………………4分(2)点2A 的坐标为()4,6--……………………………………………………………………5分20. 解:(1)21……………………………………………………………………………………2分 (2)…………………4分共有12种情况,其中符合题意的有8种,∴32=P ………………………………………………………………………………5分21. 解:(1)将2=x 代入x y 2=中,得422=⨯=y .A B CD B A C D C A B D D A B C 第一次第二次∴点A 坐标为()42,. …………………………………………………………………1分∵点A 在反比例函数xky =的图象上, ∴842=⨯=k . ………………………………………………………………………2分∴反比例函数的表达式为xy 8=. ……………………………………………………3分(2)()42,P 或()42--,. ……………………………………………………………5分22.解:(1)1;10 ………………………………………………………………………………2分(2)连接CO , ∵CD BO ⊥,∴521==CD CA .………………………………………………………3分设x CO =,则1-=x AO , 在Rt CAO ∆中,︒=∠90CAO , ∴222CO CA AO =+.∴()22251x x =+-.……………………………………………………4分解得13=x , ∴⊙O的直径为2623. 解:过P作AB PC ⊥于点C ,……………………………………………………………1分 ∴︒=∠90ACP .由题意可知,︒=∠30PAC ,︒=∠45PBC . ∴︒=∠45BPC .∴PC BC =.……………………………………………2分在Rt ACP ∆中,PC PACPCAC 3tan =∠=. ………3分 ∵20=AB ,∴PC AC PC 320==+. ∴……4分3.27≈(是否进行分母有理化可能造成差异,27.2~27.4均正确)………………5分答:河流宽度约为3.27米. 24.(1)证明:连接OD , ∵ABC ∆是等边三角形, ∴︒=∠=∠60C B . ∵OD OB =, ∴︒=∠=∠60B ODB…1分∵AC DE ⊥, ∴︒=∠90DEC .∴︒=∠30EDC . ∴︒=∠90ODE . ∴OD DE ⊥于点D . ∵点D 在⊙O 上, ∴DE 是的切线. 2分 (2)连接AD ,BF ,∵AB 为⊙O 直径,∴︒=∠=∠90ADB AFB .∴BF AF ⊥,BD AD ⊥. ∵ABC ∆是等边三角形,∴221==BC DC ,221==AC FC . ………………………………………………………3分∵︒=∠30EDC , ∴121==DC EC .………………………………………………………………………………4分 ∴1=-=EC FC FE . …………………………………………………………………………5分(说明:其它方法请相应对照给分)25.解:(1)将ABC ∆绕点C 逆时针旋转得到C B A ''∆,旋转角为α,∴'CB CB = . ……………………………………………………………………………………1分∵点'B 可以恰好落在AB 的中点处, ∴点'B 是AB 的中点. ∵︒=∠90ACB , ∴'21'BB AB CB ==.……………………………………………………………………………2分∴''BB CB CB ==.即'CBB ∆是等边三角形. ∴︒=∠60B . ∵︒=∠90ACB , ∴︒=∠30A . ……………………………………………………………………………………3分 (2)如图,过点C 作'AA CD ⊥于点D ,点C 到'AA 的距离等于AC 的一半,即AC CD 21=.在Rt ADC ∆中,︒=∠90ADC ,21sin ==∠AC CD CAD ,∴︒=∠30CAD .…………………………………………4分∵'CA CA =,∴︒=∠=∠30'CAD A .∴︒=∠120'ACA ,即︒=120α. ………………………5分 26. (1)2≠x ……………………………………………………………………………………1分 (2)3=m …………………………………………………………………………………………2分(3)如图所示:………………………………………3分(4)可以从对称性、增减性、渐近性、最值、连续性、与坐标轴交点、图象所在象限面作………5分27(1)如图所示:……………………2分(2)锐角三角形的最小覆盖圆是其外接圆,钝角三角形的最小覆盖圆是以其最长边为直径的圆,直角三角形的最小覆盖圆二者均可.………………………………………………………4分(说明:写出三角形的最小覆盖圆是其外接圆,或是以其最长边为直径的圆,各给1分)(3)结论:HEF∆的外接圆的圆心为手机信号基站所在位置.…………………………… 5分研究思路:a.手机信号基站应建在四边形EFGH的最小覆盖圆的圆心处;所以先考虑四边形EFGH的外接圆,因为对角不互补,所以该四边形没有外接圆;b.作四边形对角线,将四边形分割成两个三角形,考虑其中一个三角形的最小覆盖圆能否覆盖另一个三角形,从而将四边形最小覆盖圆问题转化为三角形最小覆盖圆问题来研究;…………………………………………………………………………………6分c.若沿GE分割,因为︒<∠+∠180GFEGHE,所以这两个三角形的最小覆盖圆均不能完全覆盖另一个三角形;d.若沿HF分割,因为︒>∠+∠180HGFHEF,所以存在一个三角形的最小覆盖圆能完全覆盖另一个三角形的情况,又因为︒<∠90HEF,所以HEF∆的最小覆盖圆,即其外接圆能完全覆盖HGF∆,因此HEF∆的外接圆的圆心为手机信号基站所在位置.……7分(说明:1.学生的答案只要涉及到将四边形问题转化为三角形问题,可以给第6分;2.若学生答案含有以下情况之一,并借此分析沿GE分割和沿HF分割的差异性,均可以给第7分:①比较四边形对角和的数量关系;②同弧所对的圆周角的度数关系;③画出四个三角形的最小覆盖圆,通过观察或测量,比较大小后发现HEF∆的外接圆的圆心为手机信号站所在位置.3.重在判断学生思维的方向,不过多的要求语言的规范和思维的严谨.)28.解:(1)如图①,连接BC .∵︒=∠90BOC , ∴BC 是⊙A 的直径. ……………………………1分∴32=BC , ∵()30,C , ∴3=OC . ∴3=OB .∴()03,B .………………………………………2分 (2)如图②,过点P 作x PD ⊥轴于点D . ∵PB 为⊙A 的切线, ∴︒=∠90PBC .在Rt BOC ∆中,()03,B ,()3,0C , ∴33tan ==∠OB OC OBC . ∴︒=∠30OBC .…………………………………3分∴︒=∠30AOB .∴︒=∠-∠-∠-︒=∠30180ABP ABO POB OPB . ∴3==BP OB .………………………………………………………………………4分 在Rt PBD ∆中,︒=∠90PDB ,︒=∠60PBD ,3=BP ,∴23=BD ,323=PD .∵3=OB ,∴29=+=BD OB OD .∴⎪⎭⎫ ⎝⎛323,29P .…………………………………………………………………………5分 (3)图①图②⎪⎭⎫ ⎝⎛323,23E . ……………………………………………………………………7分 29. (1)OIDG 6GH (2如图①,连接GH ,GC ∵点C ,D ∴GDIO FCHO S S 矩形矩形=.∴GDIO FCHO S S 矩形矩形2121=∴GHD CGH S S ∆∆=.∴点C ,D到GH ∴GH . 分∴四边形BCHG 和四边形GHAD 都是平行四边形. ∴GHBC =,DA GH =. ……………………………………………………………………5分 即BC AD =. (3)GH , ∵点C ,D ∴GDIO FCHO S S 矩形矩形=∴FCHO S S 矩形矩形2121=∴GHD CGH S S ∆∆=.∴点C ,D 到GH ∴CD ∥GH . ∴四边形BCHG ∴GH BC =,GH =即BC AD =。

2020-2021北京市初三数学上期末试题含答案

2020-2021北京市初三数学上期末试题含答案

2020-2021北京市初三数学上期末试题含答案一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R 2.把抛物线y =2(x ﹣3)2+k 向下平移1个单位长度后经过点(2,3),则k 的值是( ) A .2 B .1C .0D .﹣13.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣14.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( ) A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .6.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( ) A .13B .14C .15D .167.抛物线2y x 2=-+的对称轴为 A .x 2=B .x 0=C .y 2=D .y 0=8.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A.68°B.58°C.72°D.56°9.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-10.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.11.如图,AB为⊙O的直径,四边形ABCD为⊙O的内接四边形,点P在BA的延长线上,PD与⊙O相切,D为切点,若∠BCD=125°,则∠ADP的大小为()A.25°B.40°C.35°D.30°12.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为1 3D.“概率为1的事件”是必然事件二、填空题13.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).14.如图,AB 为O e 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O e 的半径为______.15.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.16.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下: 公交车用时 公交车用时的频数 线路 3035t ≤≤ 3540t <≤ 4045t <≤ 4550t <≤ 合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.17.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.18.一元二次方程22x 20-=的解是______.19.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.20.已知扇形的面积为12πcm 2,半径为12cm ,则该扇形的圆心角是_______.三、解答题21.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.22.如图,在⊙O中,点C为»AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE ⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?25.2019年第六届世界互联网大会在乌镇召开,小南和小西参加了某分会场的志愿服务工作,本次志愿服务工作一共设置了三个岗位,分别是引导员、联络员和咨询员.请你用画树状图或列表法求出小南和小西恰好被分配到同一个岗位进行志愿服务的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A.【点睛】本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.3.B解析:B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.4.D解析:D【解析】【分析】将a的值代入函数表达式,根据二次函数的图象与性质可判断A、B,将x=1代入函数表达式可判断C,当a=0时,y=-4x是一次函数,与x轴只有一个交点,可判断D错误.【详解】当1a =-时,()224125=--+=-++y x x x , ∴当2x =-时,函数取得最大值5,故A 正确; 当1a =时,()224125y x x x =--=--, ∴函数图象开口向上,对称轴为2x =, ∴当2x ≥时,y 随x 的增大而增大,故B 正确; 当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误; 故选D. 【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键.5.D解析:D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确. 故选D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.A解析:A 【解析】 【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可. 【详解】 画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 =.故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.B解析:B【解析】【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,∴对称轴是直线x=0,即为y轴.故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.8.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.10.D解析:D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别11.C解析:C【解析】【分析】连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.【详解】连接AC,OD.∵AB是直径,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD与⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.12.D解析:D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确.故选D.二、填空题13.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.14.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:解析:5【解析】【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【详解】解:连接OD,∵CD⊥AB于点E,∴DE=CE= 12CD=12×8=4,∠OED=90°,由勾股定理得:2222345OE DE+=+=,即⊙O的半径为5.故答案为:5.【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.15.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二解析:(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差,据此即可列出方程.【详解】根据题意得:(x+1)2 -1=24,即:(x+1)2 =25.故答案为(x+1)2 =25.【点睛】本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.16.C【解析】分析:样本容量相同观察统计表可以看出C线路上的公交车用时超过分钟的频数最小即可得出结论详解:样本容量相同C 线路上的公交车用时超过分钟的频数最小所以其频率也最小故答案为C 点睛:考查用频率估计解析:C 【解析】分析:样本容量相同,观察统计表,可以看出C 线路上的公交车用时超过45分钟的频数最小,即可得出结论.详解:样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故答案为C .点睛:考查用频率估计概率,读懂统计表是解题的关键.17.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题解析:1a 4>-且a 0≠ 【解析】 【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围. 【详解】Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,解得:1a 4>-, Q 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠,故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.18.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.19.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1 男2 女1 女2 男1 (男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30°解析:30°【解析】设圆心角为n°,由题意得:212360nπ⨯=12π,解得:n=30,故答案为30°.三、解答题21.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.22.(1)见解析;(2)【解析】【分析】(1)连接OA,由»»CA CB,得CA=CB,根据题意可得出∠O=60°,从而得出=∠OAD=90°,则AD与⊙O相切;(2)由题意得OC⊥AB,Rt△BCE中,由三角函数得AB的长.【详解】(1)证明:如图,连接OA,∵»»=CA CB,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE22BC CE2284-3∴AB=2BE=3∴弦AB的长为3.【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.23.(1)证明见解析;(2)阴影部分的面积为8833π.【解析】【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD ﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S△OCD=43422⋅⨯=CD OC=83,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=16×π×OC2=83π,∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣83π,∴阴影部分的面积为83﹣83π.24.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.25.1 3【解析】【分析】分别用字母A,B,C代替引导员、联络员和咨询员岗位,利用列表法求出所有等可能结果,再根据概率公式求解可得.【详解】分别用字母A,B,C代替引导员、联络员和咨询员岗位,用列表法列举所有可能出现的结果:的结果中,小南和小西恰好被分配到同一个岗位的结果有3种,即AA,BB,CC,∴小南和小西恰好被分配到同一个岗位进行志愿服务的概率=39=13.【点睛】考查随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.。

2020 年新人教版九年级上期末考试数学试题含答案解析

2020 年新人教版九年级上期末考试数学试题含答案解析

2020-2021学年北京市朝阳区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.二次函数y=(x﹣1)2﹣3的最小值是()A.2 B.1 C.﹣2 D.﹣32.下列事件中,是必然事件的是()A.明天太阳从东方升起B.射击运动员射击一次,命中靶心C.随意翻到一本书的某页,这页的页码是奇数D.经过有交通信号灯的路口,遇到红灯3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:165.已知点A(1,a)与点B(3,b)都在反比例函数y=﹣的图象上,则a与b之间的关系是()A.a>b B.a<b C.a≥b D.a=b6.已知圆锥的底面半径为2cm,母线长为3cm,则它的侧面展开图的面积为() A.18πcm2B.12πcm2C.6πcm2D.3πcm27.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()A.B.C.D.8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8.则cosB的值是()A.B.C.D.9.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步 B.6步 C.8步 D.10步10.已知二次函数y1=ax2+bx+c(a≠0)和一次函数y2=kx+n(k≠0)的图象如图所示,下面有四个推断:①二次函数y1有最大值②二次函数y1的图象关于直线x=﹣1对称③当x=﹣2时,二次函数y1的值大于0④过动点P(m,0)且垂直于x轴的直线与y1,y2的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是m<﹣3或m>﹣1.其中正确的是()A.①③B.①④C.②③D.②④二、填空题(本题共18分,每小题3分)11.将二次函数y=x2﹣2x﹣5化为y=a(x﹣h)2+k的形式为y=.12.抛物线y=x2﹣2x+m与x轴有两个公共点,请写出一个符合条件的表达式为.13.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON的面积为.14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如表所示:种子个数n10001500250040008000150002020030000发芽种子个数m8991365224536447272136801816027300发芽种子频率0.8990.9100.8980.9110.9090.9120.9080.910则该作物种子发芽的概率约为.15.如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是(写出一个即可).16.阅读下面材料:①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.(5分)计算:2sin45°+tan60°+2cos30°﹣.18.(5分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.19.(5分)已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x…﹣2﹣102…y…﹣3﹣4﹣35…(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;(2)求出该函数图象与x轴的交点坐标.20205分)如图,在平面直角坐标系xOy中,△ABC的三个顶点分别为A(2,6),B(4,2),C(6,2).(1)以原点O为位似中心,将△ABC缩小为原来的,得到△DEF.请在第一象限内,画出△DEF.(2)在(1)的条件下,点A的对应点D的坐标为,点B的对应点E的坐标为.21.(5分)如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25.求⊙O的半径.22.(5分)如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tanB=.(1)求AD和AB的长;(2)求sin∠BAD的值.23.(5分)已知一次函数y=﹣2x+1的图象与y轴交于点A,点B(﹣1,n)是该函数图象与反比例函数y=(k≠0)图象在第二象限内的交点.(1)求点B的坐标及k的值;(2)试在x轴上确定点C,使AC=AB,直接写出点C的坐标.24.(5分)如图,用一段长为40m的篱笆围成一个一边靠墙的矩形花圃ABCD,墙长28m.设AB长为x m,矩形的面积为y m2.(1)写出y与x的函数关系式;(2)当AB长为多少米时,所围成的花圃面积最大?最大值是多少?(3)当花圃的面积为150m2时,AB长为多少米?25.(5分)如图,AB是⊙O的直径,C,D是⊙O上两点,且=,过点C的直线CF⊥AD于点F,交AB的延长线于点E,连接AC.(1)求证:EF是⊙O的切线;(2)连接FO,若sinE=,⊙O的半径为r,请写出求线段FO长的思路.26.(5分)某“数学兴趣小组”根据学习函数的经验,对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:x…﹣3﹣﹣2﹣10123…y…﹣2﹣m2121﹣﹣2…其中m=;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出:①该函数的一条性质;②直线y=kx+b经过点(﹣1,2),若关于x的方程﹣x2+2|x|+1=kx+b有4个互不相等的实数根,则b的取值范围是.27.(7分)在平面直角坐标系xOy中,直线y=﹣x+n经过点A(﹣4,2),分别与x,y轴交于点B,C,抛物线y=x2﹣2mx+m2﹣n的顶点为D.(1)求点B,C的坐标;(2)①直接写出抛物线顶点D的坐标(用含m的式子表示);②若抛物线y=x2﹣2mx+m2﹣n与线段BC有公共点,求m的取值范围.28.(7分)在Rt△ABC中,∠ACB=90°,O为AB边上的一点,且tanB=,点D为AC边上的动点(不与点A,C重合),将线段OD绕点O顺时针旋转90°,交BC于点E.(1)如图1,若O为AB边中点,D为AC边中点,则的值为;(2)若O为AB边中点,D不是AC边的中点,①请根据题意将图2补全;②小军通过观察、实验,提出猜想:点D在AC边上运动的过程中,(1)中的值不变.小军把这个猜想与同学们进行交流,通过讨论,形成了求的值的几种想法:想法1:过点O作OF⊥AB交BC于点F,要求的值,需证明△OEF∽△ODA.想法2:分别取AC,BC的中点H,G,连接OH,OG,要求的值,需证明△OGE ∽△OHD.想法3:连接OC,DE,要求的值,需证C,D,O,E四点共圆.…请你参考上面的想法,帮助小军写出求的值的过程(一种方法即可);(3)若=(n≥2且n为正整数),则的值为(用含n的式子表示).29.(8分)在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C 不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA ﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.(1)当⊙O的半径为2时,①在点M(,0),N(0,1),T(﹣,﹣)中,⊙O的“完美点”是;②若⊙O的“完美点”P在直线y=x上,求PO的长及点P的坐标;(2)⊙C的圆心在直线y=x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.2020-2021学年北京市朝阳区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.二次函数y=(x﹣1)2﹣3的最小值是()A.2 B.1 C.﹣2 D.﹣3【考点】二次函数的最值.【分析】由顶点式可知当x=1时,y取得最小值﹣3.【解答】解:∵y=(x﹣1)2﹣3,∴当x=1时,y取得最小值﹣3,故选:D.【点评】本题主要考查二次函数的最值,熟练掌握二次函数的性质是解题的关键.2.下列事件中,是必然事件的是()A.明天太阳从东方升起B.射击运动员射击一次,命中靶心C.随意翻到一本书的某页,这页的页码是奇数D.经过有交通信号灯的路口,遇到红灯【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念,可得答案.【解答】解:A、明天太阳从东方升起是必然事件,故A正确;B、射击运动员射击一次,命中靶心是随机事件,故B错误;C、随意翻到一本书的某页,这页的页码是奇数是随机事件,故C错误;D、经过有交通信号灯的路口,遇到红灯是随机事件,故D错误;故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.【考点】概率公式.【分析】直接利用概率公式求解.【解答】解:从该盒子中任意摸出一个球,摸到黄球的概率==.故选A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.4.如图,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E,若AD:DB=1:2,则△ADE与△ABC的面积之比是()A.1:3 B.1:4 C.1:9 D.1:16【考点】相似三角形的判定与性质.【分析】根据DE∥BC,即可证得△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方,即可求解.【解答】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了三角形的判定和性质:熟练掌握相似三角形的面积比是相似比的平方是解题的关键.5.已知点A(1,a)与点B(3,b)都在反比例函数y=﹣的图象上,则a与b之间的关系是()A.a>b B.a<b C.a≥b D.a=b【考点】反比例函数图象上点的坐标特征.【分析】把所给点的横纵坐标代入反比例函数的解析式,求出a与b的值,比较大小即可.【解答】解:点A(1,a)在反比例函数y=﹣的图象上,a=﹣12,点(3,b)在反比例函数y=﹣的图象上,b=﹣4,∴a<b.故选:B.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.6.已知圆锥的底面半径为2cm,母线长为3cm,则它的侧面展开图的面积为() A.18πcm2B.12πcm2C.6πcm2D.3πcm2【考点】圆锥的计算.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:它的侧面展开图的面积=•2π•2•3=6π(cm2).故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()A.B.C.D.【考点】反比例函数的应用;根据实际问题列反比例函数关系式.【分析】根据函数图象可用电阻R表示电流I的函数解析式为I=,再把(2,3)代入可得k的值,进而可得函数解析式.【解答】解:设用电阻R表示电流I的函数解析式为I=,∵过(2,3),∴k=3×2=6,∴I=,故选:D.【点评】此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为5,AC=8.则cosB的值是()A.B.C.D.【考点】三角形的外接圆与外心;解直角三角形.【分析】连接CD,则可得∠ACD=90°,且∠B=∠D,在Rt△ADC中可求得CD,则可求得cosD,即可求得答案.【解答】解:如图,连接CD,∵AD⊙O的直径,∴∠ACD=90°,且∠B=∠D,在Rt△ACD中,AD=5×2=10,AC=8,∴CD=6,∴cosD===,∴cosB=cosD=,故选B.【点评】本题主要考查圆周角定理及三角函数的定义,构造直角三角形是解题的关键.9.《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步 B.6步 C.8步 D.10步【考点】三角形的内切圆与内心.【分析】由勾股定理可求得斜边长,分别连接圆心和三个切点,设内切圆的半径为r,利用面积相等可得到关于r的方程,可求得内切圆的半径,则可求得内切圆的直径.【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,=AC•BC=×8×15=60,∴S△ABC设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=2020∴S△ABC∴202060,解得r=3,∴内切圆的直径为6步,故选B.【点评】本题主要考查三角形的内切圆,连接圆心和切点,把三角形的面积分成三个三个角形的面积得到关于r的方程是解题的关键.10.已知二次函数y1=ax2+bx+c(a≠0)和一次函数y2=kx+n(k≠0)的图象如图所示,下面有四个推断:①二次函数y1有最大值②二次函数y1的图象关于直线x=﹣1对称③当x=﹣2时,二次函数y1的值大于0④过动点P(m,0)且垂直于x轴的直线与y1,y2的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是m<﹣3或m>﹣1.其中正确的是()A.①③B.①④C.②③D.②④【考点】二次函数图象上点的坐标特征;一次函数图象与系数的关系;二次函数的最值.【分析】根据函数的图象即可得到结论.【解答】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,∴二次函数y1有最小值,故①错误;观察函数图象可知二次函数y1的图象关于直线x=﹣1对称,故②正确;当x=﹣2时,二次函数y1的值小于0,故③错误;当x<﹣3或x>﹣1时,抛物线在直线的上方,∴m的取值范围为:m<﹣3或m>﹣1,故④正确.故选D.【点评】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.二、填空题(本题共18分,每小题3分)11.将二次函数y=x2﹣2x﹣5化为y=a(x﹣h)2+k的形式为y=(x﹣1)2﹣6.【考点】二次函数的三种形式.【分析】利用配方法整理即可得解;【解答】解:(1)y=x2﹣2x﹣5=x2﹣2x+1﹣6=(x﹣1)2﹣6,故答案为:(x﹣1)2﹣6.【点评】本题考查了二次函数的三种形式的转化,二次函数的性质,熟练掌握配方法是解题的关键.12.抛物线y=x2﹣2x+m与x轴有两个公共点,请写出一个符合条件的表达式为y=x2﹣2x.【考点】抛物线与x轴的交点.【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解不等式组求出m的范围,再在此范围内写出一个m的值即可.【解答】解:根据题意得到△=(﹣2)2﹣4m>0,解得m<1,若m取0,抛物线解析式为y=x2﹣2x.故答案为y=x2﹣2x.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.13.如图,若点P在反比例函数y=﹣(x<0)的图象上,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则矩形PMON的面积为3.【考点】反比例函数系数k的几何意义.【分析】设PN=a,PM=b,根据P点在第二象限得P(﹣a,b),根据矩形的面积公式即可得到结论.【解答】解:设PN=a,PM=b,∵P点在第二象限,∴P(﹣a,b),代入y=中,得k=﹣ab=﹣3,∴矩形PMON的面积=PN•PM=ab=3,故答案为:3.【点评】本题考查了反比例函数系数k的几何意义.过反比例函数图象上一点作x轴、y轴的垂线,所得矩形的面积为反比例函数系数k的绝对值.14.某农科所在相同条件下做某种作物种子发芽率的试验,结果如表所示:种子个数n10001500250040008000150002020030000发芽种子个数m8991365224536447272136801816027300发芽种子频率0.8990.9100.8980.9110.9090.9120.9080.910则该作物种子发芽的概率约为0.910.【考点】模拟实验.【分析】选一个表格中发芽种子频率比较按近的数,如0.900、0.910等都可以.【解答】解:答案不唯一,如:0.910.故答案为:0.910.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.15.如图,△ABC中,D、E分别是AB、AC边上一点,连接DE.请你添加一个条件,使△ADE∽△ABC,则你添加的这一个条件可以是∠ADE=∠B(写出一个即可).【考点】相似三角形的判定.【分析】利用有两组角对应相等的两个三角形相似添加条件.【解答】解:∵∠DAE=∠BAC,∴当∠ADE=∠B时,△ADE∽△ABC.故答案为∠ADE=∠B.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.16.阅读下面材料:①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换;(2)∠APB=∠ACB的依据是同弧所对的圆周角相等.【考点】作图—复杂作图;线段垂直平分线的性质;三角形的外接圆与外心.【分析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.(2)根据同弧所对的圆周角相等即可得出结论.【解答】解:(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案为①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换.(2)∵=,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案为同弧所对的圆周角相等.【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质,属于中考常考题型.三、解答题(本题共72分,第17-26题每小题5分,第27题7分,第28题7分,第29题8分)17.计算:2sin45°+tan60°+2cos30°﹣.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=2×++2×﹣2=.【点评】此题主要考查了实数运算以及特殊角的三角函数值,正确记忆相关数据是解题关键.18.如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.【考点】相似三角形的判定与性质.【分析】由∠ACD=∠ABC与∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADC∽△ACB,又由相似三角形的对应边成比例,即可求得AB,进而得到DB的长.【解答】解:∵∠ACD=∠ABC,∠A=∠A,∴△ACD∽△ABC.∴,∴.∴AB=3,∴DB=AB﹣AD=2.【点评】此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意方程思想与数形结合思想的应用.19.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表: x…﹣2﹣102…y…﹣3﹣4﹣35…(1)求二次函数的表达式,并写出这个二次函数图象的顶点坐标;(2)求出该函数图象与x轴的交点坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)由待定系数法即可得出答案;(2)求出y=0时x的值,即可得出答案.【解答】解:(1)由题意,得c=﹣3.将点(2,5),(﹣1,﹣4)代入,得解得∴y=x2+2x﹣3.顶点坐标为(﹣1,﹣4).(2)当y=0时,x2+2x﹣3,解得:x=﹣3或x=1,∴函数图象与x轴的交点坐标为(﹣3,0),(1,0).【点评】本题考查了待定系数法求二次函数的解析式、抛物线与x轴的交点;求出二次函数的解析式是解决问题的关键.2020图,在平面直角坐标系xOy中,△ABC的三个顶点分别为A(2,6),B(4,2),C(6,2).(1)以原点O为位似中心,将△ABC缩小为原来的,得到△DEF.请在第一象限内,画出△DEF.(2)在(1)的条件下,点A的对应点D的坐标为(1,3),点B的对应点E的坐标为(2,1).【考点】作图-位似变换.【分析】(1)分别连接OA、OB、OC,然后分别取它们的中点得到D、E、F;(2)利用线段中点坐标公式可得到D点和E点坐标.【解答】解:(1)如图,△DEF为所作;(2)D(1,3),E(2,1).故答案为(1,3),(2,1).【点评】本题考查了作图﹣位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.21.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25.求⊙O的半径.【考点】垂径定理的应用.【分析】根据垂径定理得出EM⊥CD,则CM=DM=2,在Rt△COM中,有OC2=CM2+OM2,进而可求得半径OC.【解答】解:如图,连接OC,∵M是弦CD的中点,EM过圆心O,∴EM⊥CD.∴CM=MD.∵CD=10,∴CM=5.设OC=x,则OM=25﹣x,在Rt△COM中,根据勾股定理,得52+(25﹣x)2=x2.解得x=13.∴⊙O的半径为13.【点评】此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形.22.如图,在Rt△ABC中,∠C=90°,点D是BC边的中点,CD=2,tanB=.(1)求AD和AB的长;(2)求sin∠BAD的值.【考点】解直角三角形.【分析】(1)由中点定义求BC=4,根据tanB=得:AC=3,由勾股定理得:AB=5,AD=;(2)作高线DE,证明△DEB∽△ACB,求DE的长,再利用三角函数定义求结果.【解答】解:(1)∵D是BC的中点,CD=2,∴BD=DC=2,BC=4,在Rt△ACB中,由tanB=,∴,∴AC=3,由勾股定理得:AD===,AB===5;(2)过点D作DE⊥AB于E,∴∠C=∠DEB=90°,又∠B=∠B,∴△DEB∽△ACB,∴,∴,∴,∴sin∠BAD===.【点评】本题考查了解直角三角形,熟练掌握直角三角形的边角关系是解题的关键.23.已知一次函数y=﹣2x+1的图象与y轴交于点A,点B(﹣1,n)是该函数图象与反比例函数y=(k≠0)图象在第二象限内的交点.(1)求点B的坐标及k的值;(2)试在x轴上确定点C,使AC=AB,直接写出点C的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点B的横坐标利用一次函数图象上点的坐标特征即可求出点B的坐标,根据点B的坐标利用反比例函数图象上点的坐标特征即可求出k值;(2)令x=0利用一次函数图象上点的坐标特征可求出点A的坐标,设点C的坐标为(m,0),根据两点间的距离公式结合AC=AB即可得出关于m无理方程,解之即可得出m的值,进而得出点C的坐标.【解答】解:(1)∵点B(﹣1,n)在直线y=﹣2x+1上,∴n=2+1=3.∴点B的坐标为(﹣1,3).∵点B(﹣1,3)在反比例函数的图象上,∴k=﹣3.(2)当x=0时,y=﹣2x+1=1,∴点A的坐标为(0,1).设点C的坐标为(m,0),∵AC=AB,∴==,解得:m=±2.∴点C的坐标为(2,0)或(﹣2,0).【点评】本题考查了反比例函数与一次函数的交点问题、一次函数图象上点的坐标特征以及反比例函数图象上点的坐标特征,根据一次函数图象上点的坐标特征找出点A、B的坐标是解题的关键.24.如图,用一段长为40m的篱笆围成一个一边靠墙的矩形花圃ABCD,墙长28m.设AB长为x m,矩形的面积为y m2.(1)写出y与x的函数关系式;(2)当AB长为多少米时,所围成的花圃面积最大?最大值是多少?(3)当花圃的面积为150m2时,AB长为多少米?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式化为顶点式,注意x的取值范围;(3)根据(1)和(2)中的关系可以求得AB的长.【解答】解:(1)y=x(40﹣2x)=﹣2x2+40x,即y与x的函数关系式是y=﹣2x2+40x;(2)由题意,得,解得,6≤x<2020由题意,得y=﹣2x2+40x=﹣2(x﹣10)2+2020∴当x=10时,y有最大值,y的最大值为2020即当AB长为10m时,花圃面积最大,最大面积为20202;(3)令y=150,则﹣2x2+40x=150.解得,x1=5,x2=15,∵6≤x<2020∴x=15,即当AB长为15m时,面积为150m2.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.25.如图,AB是⊙O的直径,C,D是⊙O上两点,且=,过点C的直线CF ⊥AD于点F,交AB的延长线于点E,连接AC.(1)求证:EF是⊙O的切线;(2)连接FO,若sinE=,⊙O的半径为r,请写出求线段FO长的思路.【考点】切线的判定;圆心角、弧、弦的关系;解直角三角形.【分析】(1)连接OC,根据等腰三角形的性质得到∠1=∠2,根据圆周角定理得到∠1=∠3,推出OC∥AF,根据切线的判定定理即可得到结论;(2)由sinE=,推出△AEF,△OEC都为含30°的直角三角形;推出△ACF为含30°的直角三角形;由勾股定理可求OF的长.【解答】(1)证明:如图,连接OC,∵OC=OA,∴∠1=∠2,∵=,∴∠1=∠3,∴∠2=∠3,∴OC∥AF,∵CF⊥AD,∴∠CFA=90°,∴∠OCF=90°,∴OC⊥EF,∵OC为⊙O的半径,∴EF是⊙O的切线;(2)解:求解思路如下:①在Rt△AEF和Rt△OEC中,由sinE=,可得△AEF,△OEC都为含30°的直角三角形;②由∠1=∠3,可知△ACF为含30°的直角三角形;③由⊙O的半径为r,可求OE,AE的长,从而可求CF的长;④在Rt△COF中,由勾股定理可求OF的长.【点评】本题考查了切线的判定,直角三角形的性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.26.某“数学兴趣小组”根据学习函数的经验,对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:x…﹣3﹣﹣2﹣10123…y…﹣2﹣m2121﹣﹣2…其中m=1;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)根据函数图象,写出:①该函数的一条性质函数图象关于y轴对称;②直线y=kx+b经过点(﹣1,2),若关于x的方程﹣x2+2|x|+1=kx+b有4个互不相等的实数根,则b的取值范围是1<b<2.【考点】抛物线与x轴的交点;一次函数的图象;一次函数与一元一次方程;二次函数的图象.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)①根据函数图象得到函数y=x2﹣2|x|+1的图象关于y轴对称;当x>1时,y 随x的增大而减少;②根据函数的图象即可得到b的取值范围是1<b<2.【解答】解:(1)当x=﹣2时,m=﹣(﹣2)2+2×|﹣2|+1=﹣4+4+1=1.(2)如图所示:(3)①答案不唯一.如:函数图象关于y轴对称.②由函数图象知:∵关于x的方程﹣x2+2|x|+1=kx+b有4个互不相等的实数根,∴b的取值范围是1<b<2.故答案为:1;函数图象关于y轴对称;1<b<2.【点评】本题考查了抛物线与x轴的交点,二次函数的图象和性质,正确的识别图象是解题的关键.27.在平面直角坐标系xOy中,直线y=﹣x+n经过点A(﹣4,2),分别与x,y轴交于点B,C,抛物线y=x2﹣2mx+m2﹣n的顶点为D.(1)求点B,C的坐标;(2)①直接写出抛物线顶点D的坐标(用含m的式子表示);②若抛物线y=x2﹣2mx+m2﹣n与线段BC有公共点,求m的取值范围.【考点】二次函数的性质;一次函数的性质;一次函数图象上点的坐标特征.【分析】(1)把A点坐标代入直线解析式,可求得n的值,可得直线解析式,即可求得B、C的坐标;(2)①把抛物线解析式化为顶点式,结合(1)中所求n的值,可求得D点坐标;②把B、C两点的坐标分别代入抛物线解析式,可求得m的值,从而可求得其取值范围.【解答】解:(1)把A(﹣4,2)代入y=x+n中,得n=1,∴直线解析式为y=x+1,令y=0可求得x=4,令x=0可得y=1,∴B(4,0),C(0,1);(2)①∵y=x2﹣2mx+m2﹣n=(x﹣m)2﹣1,∴D(m,﹣1);②将点(0,1)代入y=x2﹣2mx+m2﹣1中,得1=m2﹣1,解得m=或m=﹣,将点(4,0)代入y=x2﹣2mx+m2﹣1中,得0=16﹣8m+m2﹣1,解得m=5或m=3,∴.。

北京市朝阳区2019-2020学年度第一学期期末检测九年级数学试卷及答案

北京市朝阳区2019-2020学年度第一学期期末检测九年级数学试卷及答案

北京市朝阳区2019~2020学年度第一学期期末检测九年级数学试卷(选用) 2020.1(考试时间120分钟 满分100分)一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有..一个. 1.下列事件中,随机事件是(A )通常温度降到0℃以下,纯净的水结冰 (B )随意翻到一本书的某页,这页的页码是偶数 (C )明天太阳从东方升起 (D )三角形的内角和是360° 2.抛物线2(2)+1y x =−的顶点坐标是(A )(2,1) (B )(-2,1) (C )(-2,-1) (D )(1,2) 3.只有1和它本身两个因数且大于1的自然数叫做素数, 我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是 (A )17 (B )15 (C )13(D )1 4.把Rt △ABC 三边的长度都扩大为原来的3倍,则锐角A 的余弦值(A )不变 (B )缩小为原来的13(C )扩大为原来的3倍 (D )扩大为原来的9倍 5.如图,△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC . 若AD =1,BD =2,则△ADE 与△ABC 的面积之比为 (A )1:2(B )1:3(C )1:4(D )1:96.如图,在正方形网格中,△MPN 绕某一点旋转某一角度得到△M´P´N´,则旋转中心可能是(A )点A(B )点B (C )点C(D )点DCEBA D7.已知⊙O 1, ⊙O 2, ⊙O 3是等圆,△ABP 内接于⊙O 1,点C , E 分别在⊙O 2, ⊙O 3上.如图,①以C 为圆心,AP 长为半径作弧交⊙O 2于点D ,连接CD ;②以E 为圆心,BP 长为半径作弧交⊙O 3于点F ,连接EF ; 下面有四个结论: ①CD EF AB += ②CD EF AB +=③∠CO 2D +∠EO 3F =∠AO 1B ④∠CDO 2+∠EFO 3 =∠P 所有正确结论的序号是(A )①②③④ (B )①②③ (C )②④ (D )②③④ 8.如图,抛物线2119y x =−与x 轴交于A ,B 两点,D 是以点C (0,4)为圆心,1为半径的圆上的动点,E 是线段 AD 的中点,连接OE ,BD ,则线段OE 的最小值是 (A )2 (B )322(C )52(D )3 二、填空题(本题共16分,每小题2分)9.点(-1,-3)关于原点的对称点的坐标为_____.10.如图,在平面直角坐标系xOy 中,射线l 的端点为(0,1),l ∥x 轴,请写出一个图象与射线l 有公共点的反比例函数的表达式:_____.11.如果一个矩形的宽与长的比等于黄金数512−(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD 为黄金矩形,宽AD =51−,则长AB 为_____.12.如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =1,∠A =45°,则CD 的长度为_____.第10题图第11题图第12题图第13题图13.如图,在正方形网格中,点A ,B ,C 在⊙O 上,并且都是小正方形的顶点,P 是ACB 上任意一点,则∠P 的正切值为_____.14.抛物线223y ax ax 与x 轴交于两点,分别是是(m ,0),(n ,0),则m +n 的值为_____.15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A 地进行销售. 由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A 地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表: 柑橘总质量n /kg 100150 200 250 300 350 400 450 500完好柑橘质量m /kg 92.40138.45183.80229.50276.30322.70367.20414.45459.50柑橘完好的频率m n0.924 0.923 0.919 0.918 0.921 0.922 0.918 0.921 0.919①估计从该村运到火车站柑橘完好的概率为 (结果保留小数点后三位); ②若从该村运到A 地柑橘完好的概率为0.880,估计从火车站运到A 地柑橘完好的概率为 .16.如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别交于点A ,B ,与双曲线6y x=分别交于点C ,D . 下面三个结论,①存在无数个点P 使AOC BOD S S =△△; ②存在无数个点P 使POA POB S S =△△; ③存在无数个点P 使ACD OAPB S S =△四边形. 所有正确结论的序号是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.计算:sin60cos30tan45−+.18.如图,在△ABC 中,∠B =30°,tan C =43,AD ⊥BC 于点D . 若AB =8,求BC 的长.19. 如图,△ABC 为等边三角形,将BC 边绕点B 顺时针旋转30°,得到线段BD ,连接AD ,CD ,求∠ADC 的度数.20.已知一次函数1(0)y kx m k ≠和二次函数22(0)y ax bx c a ≠部分自变量和对应的函数值如下表:(1)求2y 的表达式;(2)关于x 的不等式2ax bx c >kx m 的解集是 .21. 筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5 m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,求筒车工作时,盛水桶在水面以下的最大深度.x … -2 -1 0 1 2 … y 1 … 0 1 2 3 4 … y 2…-138…图1图222.在平面内, O 为线段AB 的中点,所有到点O 的距离等于OA 的点组成图形W .取OA的中点C ,过点C 作CD ⊥AB 交图形W 于的点D ,D 在直线AB 的上方,连接AD ,BD . (1)求∠ABD 的度数;(2)若点E 在线段CA 的延长线上,且∠ADE =∠ABD ,求直线DE 与图形W 的公共点个数.23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC 中,AB =AC , P 是△ABC 内一点, ∠P AC =∠PCB =∠PBA .若∠ACB =45°,AP =1,求BP 的长.小军的思路是:根据已知条件可以证明△ACP ∽△CBP ,进一步推理可得BP 的长. 请回答:∵AB =AC , ∴∠ABC =∠ACB . ∵∠PCB =∠PBA , ∴∠PCA = . ∵∠P AC =∠PCB , ∴△ACP ∽△CBP .∴AP PC ACPC PB CB==. ∵∠ACB =45°, ∴∠BAC =90°. ∴=AC CB.∵AP =1, ∴PC =2. ∴PB = .参考小军的思路,解决问题:如图1,在△ABC 中,AB =AC ,P 是△ABC 内一点,∠P AC =∠PCB =∠PBA .若∠ACB =30°,求APBP的值; 图1 备用图 图1图224.点A是反比例函数1(0)y xx=>的图象l1上一点,直线AB∥x轴,交反比例函数3(0)y xx=>的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.(1)若点A(1,1),求线段AB和CD的长度;(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.25.如图,在矩形ABCD中,E是BA延长线上的定点,M为BC边上的一个动点,连接ME,将射线ME绕点M顺时针旋转76,交射线CD于点F,连接MD.小东根据学习函数的经验,对线段BM,DF,DM的长度之间的关系进行了探究.下面是小东探究的过程,请补充完整:(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 位置9 BM/cm 0.00 0.53 1.00 1.69 2.17 2.96 3.46 3.79. 4.00 DF/cm 0.00 1.00 1.74 2.49 2.69 2.21 1.14 0.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00 在BM,DF,DM的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为cm.26.在平面直角坐标系xOy 中,抛物线2y ax bx =+经过点(3,3) .(1)用含a 的式子表示b ;(2)直线4+4y x a =+与直线4y =交于点B ,求点B 的坐标(用含a 的式子表示); (3)在(2)的条件下,已知点A (1,4),若抛物线与线段AB 恰有一个公共点,直接写出 a (a <0)的取值范围.27.已知∠MON =120°,点A ,B 分别在ON ,OM 边上,且OA =OB ,点C 在线段OB 上(不与点O ,B 重合),连接CA . 将射线CA 绕点C 逆时针旋转120°得到射线CA´,将射线BO 绕点B 逆时针旋转150°与射线CA´交于点D . (1)根据题意补全图1; (2)求证:①∠OAC =∠DCB ;②CD =CA (提示:可以在OA 上截取OE =OC ,连接CE );(3)点H 在线段AO 的延长线上,当线段OH ,OC ,OA 满足什么等量关系时,对于任意的点C 都有∠DCH =2∠DAH ,写出你的猜想并证明.备用图图128.在平面直角坐标系xOy 中,已知点A (0,2),点B 在x 轴上,以AB 为直径作⊙C ,点P在y 轴上,且在点A 上方,过点P 作⊙C 的切线PQ ,Q 为切点,如果点Q 在第一象限,则称Q 为点P 的离点.例如,图1中的Q 为点P 的一个离点.(1)已知点P (0,3),Q 为P 的离点.①如图2,若B (0,0),则圆心C 的坐标为 ,线段PQ 的长为 ; ②若B (2,0),求线段PQ 的长;(2)已知1≤P A ≤2, 直线l :3y kx k =++(k ≠0).①当k =1时,若直线l 上存在P 的离点Q ,则点Q 纵坐标t 的最大值为 ; ②记直线l :3y kx k =++(k ≠0)在11x -≤≤的部分为图形G ,如果图形G 上存在P 的离点,直接写出k 的取值范围.图2图1北京市朝阳区2019~2020学年度第一学期期末检测九年级数学试卷参考答案及评分标准2020.1一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:原式=122−+ =1.18.解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°. 在Rt △ADB 中,∵∠B =30°,AB =8,∴AD =4,BD =34. 在Rt △ADC 中, ∵tan C =43, ∴4tan CD C=. ∴CD =3.∴BC=334+.19.解:∵△ABC 为等边三角形,∴AB=BC ,∠ABC=60°.根据题意可知BD =BC ,∠DBC=30°. ∴AB=BD .∴∠ABD=90°,∠BDC=75°.∴∠BDA=45°. ∴∠ADC=30°.20.解:(1)根据题意设y 2的表达式为:22(1)1y a x .把(0,0)代入得a =1. ∴22+2y x x . (2)x <-2或x >1.21.解:作OD ⊥AB 于E ,交⊙O 于点D ,∴AE =21AB . ∵AB =8, ∴AE =4.在Rt △AEO 中,AO =5, ∴OE =22OA AE −=3.∴ED =2.∴筒车工作时,盛水桶在水面以下的最大深度为2m .22.解:(1)根据题意,图形W 为以O 为圆心,OA 为直径的圆.连接OD , ∴OA =OD .∵点C 为OA 的中点,CD ⊥AB , ∴AD =OD . ∴OA =OD =AD .∴△OAD 是等边三角形. ∴∠AOD =60°.∴∠ABD =30°.(2)∵∠ADE =∠ABD ,∴∠ADE =30°.∵∠ADO =60°.∴∠ODE =90°.∴OD ⊥DE .∴DE 是⊙O 的切线.∴直线DE 与图形W 的公共点个数为1.23.解: ∠PBC ;22;2. ∵AB =AC , ∴∠ABC =∠ACB .∵∠PCB =∠PBA ,∴∠PCA =∠PBC .∵∠P AC =∠PCB ,∴△ACP ∽△CBP .∴AP PC AC PC PB BC==. ∵∠ACB =30°,∴33AP PC AC PC PB BC ===. 设AP =a ,则PC =3a ,∴PB =3a .∴13AP BP =.24.解:(1)∵AB ∥x 轴,A (1,1),B 在反比例函数3(0)y x x => 的图象上, ∴B (3,1) .同理可求:C (1,3),D (31,3) .∴AB =2,CD =32. (2)AB >CD .证明:∵A (a ,b ),A 在反比例函数1(0)y x x => 的图象上, ∴A (a ,a1). ∵AB ∥x 轴,B 在反比例函数3(0)y x x => 的图象上, ∴B (3a ,a1). 同理可求:C (a ,a 3),D(3a ,a 3). ∴AB =2a ,CD =a 32. ∵0>a ,∴2a >a 32. ∴AB >CD .25.解:答案不唯一.(1)BM ,DF ,DM .(2)如图所示.(3)2.98,1.35.26.解:(1)将点(3,3)代入2+=y ax bx ,得9a +3b =3.∴3+1=-b a .(2)令4+4=4+x a ,得=4-x a .∴B 4,4)(-a .(3)312=-或<-a a .27.(1)解:补全图形,如图.(2)证明:①根据题意∠ACD =120°.∴∠DCB +∠ACO =60°.∵∠MON =120°,∴∠OAC +∠ACO =60°.∴∠OAC =∠DCB .②在OA 上截取OE =OC ,连接CE .∴∠OEC =30°.∴∠AEC =150°.∴∠AEC =∠CBD .∵OA =OB ,∴AE =BC .∴△AEC ≌△CBD .∴CD =AC .(3) OH-OC= OA.证明:在OH上截取OF=OC,连接CF,∴△OFC 是等边三角形,FH=OA.∴CF=OC,∠CFH=∠COA=120°.∴△CFH≌△COA.∴∠H=∠OAC.∴∠BCH=60°+∠H =60°+∠OAC.∴∠DCH=60°+∠H +∠DCB=60°+2∠OAC.∵CA=CD,∠ACD=120°,∴∠CAD=30°.∴∠DCH=2∠DAH.28.解:(1)①(0,1);3.②如图,过C作CM⊥y轴于点M,连接CP,CQ.∵A(0,2),B(2,0),∴C(1,1).∴M(0,1).在Rt△ACM中,由勾股定理可得CA=2.∴CQ=2.∵P(0,3),M(0,1),∴PM=2.在Rt△PCM中,由勾股定理可得PC=5.在Rt△PCQ中,由勾股定理可得PQ=22-PC CQ=3.(2)①6.②21222-<≤-k或21222k≤<+.说明:各解答题的其他正确解法请参照以上标准给分.祝各位老师寒假愉快!。

2020年朝阳市九年级数学下期末第一次模拟试卷含答案

2020年朝阳市九年级数学下期末第一次模拟试卷含答案

2020年朝阳市九年级数学下期末第一次模拟试卷含答案一、选择题1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()6,0-B .()6,0C .()2,0-D .()2,02.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .25B .4C .213D .4.8 4.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D . 5.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=,则GAF ∠的度数为( )A .110B .115C .125D .130 9.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 10.若0xy <,则2x y 化简后为( )A .x y -B .x yC .x y -D .x y --11.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°12.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )捐款数额10 20 30 50 100 人数 2 4 5 3 1A .众数是100B .中位数是30C .极差是20D .平均数是30二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______16.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;(2)根据手中剩余线的长度出风筝线BC的长度为70米;(3)量出测倾器的高度AB=1.5米.根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米,3≈1.73).17.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.18.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3,那么tan∠DCF的值是____.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.如图,反比例函数y=k x 的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.三、解答题21.计算:103212sin45(2π)-+--+-.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 26.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表. 整理情况频数 频率 非常好0.21 较好70 0.35 一般m 不好 36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y x y x =-+⎧⎨=-⎩,解得:20x y =⎧⎨=⎩即1l 与2l 的交点坐标为(2,0).故选D .【点睛】本题考查了关于x 轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.2.C解析:C【解析】试题分析:由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x 轴交点负半轴明显大于﹣1,∴y=a ﹣b+c <0,故本选项正确; ③由抛物线的开口向下知a <0,∵对称轴为1>x=﹣>0,∴2a+b <0,故本选项正确;④对称轴为x=﹣>0, ∴a 、b 异号,即b >0,∴abc <0,故本选项错误;∴正确结论的序号为②③.故选B .点评:二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号;(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0; (4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值. 3.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】∵AB 为直径,∴90ACB ︒∠=, ∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD ∆中,2246213BD =+=.故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.4.C解析:C【解析】从上面看,看到两个圆形,故选C .5.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 6.C解析:C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.7.B解析:B【解析】 解:∵3104<<,∴41015<<.故选B . 10 的取值范围是解题关键.8.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=,即可得到BAF 40∠=,BAE 140∠=,再根据AG 平分BAF ∠,可得BAG 70∠=,进而得出GAF 7040110∠=+=.【详解】解:AB//CD ,EFC 40∠=,BAF 40∠∴=,BAE 140∠∴=,又AG 平分BAF ∠,BAG 70∠∴=,GAF 7040110∠∴=+=,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.9.B解析:B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得 10.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义11.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.12.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.15.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.16.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.17.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.18.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点.解析:2【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-=.∴tan∠DCF=DF5x5=CD=.故答案为:52.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.三、解答题21.1 3【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式122121 3=+-=12121 313=.【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA =.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.24.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.25.43米【解析】【分析】【详解】解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34 AD x=.在Rt△BCD中,tan48° =BD CD,则1110BDx=,∴1110 BD x=∵AD+BD = AB,∴31180 410x x+=.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.26.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。

朝阳区初三数学期末考试题及答案(通用).pdf

朝阳区初三数学期末考试题及答案(通用).pdf

21. 如图, DE是⊙O的直径, CE与⊙O相切, E 为切点 . 连接 CD交⊙O于点 B,在 EC
上取一个点 F,使 EF=BF.
( 1)求证 :BF 是⊙O的切线 ;
E
( 2)若 cosC
4 , DE=9 ,求 BF的长.
O
5
D F
B
C
22.如图,矩形 ABCD中, AB=16cm,AD=4cm,点 P、Q分别从 A、 B 同时出发,点 P 在边 AB上沿 AB方向以 2cm/s 的速度匀速运动,点 Q在边 BC上沿 BC方向以 1cm/s
14. 已知二次函数 y=x2-6x+5. (1)解析式化为 y=a(x-h) 2+k 的形式;
(2)求出该函数图像与 x 轴、 y 轴的交点坐标 ..
15. 如图,在正方形 ABCD中,点 E 是 CD上一点( DE>C)E,连接 AE,并过点 E 作
AE的垂线交 BC于点 F, 若 AB=9,BF=7,求 DE长.
1. 下列事件中,必然事件是 A. 把 4 个球放入 3 个抽屉中,其中至少有 1 个抽屉中有 2 个球 B. 明天是晴天 C. 若将一枚硬币抛掷 10 次,其中能有 5 次国徽向上
D. 随意购买一张体育彩票能够中奖
2. 下列水平放置的几何体中,主视图与俯视图都是矩形的是
3.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得
A
D
E
B
FC
16. 在平面直角坐标系中,等腰 Rt△OAB斜边 OB在 y 轴上,且 OB=4.
(1)画出△ OAB绕原点 O顺时针旋转 90°后得到的三 角形△ OA’B’;
(2)求点 A 在旋转过程中经过的路径长.

北京市朝阳区2019-2020学年度第一学期九年级数学试卷期末检测【含答案】.doc

北京市朝阳区2019-2020学年度第一学期九年级数学试卷期末检测2020.1(考试时间120分钟 满分100分)一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有..一个. 1.下列事件中,随机事件是(A )通常温度降到0℃以下,纯净的水结冰 (B )随意翻到一本书的某页,这页的页码是偶数 (C )明天太阳从东方升起 (D )三角形的内角和是360° 2.抛物线2(2)+1y x =-的顶点坐标是(A )(2,1) (B )(-2,1) (C )(-2,-1) (D )(1,2)3.只有1和它本身两个因数且大于1的自然数叫做素数, 我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是 (A )17(B )15 (C )13 (D )14.把Rt △ABC 三边的长度都扩大为原来的3倍,则锐角A 的余弦值(A )不变 (B )缩小为原来的13(C )扩大为原来的3倍 (D )扩大为原来的9倍 5.如图,△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC . 若AD =1,BD =2,则△ADE 与△ABC 的面积之比为 (A )1:2(B )1:3(C )1:4(D )1:96.如图,在正方形网格中,△MPN 绕某一点旋转某一角度得到△M´P´N´,则旋转中心可能是(A )点A(B )点B (C )点C(D )点DCEBA D7.已知⊙O 1, ⊙O 2, ⊙O 3是等圆,△ABP 内接于⊙O 1,点C , E 分别在⊙O 2, ⊙O 3上.如图,①以C 为圆心,AP 长为半径作弧交⊙O 2于点D ,连接CD ;②以E 为圆心,BP 长为半径作弧交⊙O 3于点F ,连接EF ; 下面有四个结论: ①CD EF AB += ②CD EF AB +=③∠CO 2D +∠EO 3F =∠AO 1B ④∠CDO 2+∠EFO 3 =∠P 所有正确结论的序号是(A )①②③④ (B )①②③ (C )②④ (D )②③④ 8.如图,抛物线2119y x =-与x 轴交于A ,B 两点,D 是以点C (0,4)为圆心,1为半径的圆上的动点,E 是线段 AD 的中点,连接OE ,BD ,则线段OE 的最小值是 (A )2 (B )322(C )52(D )3 二、填空题(本题共16分,每小题2分)9.点(-1,-3)关于原点的对称点的坐标为_____.10.如图,在平面直角坐标系xOy 中,射线l 的端点为(0,1),l ∥x 轴,请写出一个图象与射线l 有公共点的反比例函数的表达式:_____.11.如果一个矩形的宽与长的比等于黄金数512-(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD 为黄金矩形,宽AD =51-,则长AB 为_____.12.如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =1,∠A =45°,则CD 的长度为_____.第10题图第11题图第12题图第13题图13.如图,在正方形网格中,点A ,B ,C 在⊙O 上,并且都是小正方形的顶点,P 是ACB 上任意一点,则∠P 的正切值为_____.14.抛物线223y ax ax 与x 轴交于两点,分别是是(m ,0),(n ,0),则m +n 的值为_____. 15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A 地进行销售. 由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A 地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表: 柑橘总质量n /kg 100150 200 250 300 350 400 450 500完好柑橘质量m /kg 92.40138.45183.80229.50276.30322.70367.20414.45459.50柑橘完好的频率m n0.924 0.923 0.919 0.918 0.921 0.922 0.918 0.921 0.919①估计从该村运到火车站柑橘完好的概率为 (结果保留小数点后三位);②若从该村运到A 地柑橘完好的概率为0.880,估计从火车站运到A 地柑橘完好的概率为 . 16.如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别交于点A ,B ,与双曲线6y x=分别交于点C ,D . 下面三个结论,①存在无数个点P 使AOC BOD S S =△△; ②存在无数个点P 使POA POB S S =△△; ③存在无数个点P 使ACD OAPB S S =△四边形. 所有正确结论的序号是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.计算:sin60cos30tan 45-+.18.如图,在△ABC 中,∠B =30°,tan C =43,AD ⊥BC 于点D . 若AB =8,求BC 的长.19. 如图,△ABC 为等边三角形,将BC 边绕点B 顺时针旋转30°,得到线段BD ,连接AD ,CD ,求∠ADC 的度数.20.已知一次函数1(0)y kx m k ≠和二次函数22(0)y ax bx c a ≠部分自变量和对应的函数值如下表:(1)求2y 的表达式;(2)关于x 的不等式2ax bx c >kx m 的解集是 .21. 筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1, 点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5 m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,求筒车工作时,盛水桶在水面以下的最大深度.22.在平面内, O 为线段AB 的中点,所有到点O 的距离等于OA 的点组成图形W .取OA 的中点C ,过点C 作CD ⊥AB 交图形W 于的点D ,D 在直线AB 的上方,连接AD ,BD . (1)求∠ABD 的度数;(2)若点E 在线段CA 的延长线上,且∠ADE =∠ABD ,求直线DE 与图形W 的公共点个数.x … -2 -1 0 1 2 … y 1 … 0 1 2 3 4 … y 2…-138…图1 图223.阅读下面材料:小军遇到这样一个问题:如图1,在△A B C 中,A B =A C , P 是△A B C 内一点, ∠P AC =∠PCB =∠PBA .若∠ACB =45°,AP =1,求BP 的长.小军的思路是:根据已知条件可以证明△ACP ∽△CBP ,进一步推理可得BP 的长. 请回答:∵AB =AC , ∴∠ABC =∠ACB . ∵∠PCB =∠PBA , ∴∠PCA = . ∵∠P AC =∠PCB , ∴△ACP ∽△CBP .∴AP PC ACPC PB CB==. ∵∠ACB =45°, ∴∠BAC =90°. ∴=AC CB.∵AP =1, ∴PC =2. ∴PB = .参考小军的思路,解决问题:如图1,在△ABC 中,AB =AC ,P 是△ABC 内一点,∠P AC =∠PCB =∠PBA .若∠ACB =30°,求APBP的值; 24.点A 是反比例函数1(0)y x x =>的图象l 1上一点,直线AB ∥x 轴,交反比例函数3(0)y x x=> 的图象l 2于点B , 直线AC ∥y 轴,交 l 2于点C , 直线CD ∥x 轴,交 l 1于点D . (1)若点A (1,1),求线段AB 和CD 的长度;(2)对于任意的点A (a ,b ),判断线段AB 和CD 的大小关系,并证明.图1图225.如图,在矩形ABCD 中, E 是BA 延长线上的定点, M 为BC 边上的一个动点,连接ME ,将射线ME 绕点M 顺时针旋转76,交射线CD 于点F ,连接MD .小东根据学习函数的经验,对线段BM ,DF ,DM 的长度之间的关系进行了探究. 下面是小东探究的过程,请补充完整:(1)对于点M 在BC 上的不同位置,画图、测量,得到了线段BM ,DF ,DM 的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 位置9 BM /cm 0.00 0.53 1.00 1.69 2.17 2.96 3.46 3.79. 4.00 DF /cm 0.00 1.00 1.74 2.49 2.69 2.21 1.14 0.00 1.00 DM /cm4.123.613.162.522.091.441.141.021.00在BM ,DF ,DM 的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm 时,DM 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线2y ax bx =+经过点(3,3) .(1)用含a 的式子表示b ;(2)直线4+4y x a =+与直线4y =交于点B ,求点B 的坐标(用含a 的式子表示);(3)在(2)的条件下,已知点A (1,4),若抛物线与线段A B 恰有一个公共点,直接写出 a (a <0)的取值范围.27.已知∠MON =120°,点A ,B 分别在ON ,OM 边上,且OA =OB ,点C 在线段OB 上(不与点O ,B 重合),连接CA . 将射线CA 绕点C 逆时针旋转120°得到射线CA´,将射线BO 绕点B 逆时针旋转150°与射线CA´交于点D . (1)根据题意补全图1; (2)求证:①∠OAC =∠DCB ;②CD =CA (提示:可以在OA 上截取OE =OC ,连接CE );(3)点H 在线段AO 的延长线上,当线段OH ,OC ,OA 满足什么等量关系时,对于任意的点C 都有∠DCH =2∠DAH ,写出你的猜想并证明.28.在平面直角坐标系xOy 中,已知点A (0,2),点B 在x 轴上,以AB 为直径作⊙C ,点P 在y 轴上,且在点A 上方,过点P 作⊙C 的切线PQ ,Q 为切点,如果点Q 在第一象限,则称Q 为点P 的离点.例如,图1中的Q 为点P 的一个离点.备用图图1(1)已知点P (0,3),Q 为P 的离点.①如图2,若B (0,0),则圆心C 的坐标为 ,线段PQ 的长为 ; ②若B (2,0),求线段PQ 的长;(2)已知1≤P A ≤2, 直线l :3y kx k =++(k ≠0).①当k =1时,若直线l 上存在P 的离点Q ,则点Q 纵坐标t 的最大值为 ;②记直线l :3y kx k =++(k ≠0)在11x -≤≤的部分为图形G ,如果图形G 上存在P 的离点,直接写出k 的取值范围.北京市朝阳区2019~2020学年度第一学期期末检测九年级数学试卷参考答案及评分标准2020.1一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:原式=122-+ =1.18.解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°. 在Rt △ADB 中,∵∠B =30°,AB =8,∴AD =4,BD =34. 在Rt △ADC 中, ∵tan C =43, ∴4tan CD C=. ∴CD =3.∴BC=334+.19.解:∵△ABC 为等边三角形,∴AB=BC ,∠ABC=60°.根据题意可知BD =BC ,∠DBC=30°. ∴AB=BD .∴∠ABD=90°,∠BDC=75°.∴∠BDA=45°. ∴∠ADC=30°.20.解:(1)根据题意设y 2的表达式为:22(1)1y a x .把(0,0)代入得a =1.∴22+2y x x .(2)x <-2或x >1.21.解:作OD ⊥AB 于E ,交⊙O 于点D ,∴AE =21AB . ∵AB =8, ∴AE =4.在Rt △AEO 中,AO =5, ∴OE =22OA AE =3.∴ED =2.∴筒车工作时,盛水桶在水面以下的最大深度为2m .22.解:(1)根据题意,图形W 为以O 为圆心,OA 为直径的圆.连接OD , ∴OA =OD .∵点C 为OA 的中点,CD ⊥AB , ∴AD =OD . ∴OA =OD =AD .∴△OAD 是等边三角形.∴∠AOD =60°. ∴∠ABD =30°. (2)∵∠ADE =∠ABD ,∴∠ADE =30°. ∵∠ADO =60°. ∴∠ODE =90°. ∴OD ⊥DE . ∴DE 是⊙O 的切线.∴直线DE 与图形W 的公共点个数为1.23.解: ∠PBC ;22;2. ∵AB =AC , ∴∠ABC =∠ACB . ∵∠PCB =∠PBA , ∴∠PCA =∠PBC . ∵∠P AC =∠PCB , ∴△ACP ∽△CBP . ∴AP PC ACPC PB BC==. ∵∠ACB =30°, ∴33AP PC AC PC PB BC ===. 设AP =a ,则PC =3a , ∴PB =3a . ∴13AP BP =.24.解:(1)∵AB ∥x 轴,A (1,1),B 在反比例函数3(0)y x x=> 的图象上, ∴B (3,1) .同理可求:C (1,3),D (31,3) .∴AB =2,CD =32.(2)AB >CD .证明:∵A (a ,b ),A 在反比例函数1(0)y x x=> 的图象上, ∴A (a ,a1). ∵AB ∥x 轴,B 在反比例函数3(0)y x x=> 的图象上, ∴B (3a ,a1). 同理可求:C (a ,a 3),D(3a ,a3). ∴AB =2a ,CD =a 32. ∵0>a , ∴2a >a 32. ∴AB >CD .25.解:答案不唯一.(1)BM ,DF ,DM . (2)如图所示.(3)2.98,1.35.26.解:(1)将点(3,3)代入2+=y ax bx ,得9a +3b =3. ∴3+1=-b a .(2)令4+4=4+x a ,得=4-x a . ∴B 4,4)(-a . (3)312=-或<-a a . 27.(1)解:补全图形,如图.(2)证明:①根据题意∠ACD =120°.∴∠DCB +∠ACO =60°. ∵∠MON =120°, ∴∠OAC +∠ACO =60°. ∴∠OAC =∠DCB .②在OA 上截取OE =OC ,连接CE . ∴∠OEC =30°. ∴∠AEC =150°. ∴∠AEC =∠CBD . ∵OA =OB , ∴AE =BC .∴△AEC ≌△CBD .∴CD=AC.(3) OH-OC= OA.证明:在OH上截取OF=OC,连接CF,∴△OFC 是等边三角形,FH=OA.∴CF=OC,∠CFH=∠COA=120°.∴△CFH≌△COA.∴∠H=∠OAC.∴∠BCH=60°+∠H =60°+∠OAC.∴∠DCH=60°+∠H +∠DCB=60°+2∠OAC.∵CA=CD,∠ACD=120°,∴∠CAD=30°.∴∠DCH=2∠DAH.28.解:(1)①(0,1);3.②如图,过C作CM⊥y轴于点M,连接CP,CQ.∵A(0,2),B(2,0),∴C(1,1).∴M(0,1).在Rt△ACM中,由勾股定理可得CA=2.∴CQ=2.∵P(0,3),M(0,1),∴PM=2.在Rt△PCM中,由勾股定理可得PC=5.在Rt△PCQ中,由勾股定理可得PQ=22-PC CQ=3.(2)①6.②21222-<≤-k或21222k≤<+.说明:各解答题的其他正确解法请参照以上标准给分.祝各位老师寒假愉快!。

2023-2024学年北京市九年级数学第一学期期末达标测试试题(含解析)

2023-2024学年北京市九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.如图,已知抛物线和直线.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个2.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A.B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。

C .某彩票中奖率为,说明买100张彩票,有36张中奖。

D .打开电视,中央一套正在播放新闻联播。

4.如图是我们学过的反比例函数图象,它的表达式可能是( )21y x 4x =-+2y 2x =()11452x x -=()11452x x +=()145x x -=()145x x +=36%A .B .C .D .5.下列图案中,是中心对称图形的是( )A .B .C .D .6.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为()A .1 cmB .7cmC .3 cm 或4 cmD .1cm 或7cm 7.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )A .B .C .D .8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A.B .C .D .9.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .=3C .y =﹣D .y =x 2﹣110.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <511.如图所示的工件的主视图是( )22y x =4y x =3y x =-3y x=-x 2cos 0x α+=α15 30 45 601325122542512y x 1xA .B .C .D .12.若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4二、填空题(每题4分,共24分)13.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .14.因式分解:_______;15.如图,在平面直角坐标系中,已知经过点,且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (-3,2),则__________.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.已知关于的方程的一个根为-2,则方程另一个根为__________.18.在中,,,在外有一点,且,则的度数是__________.三、解答题(共78分)19.(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.20.(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.()()2a b b a ---=A E B O C 、、、tan OBC ∠=x 230x mx m ++=ABC ∆AC BC =90C ∠=︒ABC ∆M MA MB ⊥AMC ∠AB B BC AB 25AB(1)如图①,在Rt △ABC 中,∠C =90°,AC >BC ,若Rt △ABC 是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC :AC :AB 的值.(2)如图②,△ABC 是⊙O 的内接三角形,AB >AC ,∠BAC =45°,S △ABC =,将△ABC 绕点A 逆时针旋转45°得到△ADE ,点B 的对应点为D ,AD 与⊙O 交于点M ,若△ACD 是“匀称三角形”,求CD 的长,并判断CM 是否为△ACD的“匀称中线”.21.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.22.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.ABC 90C ∠=︒10AB =8AC =AB A 90︒AD EFG ABC CB EF D(1)求的大小;(2)求的长.23.(10分)如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.24.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1.(1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,25.(12分)(1)计算: (2)化简:26.已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵当y 1=y 2时,即时,解得:x=0或x=2,1∠AE 201224((18--+-⨯--2291(1)693x x x x -⋅+-++2x 4x 2x -+=∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -直线的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,,解得.∴使得M=2的x 值是1或.∴④错误.综上所述,正确的有②③2个.故选B .2、A 【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为.【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为,故选:A .本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、B【解析】A 、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B 、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C 、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D 、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B .4、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A 、为二次函数表达式,故A 选项错误;B 、为反比例函数表达式,且,经过第一三象限,符合图象,故B 选项正确;21y x 4x =-+2y 2x =()221y x 4x x 24=-+=--+2x 4x 2-+=12x 2x 2=+=-2+()11452x x -=()11452x x -=12120k >22y x =4y x=0k >C 、为反比例函数表达式,且,经过第二四象限,不符合图象,故C 选项错误;D 、为一次函数表达式,故D 选项错误.故答案为B .本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、D【分析】分AB 、CD 在圆心的同侧和异侧两种情况求得AB 与CD 的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF-OE=1cm ;当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,∵AB ∥CD,3y x=-0k <3y x =-∴OF ⊥CD ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF+OE=7cm .故选D .本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.7、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D .本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A .cos αx 2cos 0x α-+=2(41cos 0α-⨯⨯=1cos 2α=α60 1325本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、=3,可以化为y =3x ,是正比例函数;C 、y =﹣是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A .本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.11、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B .12、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B .此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据扇形的弧长公式计算即可,【详解】∵扇形的圆心角为90°,弧长为4π,∴,即4π=,则扇形的半径r=1.y x1x O OM AB ⊥OM 3OM =OM OA OM 5OM =OM 35OM ≤≤ABC A B C '''V ABC A B C '''V r l 180n π=90•180r π故答案为1考点:弧长的计算.14、(a-b )(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为:(a -b )(a -b +1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【解析】分别过A 点作x 轴和y 轴的垂线,连接EC ,由∠COE =90°,根据圆周角定理可得:EC 是⊙A 的直径、,由A 点坐标及垂径定理可求出OE 和OC ,解直角三角形即可求得.【详解】解:如图,过A 作AM ⊥x 轴于M ,AN ⊥y 轴于N ,连接EC ,∵∠COE =90°,∴EC 是⊙A 的直径,∵A (−3,2),∴OM =3,ON =2,∵AM ⊥x 轴,AN ⊥y 轴,∴M 为OE 中点,N 为OC 中点,∴OE =2OM =6,OC =2ON =4,∴=.本题主要考查了同弧所对的圆周角相等、垂径定理和锐角三角函数定义,熟练掌握定理是解本题的关键.16、3或1.2【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,23∠=∠OBC CEO tan OBC ∠tan OBC ∠42tan 63∠===OC CEO OE∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为1.2或3.本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17、1【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24120x x --=122,6x x =-=18、、【分析】由,可知A 、C 、B 、M 四点共圆,AB 为圆的直径,则是弦AC 所对的圆周角,此时需要对M 点的位置进行分类讨论,点M 分别在直线AC 的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC =∠ACB =45°,∵点在外,且,即∠AMB =90°∵∴A 、C 、B 、M 四点共圆,①如图,当点M 在直线AC 的左侧时,,∴;②如图,当点M 在直线AC 的右侧时,∵,∴,故答案为:135°或45°.本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A 、C 、B 、M 四点共圆.三、解答题(共78分)19、米【分析】根据坡度的定义可得,求出AB ,再根据勾股定理求135︒45︒90C ∠=︒MA MB ⊥AMC ∠ABC ∆AC BC =90C ∠=︒M ABC ∆MA MB ⊥180∠+∠=︒AMB C 180∠+∠=︒AMC ABC 180********∠=︒-∠=︒-︒=︒AMC ABC AC AC =45∠=∠=︒AMC ABC 25BC AC =AB =【详解】∵坡顶离地面的高度为20米,坡面的坡度为即, ∴米由勾股定理得答:坡面的长度为米.考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.20、(1)① “匀称中线”是BE ,它是AC 边上的中线,②BC :AC :AB;(2)CDa ,CM 不是△ACD 的“匀称中线”.理由见解析.【分析】(1)①先作出Rt △ABC 的三条中线AD 、BE 、CF ,然后利用匀称中线的定义分别验证即可得出答案;②设AC =2a ,利用勾股定理分别把BC,AB 的长度求出来即可得出答案.(2)由②知:AC :AD :CD ,设AC ,则AD =2a ,CD ,过点C 作CH ⊥AB ,垂足为H,利用的面积建立一个关于a 的方程,解方程即可求出CD 的长度;假设CM 是△ACD 的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC 的三条中线AD、BE 、CF ,∵∠ACB =90°,∴CF =,即CF 不是“匀称中线”.又在Rt △ACD 中,AD >AC >BC ,即AD 不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC ,在Rt △ABC 中,AB ,∴BC :AC :AB (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,B BC AB 2525BC AC =2025AC =50AC =AB ==AB :2:7:2ABC 12AB AB ≠==:2:2a =∴∠DAC =∠DAE +∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD设AC,则AD =2a ,CD ,如图②,过点C 作CH⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴ ∵解得a =2,a =﹣2(舍去),∴判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴又在Rt △CBH 中,∠CHB =90°,CH ,BH =4,∴即这与∠AMC =∠B相矛盾,∴假设不成立,2CH AH ===11222ABC S AB CH a ==⨯= CD ==tan AC AMC AM ∠===tan tan CH B AMC BH ===≠∠B AMC∠≠∠∴CM 不是△ACD 的“匀称中线”.本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.21、(1)8 ;(2);(3)【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值;(2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为 人,B 等级的人数为 人,故a 的值为8;(2)∴C 等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P (一男一女) 答:恰好选中一男一女参加比赛的概率为.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 的结果数目m ,然后利用概率公式计算事件A的概率为.也考查了统计图.22、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB ,进而证得△ADE ∽△ACB ,利用相似的性质求出AE 即可.【详解】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB ,∴∠ABD=∠ADB=45°,∵△EFG 是由△ABC 沿CB 方向平移得到,∴AB ∥EF ,∴∠1=∠ABD=45°;(2)由平移的性质得,AE ∥CG ,∴∠EAC=180°-∠C=90°,144︒121230%40÷=4020%8⨯=16360144 40⨯︒=︒ 144︒61122==12m n45︒12.5AE =∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB ,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB ,∴△ADE ∽△ACB ,∴,∵AC=8,AB=AD=10,∴AE=12.5.本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.23、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解: (1) 因为7, 11, 19, 23共有4个数,其中素数7只有1个,所以从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是,故答案为. (2)由题意画树状图如下:AD AE AC AB=00180402-14231414由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25、(1)1;(2)【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)原式=2+ =1; (2).本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.26、y =1(x ﹣1)1+1.【分析】根据题意设抛物线解析式为y =a (x ﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y =a (x ﹣1)1+1,把(3,10)代入得a (3﹣1)1+1=10,解得a =1,所以抛物线解析式为y =1(x ﹣1)1+1.本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.82123P ==43x x +-201222()(18--++⨯--11--1442291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+-43x x +=-。

2019-2020年北京市朝阳区九年级上册期末数学试卷(有答案)【优质版】

北京市朝阳区九年级(上)期末数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图,利用刻度尺和三角尺测得圆的直径是()A.3cm B.3.5cm C.4cm D.7.5cm2.下列事件中,随机事件是()A.任意画一个圆的内接四边形,其对角互补B.现阶段人们乘高铁出行在购买车票时,采用网络购票方式C.从分别写有数字1,2,3的三个纸团中随机抽取一个,抽到的数字是0D.通常情况下,北京在大寒这一天的最低气温会在0℃以下3.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.小楠参观中国国家博物馆时看到两件“王字铜衡”,这是我国古代测量器物重量的一种比较准确的衡器,体现了杠杆原理.小楠决定自己也尝试一下,她找了一根长100cm的匀质木杆,用细绳绑在木杆的中点O并将其吊起,在中点的左侧距离中点25cm处挂了一个重1.6N的物体,在中点的右侧挂了一个苹果,当苹果距离中点20cm时木杆平衡了,可以估计这个苹果的重大约是()A.1.28N B.1.6N C.2N D.2.5N5.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABC与△A′B′C′的面积的比为()A.4:9B.9:4C.2:3D.3:26.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=7.则∠BDC 的度数是()A.15°B.30°C.45°D.60°7.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2B.2πC.4D.4π8.如图,一条抛物线与轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(﹣2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣7二、填空题(本题共16分,每小题2分)9.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为3,则正六边形ABCDEF的边长为.10.如图,把△ABC绕着点A顺时针方向旋转,得到△A B'C',点C恰好在B'C'上,旋转角为α,则∠C'的度数为(用含α的式子表示).11.在反比例函数的图象上有两点A(1,y1),B(2,y2),1<2<0,y1>y2,则m的取值范围是.12.如图,PA,PB分别与⊙O相切于A,B两点,PO与AB相交于点C,PA=6,∠APB=60°,则OC的长为.13.如图,双曲线y=与抛物线y=a2+b+c交于点A(1,y1),B(2,y2),C(3,y3),由图象可得不等式组0<+b+c的解集为.14.如图,在平面直角坐标系中,△COD可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转、位似)得到的,写出一种由△AOB得到△COD的过程:.15.“π的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下:如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m 与正方形内的米粒数n,并计算频率;在相同条件下,大量重复以上试验,当显现出一定稳定性时,就可以估计出π的值为.请说出其中所蕴含的原理:.16.下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.已知:△ABC,AB=AC,∠A=120°.求作:△ABC的外接圆.作法:(1)分别以点B和点C为圆心,AB的长为半径作弧,两弧的一个交点为O;(2)连接BO;(3)以O为圆心,BO为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题5分,第28题8分)17.小明在学习了如何证明“三边成比例的两个三角形相似”后,运用类似的思路证明了“两角分别相等的两个三角形相似”,以下是具体过程.已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B'.求证:△ABC∽△A'B'C'.证明:在线段A'B'上截取A'D=AB,过点D作DE∥B'C',交A'C'于点E.由此得到△A'DE∽△A'B'C'.∴∠A'DE=∠B'.∵∠B=∠B',∴∠A'DE=∠B.∵∠A'=∠A,∴△A'DE≌△ABC.∴△ABC∽△A'B'C'.小明将证明的基本思路概括如下,请补充完整:(1)首先,通过作平行线,依据,可以判定所作△A'DE与;(2)然后,再依据相似三角形的对应角相等和已知条件可以证明所作△A'DE 与;(3)最后,可证得△ABC∽△A'B'C'.18.如图,四边形ABCD是⊙O的内接四边形,对角线AC是⊙O的直径,AB=2,∠ADB=45°.求⊙O半径的长.19.如图,在平面直角坐标系Oy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.20.图中所示的抛物线形拱桥,当拱顶离水面4m时,水面宽8m.水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种方法.方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为轴,建立平面直角坐标系Oy,这时这条抛物线所表示的二次函数的表达式为;当y=3时,求出此时自变量的取值,即可解决这个问题.方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系Oy,这时这条抛物线所表示的二次函数的表达式为;当y=时,求出此时自变量的取值,即可解决这个问题.21.有两盏节能灯,每一盏能通电发亮的概率都是50%,按照图中所示的并联方式连接电路,观察这两盏灯发亮的情况.(1)列举出所有可能的情况;(2)求出至少有一盏灯可以发亮的概率.22.如图,在平面直角坐标系Oy中,直线y=﹣2﹣3与双曲线交于M(a,2),N(1,b)两点.(1)求,a,b的值;(2)若P是y轴上一点,且△MPN的面积是7,直接写出点P的坐标.23.如图,正方形ABCD的边长为2,E是CD中点,点P在射线AB上,过点P作线段AE的垂线段,垂足为F.(1)求证:△PAF∽△AED;(2)连接PE,若存在点P使△PEF与△AED相似,直接写出PA的长.24.如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.(1)求证:E是AC中点;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.25.△ACB中,∠C=90°,以点A为中心,分别将线段AB,AC逆时针旋转60°得到线段AD,AE,连接DE,延长DE交CB于点F.(1)如图1,若∠B=30°,∠CFE的度数为;(2)如图2,当30°<∠B<60°时,①依题意补全图2;②猜想CF与AC的数量关系,并加以证明.26.如图,直线AM和AN相交于点A,∠MAN=30°,在射线AN上取一点B,使AB=6cm,过点B作BC⊥AM于点C,D是线段AB上的一个动点(不与点B重合),过点D作CD的垂线交射线CA于点E.(1)确定点B的位置,在线段AB上任取一点D,根据题意,补全图形;(2)设AD=cm,CE=y cm,探究函数y随自变量的变化而变化的规律.①通过取点、画图、测量,得到了与y的几组对应值,如下表:/cm012345y/cm 5.2 4.4 3.8 3.58.1(要求:补全表格,相关数值保留一位小数)②建立平面直角坐标系Oy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,解决问题:当AD为Rt△CDE斜边CE上的中线时,AD的长度约为cm(结果保留一位小数).27.已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y=a2﹣8a﹣交轴于A,B两点(点A在点B的左侧),且AB=6;抛物线l2与l1交于点A和点C (5,n).(1)求抛物线l1,l2的表达式;(2)当的取值范围是时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线MN∥y轴,交轴,l1,l2分别相交于点P(m,0),M,N,当1≤m≤7时,求线段MN的最大值.28.在平面直角坐标系Oy中,点A(0,6),点B在轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与轴平行的矩形的对角线,则称这个矩形为点P,Q的“矩形”.下图为点P,Q的“矩形”的示意图.(1)若点B(4,0),点C的横坐标为2,则点B,C的“矩形”的面积为.(2)点M,N的“矩形”是正方形,①当此正方形面积为4,且点M到y轴的距离为3时,写出点B的坐标,点N的坐标及经过点N的反比例函数的表达式;②当此正方形的对角线长度为3,且半径为r的⊙O与它没有交点,直接写出r的取值范围.北京市朝阳区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图,利用刻度尺和三角尺测得圆的直径是()A.3cm B.3.5cm C.4cm D.7.5cm【分析】根据圆的知识,连接两平行切线切点的线段就是直径.【解答】解:此刻度尺的超始端值为3.5cm,末端刻度为7.5cm,所以圆的直径是:7.5﹣3.5=4cm,故选:C.【点评】本题考查了切线的性质,明确连接两切点之间线段就是圆的直径是本题的关键.2.下列事件中,随机事件是()A.任意画一个圆的内接四边形,其对角互补B.现阶段人们乘高铁出行在购买车票时,采用网络购票方式C.从分别写有数字1,2,3的三个纸团中随机抽取一个,抽到的数字是0D.通常情况下,北京在大寒这一天的最低气温会在0℃以下【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、是必然事件,故A不符合题意;B、是随机事件,故B符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.小楠参观中国国家博物馆时看到两件“王字铜衡”,这是我国古代测量器物重量的一种比较准确的衡器,体现了杠杆原理.小楠决定自己也尝试一下,她找了一根长100cm的匀质木杆,用细绳绑在木杆的中点O并将其吊起,在中点的左侧距离中点25cm处挂了一个重1.6N的物体,在中点的右侧挂了一个苹果,当苹果距离中点20cm时木杆平衡了,可以估计这个苹果的重大约是()A.1.28N B.1.6N C.2N D.2.5N【分析】由题意得:物体的重量与力矩成反比,设:苹果的重量为千克,则:25×1.6=20×,即可求解.【解答】解:由题意得:物体的重量与力矩成反比,设:苹果的重量为千克,则:25×1.6=20×,解得:=2(N),故选:C.【点评】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.5.如图,△ABC∽△A′B′C′,AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,则△ABC与△A′B′C′的面积的比为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的性质可直接得出结论.【解答】解:∵AD和A′D′分别是△ABC和△A′B′C′的高,若AD=2,A′D′=3,∴其相似比为2:3,∴△ABC与△A′B′C′的面积的比为4:9;故选:A.【点评】本题考查的是相似三角形的性质,熟知相似三角形(多边形)的高的比等于相似比是解答此题的关键.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=7.则∠BDC 的度数是()A.15°B.30°C.45°D.60°【分析】只要证明△OCB是等边三角形,可得∠CDB=∠COB即可解决问题;【解答】解:如图,连接OC.∵AB=14,BC=7,∴OB=OC=BC=7,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故选:B.【点评】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.7.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2B.2πC.4D.4π【分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=,∠ACB=∠A'CB'=45°,∴阴影部分的面积==2π,故选:B.【点评】本题考查了扇形面积公式的应用,注意:圆心角为n°,半径为r的扇形的面积为S=.8.如图,一条抛物线与轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(﹣2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A.﹣1B.﹣3C.﹣5D.﹣7【分析】根据顶点P在线段AB上移动,又知点A、B的坐标分别为(﹣2,3)、(1,3),分别求出对称轴过点A和B时的情况,即可判断出M点横坐标的最小值.【解答】解:根据题意知,点N的横坐标的最大值为4,此时对称轴过B点,点N的横坐标最大,此时的M点坐标为(﹣2,0),当对称轴过A点时,点M的横坐标最小,此时的N点坐标为(1,0),M点的坐标为(﹣5,0),故点M的横坐标的最小值为﹣5,故选:C.【点评】本题考查了抛物线与轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于轴的直线上移动时,两交点之间的距离不变.二、填空题(本题共16分,每小题2分)9.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为3,则正六边形ABCDEF的边长为3.【分析】由于正六边形可以分成六个边长的正三角形,而正多边形的半径即为正三角形的边长,同时也是正六边形ABCDEF的边长.【解答】解:∵正六边形ABCDEF内接于⊙O,⊙O的半径为3,而正六边形可以分成六个边长的正三角形,∴正多边形的半径即为正三角形的边长,∴正三角形的边长为3,∴正六边形ABCDEF的边长为3,故答案为:3【点评】此题主要考查正多边形的计算问题,属于常规题,解题关键是根据正六边形可以分成六个边长的正三角形解答.10.如图,把△ABC绕着点A顺时针方向旋转,得到△A B'C',点C恰好在B'C'上,旋转角为α,则∠C'的度数为90°﹣(用含α的式子表示).【分析】根据旋转的性质可得AC=AC′,∠CAC′=α,∠C=∠C′,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:∵△ABC绕着点A顺时针方向旋转α得到△A B'C',∴AC=AC′,∠CAC′=α,∠C=∠C′,∴∠C′=(180°﹣α)=90°﹣,∴∠C'=90°﹣.故答案为:90°﹣.【点评】本题考查了旋转的性质,等腰三角形的性质,旋转前后对应边相等,对应角相等.11.在反比例函数的图象上有两点A(1,y1),B(2,y2),1<2<0,y1>y2,则m的取值范围是m<.【分析】根据题意可得双曲线的两支分别位于第一、第三象限,在每一象限内y随的增大而减小,进而可得3﹣2m>0,再解即可.【解答】解:∵1<2<0,y1>y2,∴3﹣2m>0,解得:m<,故答案为:m.【点评】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质(1)反比例函数y=(≠0)的图象是双曲线;(2)当>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随的增大而减小;(3)当<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随的增大而增大.12.如图,PA,PB分别与⊙O相切于A,B两点,PO与AB相交于点C,PA=6,∠APB=60°,则OC的长为.【分析】根据切线长定理易证PA=PB,则△ABP是等边三角形,PO是∠APB的平分线,利用三角函数逐个求解即可.【解答】解:连接OA.∵PA,PB切⊙O于点A,B,∴∠OAP=90°,∠APO=∠APB=30°,∴OA=,∠AOP=60°∴OC=OA=,故答案为:【点评】本题考查了切线长定理以及三角函数,正确利用三角函数确定三角形的边的关系是关键.13.如图,双曲线y=与抛物线y=a2+b+c交于点A(1,y1),B(2,y2),C(3,y3),由图象可得不等式组0<+b+c的解集为2<<3.【分析】根据函数图象写出轴上方且抛物线在双曲线上方部分的的取值范围即可.【解答】解:由图可知,2<<3时,0<<a2+b+c,所以,不等式组0<<a2+b+c的解集是2<<3.故答案为:2<<3.【点评】本题考查了二次函数与不等式组,此类题目,准确识图,利用数形结合的思想求解更简便.14.如图,在平面直角坐标系中,△COD可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转、位似)得到的,写出一种由△AOB得到△COD的过程:以原点O为位似中心,位似比为,在原点O同侧将△AOB缩小,再将得到的三角形沿y轴翻折得到△COD.【分析】根据位似和对称进行解答即可.【解答】解:以原点O为位似中心,位似比为,在原点O同侧将△AOB缩小,再将得到的三角形沿y轴翻折得到△COD,故答案为:以原点O为位似中心,位似比为,在原点O同侧将△AOB缩小,再将得到的三角形沿y轴翻折得到△COD【点评】考查了坐标与图形变化﹣位似,对称,解题时需要注意:位似比和位似中心.15.“π的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下:如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m 与正方形内的米粒数n,并计算频率;在相同条件下,大量重复以上试验,当显现出一定稳定性时,就可以估计出π的值为.请说出其中所蕴含的原理:用频率估计概率.【分析】根据几何概型的概率公式,即可以进行估计,得到结论.【解答】解:随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m与正方形内的米粒数n,并计算频率;在相同条件下,大量重复以上试验,当显现出一定稳定性时,就可以估计出π的值为.其中所蕴含的原理是用频率估计概率.故答案为:用频率估计概率.【点评】本题主要考查用频率估计概率,根据几何概型的概率公式,进行估计是解决本题的关键,比较基础.16.下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.已知:△ABC,AB=AC,∠A=120°.求作:△ABC的外接圆.作法:(1)分别以点B和点C为圆心,AB的长为半径作弧,两弧的一个交点为O;(2)连接BO;(3)以O为圆心,BO为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是四边形相等的四边形是菱形、有一个角为60°的等腰三角形是等边三角形、圆的定义.【分析】由作图知AB=OB=OC=AC可判定四边形ABOC为菱形,根据∠BAC=120°知∠BAO=∠CAO=60°,从而得∠BAO=∠CAO=60°,即△OAB、△OAC 为等边三角形,继而由OB=OA=OC可得所求作的圆.【解答】解:如图,连接OA、OC,由作图知BA=BO、OC=OA,∵AB=AC,∴AB=OB=OC=AC,∴四边形ABOC为菱形(四边形相等的四边形是菱形),又∵∠BAC=120°,∴∠BAO=∠CAO=60°,则△OAB、△OAC为等边三角形(有一个角为60°的等腰三角形是等边三角形),∴OB=OA=OC,∴点A、B、C在以O为圆心、OB为半径的圆上(圆的定义),综上,该尺规作图的依据为:四边形相等的四边形是菱形、有一个角为60°的等腰三角形是等边三角形、圆的定义.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握菱形的判定与性质、等边三角形的判定与性质及圆的定义.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题5分,第28题8分)17.小明在学习了如何证明“三边成比例的两个三角形相似”后,运用类似的思路证明了“两角分别相等的两个三角形相似”,以下是具体过程.已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B'.求证:△ABC∽△A'B'C'.证明:在线段A'B'上截取A'D=AB,过点D作DE∥B'C',交A'C'于点E.由此得到△A'DE∽△A'B'C'.∴∠A'DE=∠B'.∵∠B=∠B',∴∠A'DE=∠B.∵∠A'=∠A,∴△A'DE≌△ABC.∴△ABC∽△A'B'C'.小明将证明的基本思路概括如下,请补充完整:(1)首先,通过作平行线,依据平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可以判定所作△A'DE与△A'B'C'相似;(2)然后,再依据相似三角形的对应角相等和已知条件可以证明所作△A'DE与△ABC全等;(3)最后,可证得△ABC∽△A'B'C'.【分析】根据相似三角形的判定定理进行解答即可.【解答】解:小明将证明的基本思路概括如下:(1)首先,通过作平行线,依据平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可以判定所作△A'DE与△A'B'C'相似;(2)然后,再依据相似三角形的对应角相等和已知条件可以证明所作△A'DE与△ABC全等;(3)最后,可证得△ABC∽△A'B'C'.故答案为:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;△A'B'C'相似;△ABC全等.【点评】本题考查了相似三角形的判定;熟记平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似是解决问题的关键.18.如图,四边形ABCD是⊙O的内接四边形,对角线AC是⊙O的直径,AB=2,∠ADB=45°.求⊙O半径的长.【分析】根据圆周角定理得∠ABC=90°,然后在Rt△ABC利用勾股定理计算即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠ADB=45°,∴∠ACB=∠ADB=45°,∵AB=2,∴BC=AB=2,∴AC=,∴⊙O半径的长为.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.19.如图,在平面直角坐标系Oy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为(﹣1,3).【分析】(1)根据旋转的定义作出点A、B绕点C逆时针旋转90°得到的对应点,再顺次连接可得;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得.【解答】解:(1)如图所示,△A′B′C即为所求;(2)①∵AC==5,∠ACA′=90°,∴点A经过的路径的长为=,故答案为:;②由图知点B′的坐标为(﹣1,3),故答案为:(﹣1,3).【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转变换的定义作出对应点及弧长公式.20.图中所示的抛物线形拱桥,当拱顶离水面4m时,水面宽8m.水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种方法.方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为轴,建立平面直角坐标系Oy,这时这条抛物线所表示的二次函数的表达式为y=﹣2+2;当y=3时,求出此时自变量的取值,即可解决这个问题.方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系Oy,这时这条抛物线所表示的二次函数的表达式为y=﹣2;当y=﹣1时,求出此时自变量的取值,即可解决这个问题.【分析】方法一:根据顶点坐标为(4,4),设其解析式为y=a(﹣4)2+4,将(0,0)代入求出a的值即可得;方法二:设抛物线解析式为y=a2,将点(4,﹣4)代入求得a的值,据此可得抛物线的解析式,再求出上涨3m后,即y=﹣1时的值即可得.【解答】解:方法一、根据题意知,抛物线与轴的交点为(0,0)、(8,0),其顶点坐标为(4,4),设解析式为y=a(﹣4)2+4,将点(0,0)代入,得:16a+4=0,解得:a=﹣,则抛物线解析式为y=﹣(﹣4)2+4=﹣2+2,故答案为:y=﹣2+2;方法二:由题意知,抛物线过点(4,﹣4),设抛物线解析式为y=a2,将点(4,﹣4)代入,得:16a=﹣4,解得:a=﹣,所以抛物线解析式为y=﹣2,当y=﹣1时,﹣2=﹣1,解得:=2或=﹣2,则水面的宽减少了8﹣4=4(m),故答案为:y =﹣2,﹣1.【点评】本题主要考查二次函数的应用,解题的关键是根据题意建立合适的平面直角坐标系及熟练掌握待定系数法求函数解析式.21.有两盏节能灯,每一盏能通电发亮的概率都是50%,按照图中所示的并联方式连接电路,观察这两盏灯发亮的情况.(1)列举出所有可能的情况;(2)求出至少有一盏灯可以发亮的概率.【分析】(1)设两盏节能灯分别记为灯1,灯2,通过列表即可得到所有可能情况;(2)由(1)可知所有可能的结果,即可求出至少有一盏灯可以发亮的概率.【解答】解:(1)列表如下:亮不亮灯1灯2亮(亮,亮)(亮,不亮)不亮(亮,不亮)(不亮,不亮)(2)由(1)可知:所有可能出现的情况共有4种,它们出现的可能性相等,至少有一盏灯可以发亮的情况有3种,所有P (至少有一盏灯可以发亮)=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在平面直角坐标系Oy中,直线y=﹣2﹣3与双曲线交于M(a,2),N(1,b)两点.(1)求,a,b的值;(2)若P是y轴上一点,且△MPN的面积是7,直接写出点P的坐标(0,1)或(0,﹣7).【分析】(1)把M、N两点的坐标分别代入直线的解析式,求得a、b的值,再把N 点坐标代入反比例函数解析式求出的值;(2)设直线y=﹣2﹣3与y轴交于点C,把=0代入y=﹣2﹣3求出y的值,确定出C点坐标,根据S△MPN=S△MPC+S△CPN,由已知的面积求出PC的长,进而求出点P 的坐标.【解答】解:(1)∵直线y=﹣2﹣3过点M(a,2),N(1,b),∴﹣2a﹣3=2,b=﹣2﹣3,∴a=﹣2.5,b=﹣5.∵双曲线过点N(1,﹣5),∴=﹣5;(2)如图,设直线y=﹣2﹣3与y轴交于点C.∵y=﹣2﹣3,∴=0时,y=﹣3,即C(0,﹣3),OC=3.根据题意得:S△MPN =S△MPC+S△CPN=PC×2.5+PC×1=7,解得:PC=4,∵C(0,﹣3),∴P(0,﹣3+4)或(0,﹣3﹣4),即P(0,1)或(0,﹣7).故答案为(0,1)或(0,﹣7).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求反比例函数的解析式,一次函数图象上点的坐标特征,坐标与图形性质,以及三角形的面积求法,熟练掌握待定系数法是解本题的关键.23.如图,正方形ABCD的边长为2,E是CD中点,点P在射线AB上,过点P作线段AE的垂线段,垂足为F.(1)求证:△PAF∽△AED;(2)连接PE,若存在点P使△PEF与△AED相似,直接写出PA的长1或.【分析】(1)根据正方形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当∠PEF=∠EAD时,则得到四边形ADEP为矩形,从而求得的值;当∠PEF=∠AED时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE 的中点,运用勾股定理和相似三角形的性质进行求解.【解答】(1)证明:∵正方形ABCD,∴CD∥AB,∠D=90°∴∠AED=∠PAF,又∵PF⊥AE,∴∠PFA=∠D=90°.∴△PFA∽△ADE.(2)解:情况1,当△EFP∽△ADE,且∠PEF=∠EAD时,则有PE∥AD。

北京朝阳2020-2020学年九年级上期末试卷--数学

北京市朝阳区2020-2020学年度第一学期九年级数学期末统一考试试卷第I卷(选择题共32分)一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的。

1. 下列各图中,是中心对称图形的是2. 已知:如图,点A、B、C在圆O上,如果∠BOC=100°,那么∠BAC的度数是A. 200°B. 100°C. 80°D. 50°3. 已知两圆的半径分别为3cm和6cm,圆心距是9cm,那么这两个圆的位置关系是A. 外离B. 外切C. 相交D. 内切4. 将抛物线2x3y=向左平移2个单位,再向下平移1个单位,则所得抛物线为A. 1)2x(3y2--== B. 1)2x(3y2++C. 1)2x(3y2+-== D. 1+x(3)2y2-5. 下列说法中错误..的是A. 2020年奥运会将在北京举行是必然事件B. 谚语“只要功夫深,铁杵磨成针”所描述的事件是必然事件C. 北京今年“正月十五”会下雪是随机事件D. 月亮绕着地球转是随机事件6. 已知一元二次方程01x 2x )1m (2=++-有两个不相等的实数根,那么m 的取值范围是 A. m>2B. m<2C. 2m <且1m ≠D. 1m 45m ≠<且7. 如图,粮仓的顶部是圆锥形状,这个圆锥底面圆的半径长为3m ,母线长为6m ,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是 A. 180π元B. 90π元C. 360π元D. 540π元8. 如图,若0c 0b 0a <><,,,则抛物线c bx ax y 2++=的图象大致为第II 卷(解答题 共88分)二、填空题(共4个小题,每小题4分,共16分)9. 如果两个相似三角形的相似比是3:5,那么它们的面积比是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 2
5 C. 2 【答案】A
32 B. 2 D. 3
y
C D E
A
O
Bx
【解析】本题考查了相似三角形的基础知识以及二次函数与坐标轴交点的求法;难度
中等.
二、填空题(本题共 16 分,每小题 2 分)
9.点( 1, 3)关于原点的对称点的坐标为
.
3
--
【答案】 1,3 【解析】 x, y 关于原点对称点为x, y ,所以1,3 对称点为1,3 .
金矩形. 如图,矩形 ABCD 为黄金矩形,宽 AD= 5 1,则长 AB 为 .
【答案】2
D
C
【解析】由黄金矩形定义可知 AD 5 1 AB 2
因为 AD 5 1,即 AB 2.
A
B
12.如图,线段 AB 经过 O 的圆心,AC,BD 分别与 O 相切于点 C,D. 若 AC=BD=1,
∠A=45°,则 CD 的长度为 .
10.如图,在平面直角坐标系 xOy 中,射线 l 的端点为(0,1),l∥x 轴,请写出一
y
个图象与射线 l 有公共点的反比例函数的表达式:
.
【答案】答案不唯一,如: y 1 x
l
O
x
【解析】反比例函数与射线有公共点,举例经过1,1 ,即得 y 1 . 当反比例函数系数
x
大于 0 都可.
11.如果一个矩形的宽与长的比等于黄金数 5 1 (约为 0.618),就称这个矩形为黄 2
值为 .
【答案】2
【解析】韦达定理可知, m n 2a 2 a
15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到 A 地进行销售. 由于受道
路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到 A 地. 村里负责销售
的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统
P
D
F
A
BC
E
O1
O2
O3
A. ①②③④
B. ①②③
C. ②④
D. ②③④
【答案】D
【解析】本题考查了圆中的基本概念以及弦与圆周角、圆心角的关系;难度中等.
8.如图,抛物线
y
=
1 9
x2
-1

x
轴交于
A,B
两点,D
是以点
C(0,4)为圆心,1
为半径的圆上的动点,E 是线段 AD 的中点,连接 OE,BD,则线段 OE 的最小值是
【答案】B
【解析】本题考查了随机事件的基本概念;难度较低.
2.抛物线 y (x 2)2 1的顶点坐标是
A. (2,1)
B. (2,1)
C. (2, 1)
D. (1, 2)
【答案】A
【解析】本题考查了利用抛物线顶点式求顶点坐标的方法;难度较低.
3.只有 1 和它本身两个因数且大于 1 的自然数叫做素数,我国数学家陈景润在有关素
1 B. 缩小为原来的 3
D. 扩大为Βιβλιοθήκη 来的 9 倍【答案】A【解析】本题考查了三角函数的基本概念和相似三角形的基础知识;难度较低.
5.如图, △ABC 中,点 D,E 分别在 AB,AC 上,DE∥ BC.若 AD=1,BD=2,则
△ADE和△ABC 的面积之比为
A
A. 1∶2
B. 1∶3
DE
C. 1∶4 【答案】D
2
--
7.已知 O1 , O2 , O3是等圆,△ABP 内接于 O1 ,点 C,E 分别在 O2 , O3
上,如图,
①以 C 为圆心,AP 长为半径作弧交 O2 于点 D,连接 CD; ②以 E 为圆心,BP 长为半径作弧交 O3于点 F,连接 EF.
下面有四个结论:
①CD+EF=AB ②CD EF AB ③∠CO2D ∠EO3F ∠AO1B ④∠CDO2 ∠EFO3 ∠P 所有正确结论的序号是
5
--
计,获得的数据记录如下表:
柑橘总质量 n/kg
完好柑橘质 量 m/kg
柑橘完好的
频率 m n
100 92.40 0.924
150 138.45 0.923
200 183.80 0.919
250 229.50 0.918
300 276.30 0.921
350 322.70 0.922
400 367.20 0.918
--
2020 年北京市朝阳区初三期末数学考试逐题解析
一、选择题(本题共 16 分,每小题 2 分) 第 1—8 题均有四个选项,符合题意的选项只.有.一个.
1.下列事件中,随机事件是
A. 通常温度降到 0℃以下,纯净的水结冰
B. 随意翻到一本书的某页,这页的页码是偶数
C. 明天太阳从东方升起
D. 三角形的内角和是 360°
450 414.45 0.921
500 459.50 0.919
①估计从该村运到火车站柑橘完好的概率为 (结果保留小数点后三位);
②若从该村运到 A 地柑橘完好的概率为 0.880,估计从火车站运到 A 地柑橘完好的概
率为
数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从 5,7,11 这 3 个素数中随机
抽取一个,则抽到的数是 7 的概率是
A. 1 7
【答案】C
1
1
B.
C.
D. 1
5
3
【解析】本题考查了概率的计算;难度较低.
1
--
4.把 Rt△ABC 三边的长度都扩大为原来的 3 倍,则锐角 A 的余弦值
A. 不变 C. 扩大为原来的 3 倍
D. 1∶9
B
C
【解析】本题考查了相似三角形的基础知识和比例关系;难度较低.
6.如图,在正方形网格中,△ MPN 绕某一点旋转某一角度得到△ M ' P' N ' ,则旋转
中心可能是 A. 点 A B. 点 B C. 点 C D. 点 D
D
N'
BC
PM P' A
M' N
【答案】B
【解析】本题考查了旋转的基本概念以及对应点和旋转中心的关系;难度中等.
13.如图,在正方形网格中,点 A,B,C 在 O 上,并且都是小正方形的顶点,P 是
ACB 上任意一点,则∠P 的正切值为 .
【答案】 1 2
【解析】圆周角定理可得 P ACB ∴ tan P tanC AB 1
BC 2
P A
O
C
B
14.若抛物线 y ax2 2ax 3与 x 轴交于两点,分别是(m,0),(n,0),则 m+n 的
【答案】 2
【解析】
C
D
A
O
B
连接OC 、 OD ,
4
--
AC 、 BD 分别与 O 相切,
∴OC AC ,OD BD , A 45
∴ AOC 45
∴ AC OC 1
∴ AC BD 1,OC OD 1 OD BD 1
∴ BOD 45
∴ COD 185 45 45 90
∴ CD 90 1 180 2
相关文档
最新文档