四年级数学上册计算竞赛题
(精选)2021-2022学年人教版四年级上册数学竞赛高频题-----追及问题(附答案)

2021-2022学年人教版四年级上册数学竞赛高频题------追及问题姓名:___________班级:___________考号:___________一、解答题1.A、B两地相距260米,甲、乙两人分别从A、B两地同时出发,同向而行(甲是往B方向出发的)。
已知甲每秒钟走5米,乙每秒钟走3米,那么甲出发多长时间后可以追上乙?2.京、津两地相距120千米,客车和货车分别从北京和天津同时出发,同向而行,客车在前,货车在后。
已知客车每小时行100千米,货车每小时行120千米。
那么出发后多长时间货车追上客车?3.墨莫步行上学,每分钟行75米。
墨莫离家12分钟后,爸爸发现他忘了带文具盒,马上骑自行车去追,每分钟行375米。
求爸爸追上墨莫所需要的时间。
4.龟、兔赛跑,龟比兔先出发100分钟,龟每分钟爬30米,兔每分钟跑330米。
请问兔出发后多久追上乌龟?5.一辆公共汽车和一辆小轿车从相距100千米的两地同时出发,同向而行,公共汽车在前,每小时行40千米;小轿车在后,每小时行60千米。
那么:(1)经过2小时后两车相距多少千米?(2)出发几个小时后小轿车会领先公共汽车100千米?6.阿呆和阿瓜沿着同一条路线上学,阿呆每秒钟跑3米,阿瓜每秒钟跑7米。
现在阿瓜落后阿呆50米,那么再过多长时间阿瓜会领先阿呆50米?7.一辆公共汽车早上6点从A城出发,以每小时40千米的速度向B城驶去。
3小时后一辆小轿车以每小时75千米的速度也从A城出发到B城。
当小轿车到达B城后,公共汽车离B城还有160千米。
问:小轿车什么时刻到达B城?8.高速路上自西向东分布着A、B、C、D四个加油站,其中A、B之间的距离是20千米,C、D之间的距离是40千米。
上午6:00快、慢两车分别从A、B两地出发向东前进,快车的速度是每小时80千米,慢车的速度是每小时60千米。
当快车到达D加油站的时候,慢车正好到达C。
那么快车从A到达D 一共开了几个小时?9.甲、乙两车同时从东、西两地出发,相向而行。
北师大版四年级数学上册计算题专项竞赛题

北师大版四年级数学上册计算题专项竞赛题班级:__________ 姓名:__________1. 解方程。
5X-1.5=13.5 45+2X=515 X-7.82=5.18 X÷6=245X+X=20 3X+3.6=7.89 4X-12=7.2 X÷1.2=0.62. 直接写得数。
180×5= 35×4= 42×7= 75×15=15×4= 48×60= 36×3= 38×20=3. 口算。
750÷15= 130×30= 630×0= 900÷60=240÷60= 50×300= 140×70= 125×80=416÷70≈ 643÷79≈ 98×202≈ 201×92≈4. 用竖式计算并验算。
80÷40= 280÷70=170÷50= 420÷80=5. 求未知数X。
23.5+X=35 X÷75=1800632×X=8216 X–4.583=2.3176. 用计算器计算前面三题,找出规律,直接写出后面三题的答案。
111111111÷9=222222222÷18=333333333÷27=444444444÷36=555555555÷45=888888888÷72=7. 用计算器计算出前三道题,发现规律后,直接完成其余的题。
(1)11×11= (2)111111111÷9=111×111= 222222222÷18=1111×1111= 333333333÷27=11111×11111= 444444444÷36=111111×111111= ( )÷63=12345679 1111111×1111111= 999999999÷( )=123456798. 用计算器计算。
【人教新课标】四年级上册数学试题 - 竞赛试卷(含答案解析)

2019年福建省泉州市永春实验小学四年级数学竞赛试卷一、填空题(共25小题,满分100分)1.(4分)巧妙计算.(1)(234567+345672+456723+567234+672345+723456)÷9=.(2)98766×98768﹣98765×98769=.2.(5分)A=B=C=D=E=.3.(5分)4.(3分)A、B、C、D均为自然数,若A×B=15,B×C=20,A×D=24,那么C×D=.5.(3分)司机开车按顺序到五个车站接学生到学校,每个站都有学生上车,第一站上了一批学生,以后每站上车人数都是前一站上车人数的一半,到学校时,车上最少有学生人.6.(3分)一本书共380页,印刷厂的排版工人编排这本书,仅排页码一共要用个铅字.7.(3分)如果1☉2=1+2,2☉3=2+3+4,…,5☉6=5+6+7+8+9+10,那么,在X☉3=54中,X=.8.(3分)小明去买同一种笔和同一种橡皮,所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮.结果他用这些钱全部买了笔,他能买支.9.(4分)某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有人.10.(4分)一列火车长900米,从路边的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟,这座大桥的长度是米.11.(4分)甲、乙、丙、丁四人年龄之和是101岁,甲32岁,乙27岁,当甲29岁时,丁的年龄是丙的3倍,丙、丁今年各是岁、岁.12.(4分)有鸡蛋18箩,每只大箩容180个,每只小箩容120个,共值302.4元,若将每个鸡蛋便宜2分出售,则可得款252元.大箩有只,小箩有只.13.(4分)将1~9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20.14.(4分)六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种,至少有名学生订阅的杂志种类相同.15.(4分)有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输.如果甲先取,那么将获胜.16.(4分)牧场上有一片牧草,供23头牛5周吃完,供17头牛10周吃完,假定草的生长速度不变,则该牧场可供16头牛吃周.17.(4分)龟兔进行10000米赛跑,兔子速度是乌龟的5倍,当它们从起点出发后,乌龟不断地跑,兔子跑到某一地点开始睡觉,兔子醒来时,乌龟已经领先它5000米,兔子奋起直追,但乌龟到达终点时,兔子仍落后100米,那么在兔子睡觉期间,乌龟跑了米.18.(4分)甲仓的存粮是乙仓的2倍,每天从甲仓运出12吨粮食,从乙仓运出5吨粮食,若干天后,甲仓正好运完,而乙仓还剩粮食18吨,甲仓原有粮食吨,乙仓原有粮食吨.19.(4分)从装有写着1、2、3、4、5、6、7、8、9的9张卡片中,一次取出6张,计算它们的和,最多有种不同的和.20.(4分)两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分第一根是第二根长度的3倍.这两根电线原来共长厘米.21.(4分)五位同学捐款,他们捐的钱有3张1元,4张2元,3张5元和3张10元.这五位同学捐款数各不相同,捐款最多的同学至少捐了元.22.(4分)一列数,1、2、3、5、8、13…,从第3个开始,每一个数都是前2个数的和,在前2000个数中,有个偶数.23.(5分)客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行21.6千米.求甲乙两站间的路程是多少千米?24.(5分)除以13所得的余数是.25.(5分)某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米.李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用秒.2018年福建省泉州市永春实验小学四年级数学竞赛试卷参考答案与试题解析一、填空题(共25小题,满分100分)1.(4分)巧妙计算.(1)(234567+345672+456723+567234+672345+723456)÷9=33333.(2)98766×98768﹣98765×98769=3.【分析】(1)通过观察,个位,十位,百位,千位,万位的求和都等于(2+3+4+5+6+7)=27,所以原题可以化成27×(10000+1000+100+10+1)÷9,进行简算即可;(2)把98766变成(98765+1),98769变成(98768+1),再利用乘法的分配律进行简算.【解答】解:(1)(234567+345672+456723+567234+672345+723456)÷9=27×(10000+1000+100+10+1)÷9=3×(10000+1000+100+10+1)=30000+3000+300+30+3=33333;(2)98766×98768﹣98765×98769=(98765+1)×98768﹣98765×(98768+1)=98765×98768+98768﹣(98765×98768+98765)=98765×98768+98768﹣98765×98768﹣98765=98768﹣98765=3.故答案为:33333,3.【点评】认真观察,根据数字特点进行组合,从而达到巧算的目的.2.(5分)A=4B=2C=8D=5E=7.【分析】根据乘法口决,3乘E的末尾是1,E就是7,它同3相乘要向前一位进2,积的十位是E既7,D就是5,它同3相乘要向前一位进1,积的百位是D既5,C就是8,它同3相乘要向前一位进2,积的千位是C既8,B就是2,A与3相乘,积的万位是B既2,A就是4,据此解答.【解答】解:答案如下,故答案为:4,2,8,5,7.【点评】本题的关键是根据乘法口决从个位算起,先确定第一个因数的个位是几,再进行推理解答.3.(5分)【分析】第一步十位上的商乘□6积的末尾是8,3×6=18,8×6=48,那么商的十位可能是3或8,由此分别讨论,得出其它数可能的值,从而求解.【解答】解:观察算式发现:第一步,商的十位与除数的乘积的末尾是8,所以商的十位可能是8或3;①当商的十位是8时,16×8=128,26×8=208,除数的十位只能是1,除数是16,此时算式是:观察上述算式,没有余数,说明被除数的个位是2,14□﹣128的差是一位数,且这个一位数与2组成的数是16的倍数,只有32÷16=2符合要求,所以此时商的个位是2,整个算式的商就是82,被除数就是82×16=1312,这与被除数是1400多不相符;不合题意;②当商的十位是3时,36×3=108,46×3=138,56×3=168,那么如果除数是36,36与3的乘积是108,而140﹣108=32,差是两位数,与第一步计算的差是一位数不符;如果除数是56及以上,乘积都大于150了,不合题意,所以除数只能是46,此时算式变成:观察上述算式可得,被除数的个位是2,46×2=92,只有这一个可能,所以商的个位是2,商是32,此时被除数32×46=1472,符合要求,此时竖式就是:【点评】本题非常巧妙地考查了对整数的除法运算法则的熟悉掌握程度.4.(3分)A、B、C、D均为自然数,若A×B=15,B×C=20,A×D=24,那么C×D=32.【分析】分别将15,20,24分解质因数,再把质因数做适当的调整,求出相乘的两个因数,进而求出自然数A,B,C,D的值,再代入求C×D的值即可.【解答】解:因为15=3×5,20=2×2×5=4×5,所以可以得出B=5,A=3,C=4,因为24=A×D,所以D=8;所以C×D=4×8=32;故答案为:32.【点评】此题考查了合数分解质因数,分解质因数就是把一个合数写成几个质因数的连乘积的形式,一般先从简单的质数试着分解,得出B等于5,是解答此题的关键.5.(3分)司机开车按顺序到五个车站接学生到学校,每个站都有学生上车,第一站上了一批学生,以后每站上车人数都是前一站上车人数的一半,到学校时,车上最少有学生31人.【分析】5个站依次减半,那么从最后的一站(第5站)至少要上1个人,依次第4站为2人,第3站为4人,第2站为8人,第一站为16人.相加得:1+2+4+8+16=31个.【解答】解:最后的一站(第5站)至少要上1个人,依次第4站为2人,第3站为4人,第2站为8人,第一站为16人.1+2+4+8+16=31(个).答:车上最少有31个学生.故答案为:31.【点评】考查了逆推问题,关键是从最后的一站(第5站)至少要上1个人进行推理求解.6.(3分)一本书共380页,印刷厂的排版工人编排这本书,仅排页码一共要用1032个铅字.【分析】排版时一个铅字只能排一位数字,因此只要算出组成1~380这380个数需要多个数字即可知道排这本书的页码共要用多少个铅字:一位数:1~9共有9个数字;两位数:组成10~99共需要90×2=180个数字;三位数:组成100~380共需要281×3=843个数字.把这三部分相加即可求解.【解答】解:一位数:1~9共有9个数字;两位数:组成10~99共需要90×2=180个数字;三位数:组成100~380共需要281×3=843个数字.9+180+843=1032(个)答:仅排页码一共要用1032个铅字.故答案为:1032.【点评】根据自然数的排列规律及数位进行分析是完成本题的关键.7.(3分)如果1☉2=1+2,2☉3=2+3+4,…,5☉6=5+6+7+8+9+10,那么,在X☉3=54中,X=17.【分析】由题意得出“☉”表示求连续自然数的和,“☉”前面的数表示要加的第一个数,“☉”后面的数表示连续自然数的个数;由此用此规律把X☉3=54变成简易方程,再根据解方程的方法求解.【解答】解:X☉3=54X+X+1+X+2=543X+3=543X+3﹣3=54﹣33X=513X÷3=51÷3X=17故答案为:17.【点评】解答此题的关键是,根据所给出的式子,找出新的运算方法,再利用新的运算方法解决问题.8.(3分)小明去买同一种笔和同一种橡皮,所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮.结果他用这些钱全部买了笔,他能买9支.【分析】所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮,由此可知:买(8﹣6)支笔的钱可以买(12﹣4)块橡皮,由此可以得出买1支笔的钱可以买4块橡皮,然后根据“所带的钱能买8支笔和4块橡皮”即可得出:所带的钱全部买了笔,他能买8+1=9支;由此解答即可.【解答】解:8+4÷[(12﹣4)÷(8﹣6)]=8+1=9(支)答:结果他用这些钱全部买了笔,他能买9支.故答案为:9.【点评】此题属于简单的等量代换,根据题意推出买1支笔的钱可以买4块橡皮,是解答此题的关键.9.(4分)某班在一次测验中有26人语文获优,有30人数学获优,其中语、数双优的有12人,另外还有8人语、数均未获优,这个班共有52人.【分析】有26人语文获优,有30人数学获优,其中语数双优的有12人,根据容斥原理可知,这个班获得优秀的人数共有26+30﹣12=44人,另外有8人语数成绩均未获优,所以这个班共有44+8=52人.【解答】解:26+30﹣12+8=56﹣12+8=44+8=52(人)答:这个班共有52人.故答案为:52.【点评】首先根据容斥原理之一:A类B类元素个数总和=属于A类元素个数+属于B类元素个数﹣既是A类又是B类的元素个数,求出获优的有多少人是完成本题的关键.10.(4分)一列火车长900米,从路边的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟,这座大桥的长度是1200米.【分析】根据路程÷时间=速度,用火车长除以1.5分钟,求出火车的速度;通过大桥时,行驶的路程是大桥和火车的长度和,再根据路程=速度×时间,求出火车和桥长度的和,进而求出大桥的长.【解答】解:900÷1.5×3.5﹣900=600×3.5﹣900=2100﹣900=1200(米)答:这座大桥的长度是1200米.故答案为:1200.【点评】本题关键在于火车行驶的路程是桥长与火车长度的和,部分同学可能不考虑火车长度而导致出错.11.(4分)甲、乙、丙、丁四人年龄之和是101岁,甲32岁,乙27岁,当甲29岁时,丁的年龄是丙的3倍,丙、丁今年各是12岁、30岁.【分析】根据题意可得,丙、丁两人年龄之和是101﹣32﹣27=42(岁),当甲29岁时,经过了32﹣29=3(年),那时,丙、丁两人年龄之和是42﹣3×2=36(岁),又因为“丁的年龄是丙的3倍,”,即此时丙、丁两人年龄之和是丙的年龄的(1+3)倍,然后根据和倍公式解答即可求出丙的年龄,以及丁的年龄.【解答】解:101﹣32﹣27=42(岁)32﹣29=3(年)42﹣3×2=36(岁)36÷(1+3)=36÷4=9(岁)9+3=12(岁)9×3+3=27+3=30(岁)答:丙今年12岁,丁今年30岁.故答案为:12;30.【点评】本题考查了比较复杂的年龄问题,关键是求出丙、丁两人年龄之和(今年和3年前的)与倍数和求出.12.(4分)有鸡蛋18箩,每只大箩容180个,每只小箩容120个,共值302.4元,若将每个鸡蛋便宜2分出售,则可得款252元.大箩有6只,小箩有12只.【分析】根据题意,可找出数量之间的相等关系式为:(大箩的只数×180+小箩的只数×120)×0.02=302.4﹣252,可设小箩有x只,则大箩有(18﹣x)只,据此列出方程并解方程即可.【解答】解:2分=0.02元,设小箩有x只,则大箩有(18﹣x)只,由题意得:[180×(18﹣x)+120x]×0.02=302.4﹣252[3240﹣180x+120x]×0.02=50.464.8﹣1.2x=50.41.2x=14.4x=12大箩有:18﹣12=6(只);答:小箩有12只,大箩有6只.故答案为:6,12.【点评】此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.13.(4分)将1~9这九个自然数分别填进九个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20.【分析】如上图所示,每4个小三角形组成的中三角形内,在求和时重复相加的小三角形内的数字是a、b、c,由已知可得:1+2+3+4+5+6+7+8+9+a+b+c=20×3,化简得,a+b+c=15,假设a、b、c是4、5、6,然后凑出其它的数字,使4+5+9+2=20,5+6+8+1=20,3+7+4+6=20,如下图1所示;假设a、b、c是3、5、7,然后凑出其它的数字,使3+7+1+9=20,2+6+5+7=20,4+8+3+5=20,如下图2所示;这样的填空的方式有多种,只要满足题意就可以,因此得解.【解答】解:假设重复求和的位置的数字分别是a、b、c,则有1+2+3+4+5+6+7+8+9+a+b+c=20×3,所以a+b+c=15,令a、b、c为4、5、6,则其它的空只要满足4+5+9+2=20,5+6+8+1=20,3+7+4+6=20,就可以完成一种填法;如图1;令a、b、c为3、5、7,则其它的空只要满足3+7+1+9=20,2+6+5+7=20,4+8+3+5=20,又可以完成一种填法;如图2;填空的方式有很多种,不妨大家试一试.答案不唯一.【点评】此题考查了凑数谜,假设出未知数,根据已知条件,列出等式,凑数,即可得解.14.(4分)六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种,至少有15名学生订阅的杂志种类相同.【分析】订阅杂志中的一种有3种选法、订阅二种有3种选法、订阅三种有1种选法,共有3+3+1=7(种);把7种选法看作7个抽屉,把订阅杂志的人数(100)看元素,从最不利情况考虑,每个抽屉先放14个元素,共需要98个,还余2个,无论放在那个抽屉里,总有一个抽屉里至少有14+1=15个,所以至少要15名学生订阅的杂志种类相同;据此解答.【解答】解:3+3+1=7(种);100÷7=14(人)…2(人),14+1=15(名);答:至少要15名学生订阅的杂志种类相同.故答案为:15.【点评】抽屉原理问题的解答思路是:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数,然后根据“至少数=元素的总个数÷抽屉的个数+1(有余数的情况下)”解答.15.(4分)有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输.如果甲先取,那么甲将获胜.【分析】因为每人每次至少取一个,最多取5个,所以一定能保证两人所拿的和是6,而1999÷(1+5)=1999÷6=333…1,所以甲先拿1个,然后看乙拿几个,甲拿的球数与乙拿的和是6,甲一定胜利.【解答】解:1999÷(1+5)=1999÷6=333 (1)答:甲先拿1个,然后看乙拿几个,甲拿的球数与乙拿的和是6,甲一定胜利.故答案为:甲.【点评】本题考查最佳方法问题:如果有余数,谁先拿然后始终保证所拿的数量之和一定,谁就一定胜利.16.(4分)牧场上有一片牧草,供23头牛5周吃完,供17头牛10周吃完,假定草的生长速度不变,则该牧场可供16头牛吃12周.【分析】假设每头牛每周吃青草1份,先求出青草的增加的速度:(17×10﹣23×5)÷(10﹣5)=11(份);然后求出草地原有的草的份数:23×5﹣5×11=60(份);那么16头牛每周吃青草16份,青草每周增加11份,可以看作每周有(16﹣11)头牛在吃草,草地原有的60份的草,可吃:60÷5=12(周).【解答】解:假设每头牛每周吃青草1份,青草增加的速度:(17×10﹣23×5)÷(10﹣5)=55÷5=11(份);原有的草的份数:23×5﹣5×11=115﹣55=60(份);可供16头牛吃:60÷(16﹣11)=60÷5=12(周);答:该牧场可供16头牛吃12周.故答案为:12.【点评】本题考查了牛吃草的问题,关键的是求出青草的每周增加的速度(份数)和草地原有的草的份数.17.(4分)龟兔进行10000米赛跑,兔子速度是乌龟的5倍,当它们从起点出发后,乌龟不断地跑,兔子跑到某一地点开始睡觉,兔子醒来时,乌龟已经领先它5000米,兔子奋起直追,但乌龟到达终点时,兔子仍落后100米,那么在兔子睡觉期间,乌龟跑了8020米.【分析】根据题意,兔子一共跑了10000﹣100=9900(米),因为兔子的速度是乌龟的五倍,所以在兔子跑的同时乌龟跑了9900÷5=1980(米),而实际乌龟跑了10000米,所以它在兔子睡着的时候乌龟跑了10000﹣1980=8020(米),解决问题.【解答】解:10000﹣(10000﹣100)÷5,=10000﹣9900÷5,=10000﹣1980,=8020(米);答:兔子睡觉的时候,乌龟跑了8020米.故答案为:8020.【点评】此题的解答思路:先求出兔子一共跑的路程,再根据兔子速度是乌龟的5倍,求出在兔子跑的同时乌龟跑的路程,进而解决问题.18.(4分)甲仓的存粮是乙仓的2倍,每天从甲仓运出12吨粮食,从乙仓运出5吨粮食,若干天后,甲仓正好运完,而乙仓还剩粮食18吨,甲仓原有粮食216吨,乙仓原有粮食108吨.【分析】设乙仓原来有粮食x吨,因“甲仓的存粮是乙仓的2倍”,则甲仓有粮食2x,又因“每天从甲仓运出12吨粮食”,则天甲仓的粮食正好运完,又因“从乙仓运出5吨粮食,天后乙仓还剩18吨”,由此等量列方程求解.【解答】解:乙仓原来有粮食x吨,x﹣×5=18x﹣x=18x=18x=108,108×2=216(吨),答:甲仓原有粮食216吨,乙仓原有粮食108吨.故答案为:216,108.【点评】此题解答的关键是表示出甲仓正好运完的天数来算乙仓运出的吨数,从而根据乙还剩的吨数列方程.19.(4分)从装有写着1、2、3、4、5、6、7、8、9的9张卡片中,一次取出6张,计算它们的和,最多有19种不同的和.【分析】这9个数是等差数列,所以每次取6张卡片,和最小是1+2+3+4+5+6=21,和最大是4+5+6+7+8+9=39.因此,所有的和在21至39之间,有19种不同的和.【解答】解:和最小是:1+2+3+4+5+6=21和最大是:4+5+6+7+8+9=3939﹣21+1=19(种)答:最多有19种不同的和.故答案为:19.【点评】本题考查了极值问题,关键是确定这6个数的和的取值范围.20.(4分)两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分第一根是第二根长度的3倍.这两根电线原来共长490厘米.【分析】设这两根电线原来长x厘米,根据等量关系:第一根原来的长度﹣50厘米=(第二根原来的长度﹣180厘米)×3,列方程解答即可.【解答】解:设这两根电线原来长x厘米,x﹣50=3×(x﹣180)x﹣50=3x﹣5402x=490x=245,245+245=490(厘米),答:这两根电线原来共长490厘米.故答案为:490.【点评】本题考查了含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.21.(4分)五位同学捐款,他们捐的钱有3张1元,4张2元,3张5元和3张10元.这五位同学捐款数各不相同,捐款最多的同学至少捐了14元.【分析】这个题应该这么考虑,要求这五个人捐款最多的同学捐的钱尽量最少,就让五个人捐的钱相差最少(1元),所以五个人捐款的平均数为n元,要求n,n=(3×1+3×5+3×10+4×2)÷5=11.2,所以现在依次列出来,假如捐款最多的人是13,则剩下的必定是12,11,10,9,则总数是55,55<56.因此捐款最多的人是14.依次为10+2+1+1,10+2,10+1,5+5,5+2+2.【解答】解:(3×1+3×5+3×10+4×2)÷5=(3+15+30+8)÷5=11.2(元)9+0+11+12+13=55(元)55<5610+2+1+1=14(元)10+2=12(元)10+1=11(元)5+5=10(元)5+2+2=9(元)答:捐款最多的同学至少捐了14元.故答案为:14.【点评】考查了钱币问题,解答此题的关键是理解题意,知道我国现有的人民币的面值,由此即可解答.22.(4分)一列数,1、2、3、5、8、13…,从第3个开始,每一个数都是前2个数的和,在前2000个数中,有667个偶数.【分析】因为从第三个数开始,每个数都是它前面2个数的和,这个数列是按照“奇数、偶数、奇数”的顺序循环重复排列的,即每过3个数循环一次.先求出2000个数里面有多少组这样的循环,还余几,然后根据组数和余数进行求解.【解答】解:这个数列是按照“奇数、偶数、奇数”的顺序循环重复排列的;每一组循环中有2个奇数和1个偶数;2000÷3=666…2,余数是2,余下的这个数是偶数;所以偶数有:666+1=667(个)答:共有667个偶数.故答案为:667.【点评】本类型的题目先判断出按什么顺序循环重复排列的,把这样的数看成一组,看所要求的个数有几个这样的一组.23.(5分)客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车比货车多行21.6千米.求甲乙两站间的路程是多少千米?【分析】已知两车的速度及两车相遇时客车比货车多行的路程,因此可先据路程差÷速度差=所行时间求出第二次相遇时两车行驶的时间,再由时间×速度和=两车共行路程.由于第二次相遇时两车共行了三个全程,所以两车第二次相遇时所行的总路程除以3即得甲乙两站的距离.【解答】解:两车第二次相遇时间为:21.6÷(54﹣48)=21.6÷6=3.6(小时)甲乙两站相距:(54+48)×3.6÷3=102×3.6÷3,=122.4(千米).答:甲乙两站的路程是122.4千米.【点评】在相遇问题中,两车第二次相遇时共行的路程为三个全程.24.(5分)除以13所得的余数是9.【分析】根据同余性质来解.【解答】解:因为222222=2×111111,=2×111×1001,=2×111×7×11×13,所以222222能被13整除.又因为2000=6×333+2,=00+22,22÷13=1…9,所以要求的余数是9.故答案为:9【点评】灵活运用同余性质.25.(5分)某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米.李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用31.25秒.【分析】先用202除以2,求出每队的人数是202÷2=101人,101人就有100个间隔,再乘0.5米,求出这个队伍的总长度;从队尾赶到对头是追及问题,路程差就是队伍的总长度,用路程差除以速度差,即可求出赶上队头所需要时间;再返回队尾,它们的相对速度就是速度和,路程仍是队伍的长度,再用队伍的长度除以速度和,就是返回队尾所需时间,然后把两部分时间相加即可求解.【解答】解:①这支路队伍长度:(202÷2﹣1)×0.5=100×0.5=50(米)②赶上队头所需要时间:50÷(5﹣3)=50÷2=25(秒)③返回队尾所需时间:50÷(5+3)=50÷8=6.25(秒)④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒.故答案为:31.25.【点评】要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可;明确队伍的间隔数=人数﹣1.。
人教版数学小学四年级上册竞赛试题(5)(解析版)

上学期四年级数学竞赛试题考试时间:90分钟满分:100分一、单选题(共10题;共10分)1.如图:数一数图中有()个三角形.A. 3B. 4C. 6D. 72.一本书中间有一张被撕掉了,余下各页码数之和正好等于1000,这本书原有()页.A. 40B. 45C. 48D. 503.甲、乙两车从A地开往B地分别需要用10个小时和15个小时,若乙车先出发3小时,则甲车出发()小时后能追上乙车.A. 7B. 6C. 5D. 44.11338×25593的值为()A. 290133434B. 290173434C. 290163434D. 2901534345.有红、白、黄、蓝、黑5种颜色的花,将其中两种花色插一瓶,共有()种不同的插法.A. 5B. 8C. 106.一座大桥长1400米,一列火车以每秒20米的速度通过这座大桥,火车车身长400米,则火车从上桥到离开桥需要()A. 50秒B. 70秒C. 90秒7.最小的五位数比最大的四位数()。
A. 小1B. 大1C. 大10008.规定:a△b=3a﹣2b.已知x△(4△1)=7,那么x△5=()A. 7B. 17C. 19D. 369.在正午与午夜之间,座钟的时针与分针有()次交叉成直角.A. 12B. 20C. 22D. 2410.330+340+350+360+370=()A. 330×5B. 340×5C. 350×5D. 360×5二、计算题(共4题;共34分)11.直接写出得数.×4= 0.5× = ×2.1= 28× = × =× = 3.2× = × = 18× = 0.875× =12.把下面两个算式变成一个算式。
73×9=657 657+300=957________13.用简便方法计算.125×4814.请写出简算过程.2+4+6+8+……+98+100三、作图题(共1题;共8分)15.用你喜欢的方法画出下面各角。
部编人教版2024年四年级上学期数学计算题专项竞赛题

部编人教版2024年四年级上学期数学计算题专项竞赛题班级:__________ 姓名:__________1. 用计算器探索规律。
先用计算器计算前四个算式,再根据规律直接写出其他算式的结果。
1×8+1=___________ 12×8+2=___________123×8+3=___________ 1234×8+4=___________12345×8+5=___________ 123456×8+6=___________1234567×8+7=__________ 12345678×8+8=__________ 123456789×8+9=__________2. 脱式计算。
(1)2400÷80-14×2 (2)108-(83+360 ÷60)(3)(422+58)÷(375-345)(4)420÷[(205-198)×4] (5)460÷(29-18÷3)(6)1450÷[ 2×(16+9)]3. 脱式计算。
24×8÷12 (28+72)÷25(945-68)×3 16×(78-66)4. 直接写出得数。
125×8= 169+31= 840÷8= 772÷386=581+219= 880÷44= 200-178= 25×8=276+224= 412-298= 102×4= 39÷13=5. 算一算,并找规律填空。
(1)15873×7=(_____) 15873×(_____)=(_____)15873×14=(_____)(_____)×(_____)=(_____)15873×21=(_____)(_____)×(_____)=(_____)(2)1+2+3+…+10=(_____) 21+22+23+…+30=(_____)11+12+13+…+20=(_____)(_____)=(_____)(3)9×9+9=(_____)(_____)×9+(______)=(_____)98×9+8=(_____)(_____)×9+(______)=(_____)987×9+7=(_____)(_____)×9+(______)=(_____)6. 脱式计算。
2024年四年级上册数学计算题专项竞赛题

2024年四年级上册数学计算题专项竞赛题班级:__________ 姓名:__________1. 直接写得数。
199+87= 281-99= 25×28= 0.1÷10×100=479-56-144= 960÷80= 125×16= 18×50=7.5×100÷10= 147+56+53= 10-2.05= 3.5×0.4=2. 列竖式计算。
28×306 60×350 189×67600÷25 126÷(2×9) 420÷353. 用计算器计算下面各题,看谁算的又快有准。
8535÷15+1481= 8421÷21-156= 26520÷26÷12= 1584×25÷132= 6880÷(809-793)= 4386+42×78= 3324+5168+90735+4432= 6198-(13475-8607)= 745×182=4. 解方程。
X+18=50.5 7X=63X÷3.1=5 2X–16=345. 我的口算能力最强。
2.7+5= 5.6+4.4= 10—0.1= 0.8-0.76=1.7+0.3= 17+0.33= 9-0.26= 8.1+1.9+5=2.38+0.7= 0.26-0.12= 2-0.005= 9.6-2.8-3.6=6. 口算。
0×27= 25×3×4= 500×60= 240×3= 30×6= 35×2×5= 120×30= 900÷3= 24×5= 19+12+38= 1000-667= 4×12=7. 用计算器计算。
2022年四年级上册数学应用题专项竞赛题

2022年四年级上册数学应用题专项竞赛题班级:__________ 姓名:__________一、计算题。
1. 小东和小强两人集邮,小东集邮48枚,小强比小东集邮枚数的3倍少12枚。
两人一共集邮票多少枚?2. 四年级有两个班同学打算去文化宫看电影,四(1)班有14名、四(2)班有24名,电影票价如下表:电影院还有一项优惠措施,消费满500元返还现金60元。
(1)如果单独买票,两个班分别需要花多少钱?(2)如果两个班合起来购票,最少花钱多少元?3. 李师傅每小时加工24个零件,照这样计算,加工180个零件需要多少小时?4. 一台机器重570千克,有8台这样的机器,一辆载重3吨的汽车能一次运走吗?(写出计算过程)5. 笑笑去书店买了四本书,付了100元,找回34.5元,笑笑发现售货员多找她3.5元,这几本书实际售价是多少元?6. 李叔叔开车从甲地去乙地办事,平均每小时行80千米,15小时到达。
(1)甲、乙两地之间的距离是多少千米?(2)办完事后李叔叔原路返回,只用了12小时。
回来时李叔叔开车平均每小时行多少千米?7. 修路队计划修一条1200米的公路,每天修60米,已经修了8天.余下的要9天修完,平均每天修多少米?8. 张亮读一本书,3天读了27页.(1)照这样的速度,5天可以读多少页?(2)照这样的速度,全书72页,几天可以读完?9. 100粒大米约重4克。
照这样计算,一亿粒大米约重多少克?500克大米可以供一名成年人生活一天,全国13亿人如果每人少浪费一粒米,节约的粮食可供一名成年人生活几天?10. 某钢材厂计划7月份生产钢材105800吨,8月份生产钢材176500吨,7、8两个月一共生产钢材多少万吨?11. 刘老师带1000元给学生买奖品,买钢笔用去386元,买笔记本用去414元,应找回多少元?12. 学校图书室陈老师去新华书店买《三毛流浪记》丛书,每套60元。
陈老师一共带了540元钱,大约可以买多少套?13. 一枚5角硬币大约重4克。
小学四年级数学计算能力竞赛试题(含答案)

小学四年级数学计算能力竞赛试题(时间:40分钟总分100分)一、口算(每题0.5分,共20分)380+230= 650+350=560—240= 280000+320000= 38万+17万= 76万—28万= 630—190= 567+198=2800÷70= 52×200= 990÷30= 180万+360万=128+72= 30×45= 225-50= 137+42= 800÷50= 340×20= 25×40= 125×8=17×70= 440÷4= 73+127= 305+299=12×11= 120×30= 96÷4= 360÷30=540÷27= 710-640= 25×24= 570-78=310-99= 9000÷50= 80×25= 710-230=75+25×4= 63-63÷7=58×50÷10= 8×6÷8×6=二、计算下面各题。
(1-9题每题2分,10-13题每题3分,共30分)(1)90×12-800 (2)75+225÷45 (3)624÷24+185(4)145×28-107 (5)45×18÷15 (6)540÷45×130(7)(47+12) ×15 (8)195÷(150-85) (9)(220-185)×14 (10)60+70×3-110 (11)(253-195)×(72÷6) (12)(531-27×5)÷36 (13)900÷[(15+10)×3]三、用简便方法计算。