Krylov子空间迭代法

合集下载

Krylov子空间方法II

Krylov子空间方法II

max {q (λi )2 }
2 yi λi
min
max {q (λi ) } y Λy
5/76
= = 即
q ∈Pk , q (0)=1 1≤i≤n q ∈Pk , q (0)=1 1≤i≤n
min
max {q (λi )2 } ϵ0 Aϵ0 max {q (λi )2 } ∥ϵ0 ∥2 A,

min
11/76
(4.6)
又 Λ 是对角矩阵, 所以 ∥q (Λ)∥2 = max |q (λi )|.
1≤i≤n
设 x(k) 是由 GMRES 方法得到的近似解. 由 GMRES 方法的最优性可 知, x(k) 极小化残量的 2 范数. 因此, ∥b − Ax(k) ∥2 = = ≤
x∈x(0) +Kk (A,r0 ) q ∈Pk , q (0)=1 q ∈Pk , q (0)=1
1+ε δ
10/76
5.2 GMRES 方法的收敛性
正规矩阵情形 设 A 是正规矩阵, 即 A = U ΛU ∗ , 其中 Λ = diag(λ1 , λ2 , . . . , λn ) 的对角线元素 λi ∈ C 为 A 的特征值. 设 x ∈ x(0) + Kk (A, r0 ), 则存在多项式 p(t) ∈ Pk−1 使得 x = x(0) + p(A)r0 . 于是 b − Ax = b − Ax(0) − Ap(A)r0 = (I − Ap(A))r0 ≜ q (A)r0 , 其中 q (t) = 1 − t p(t) ∈ Pk 满足 q (0) = 1. 直接计算可知 ∥b − Ax∥2 = ∥q (A)r0 ∥2 = ∥U q (Λ)U ∗ r0 ∥2 ≤ ∥U ∥2 ∥U ∗ ∥2 ∥q (Λ)∥2 ∥r0 ∥2 = ∥q (Λ)∥2 ∥r0 ∥2 .

keryolv子空间迭代法

keryolv子空间迭代法

keryolv子空间迭代法Krylov子空间迭代法是一种求解大规模线性方程组的有效方法。

它的基本思想是利用一个初始向量和一个矩阵来构造一个Krylov子空间,然后在这个子空间中寻找一个近似解。

这种方法通常比直接求解线性方程组的方法更快,尤其是当矩阵非常大时。

下面将从以下几个方面详细介绍Krylov子空间迭代法:1. Krylov子空间的定义和构造Krylov子空间是由一个向量v和一个矩阵A产生的一组向量集合,表示为:K(A,v) = span{v, Av, A^2v, ..., A^(k-1)v}其中k是任意正整数。

这个集合包含了所有由v和A作用k次得到的向量的线性组合。

2. Arnoldi过程Arnoldi过程是一种构造Krylov子空间的算法。

它通过对向量集合进行正交化来构造一个Hessenberg矩阵,该矩阵描述了向量在Krylov 子空间中的投影。

Arnoldi过程可以表示为以下步骤:(1) 选择初始向量v,并令q1 = v/||v||。

(2) 对于k = 1, 2, ..., n,执行以下步骤:(a) 计算w = Aqk。

(b) 对于j = 1, 2, ..., k,计算hj,k = qj^Tw,并令w = w - hj,kqj。

(c) 计算hk+1,k = ||w||,如果hk+1,k=0,则停止迭代。

(d) 如果hk+1,k≠0,则令qk+1 = w/hk+1,k,并将(h1,1, h2,1, ..., hk+1,k)作为Hessenberg矩阵的第k列。

3. GMRES方法GMRES是一种基于Krylov子空间的迭代方法,用于求解线性方程组Ax=b。

它通过在Krylov子空间中寻找一个最小化残差的向量来逼近解向量。

GMRES可以表示为以下步骤:(1) 选择初始向量x0和r0=b-Ax0。

(2) 构造Krylov子空间K(A,r0),并使用Arnoldi过程构造Hessenberg矩阵H和正交矩阵Q。

Krylov迭代法(续)

Krylov迭代法(续)

数值模拟导论-第七讲Krylov子空间矩阵解法雅克比·怀特感谢Deepak Ramaswamy, Michal Rewienski,Karen Veroy and Jacob White概要·回顾GCR-最小残向量解法-Krylov子空间-与多项式关系·回顾特征值和范数-诱导范数-谱半径定理·收敛速度的评估-Chebychev多项式·预处理-对角预处理-近似LU预处理GCR 算法标准化图示运算步1)正交化2)解计算r 的最小值i Mr s′kx吸热Krylov方法“与外界物热交换的例子”绝缘棒和矩阵近端温度远端温度离散化节点平衡方程Krylov方法“与外界有热交换”的例子导体棒和矩阵近端温度远端温度离散化节点平衡方程GCR性能(随机的Rhs)反复迭代后的残向量对数图GCR性能( Rhs=-1,+1,-1,+1….)反复迭代后的残向量对数图诱导范数矩阵的放大倍数问题假设,那么y 比x 大多少?或者y 相对于x 扩大了多少倍?y Mx =诱导范数回顾向量的范数L 2范数:L 1范数:范数:L ∞特征值和特征向量应用谱半径理论iλ()01...pp f x x xααα=+++()01...pp f M M Mααα=+++()()()()spectrum f M f spectrum M =给定一个多项式将多项式扩展到矩阵那么就有Krylov方法收敛性分析矩阵多项式的标准化M特征空间的条件数图中英文为:矩阵M的特征向量Krylov方法收敛性分析矩阵多项式的标准化Krylov方法对称矩阵的收敛性多项式的残余量如果M 是对称矩阵,那么1)M有标准正交的特征向量2)M有实数特征值如果M正定,那么()0λ>M导热棒矩阵的多项式残余量图无热量散失情况(n=10)Krylov方法对称矩阵的收敛性Chebyshev方法解最值问题Chebyshev多项式:Chebyshev多项式的最小化超出了[1,10]Krylov方法对称矩阵的收敛性Chebyshev的范围Krylov方法对称矩阵的收敛性Chebyshev的结果Krylov方法前处理对角矩阵的例子是什么原因使GCR收敛更加迅速?Krylov 方法前处理对角矩阵的例子让M=D+M 其中D 是对角矩阵应用GCR 到矩阵的逆在计算机中很容易求出经常用来提高收敛性()()111nd D M x I D M x D b −−−=+=导热棒的例子系统离散化图中:一个小的x∆x∆下面哪个收敛曲线是GCR迭代导体棒的例子前处理矩阵特征值残余值最小化的Krylov子空间运算法则,可以通过直接设置多项式零点来去除无关的特征值。

Krylov子空间方法

Krylov子空间方法
W ∈ Rn×m , V ∈ Rn×m
由于 x ˜ ∈ x(0) + K, 因此存在向量 y ∈ Rm 使得 x ˜ = x(0) + V y 由正交性条件 (4.4) 可知 r0 − AV y ⊥ wi , i = 1, 2, . . . , m , 即 W ⊺ AV y = W ⊺ r0 .
x ˆ≜x ˜ − x(0) = V y
9/115
Arnoldi 过程: 计算 Km 的一组正交基
算法 2.1 基于 Gram-Schmidt 正交化的 Arnoldi 过程
1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13:
给定非零向量 r, 计算 v1 = r/∥r∥2 for j = 1, 2, . . . , m − 1 do wj = Avj for i = 1, 2, . . . , j do hij = (wj , vi ) end for j ∑ wj = wj − hij vi hj +1,j = ∥wj ∥2 if hj +1,j = 0 then break end if vj +1 = wj /hj +1,j end for
若给定初值 x(0) ∈ Rn , 则改用仿射空间 x(0) + K, 即 find x ˜ ∈ x(0) + K such that b − Ax ˜ ⊥ L. (4.3)
好的初值一般都包含有价值 的信息
事实上, 如果将 x ˜ 写成: x ˜ = x(0) + x ˆ, 其中 x ˆ ∈ K, 则 (4.3) 就等价于 find x ˆ∈K such that r0 − Ax ˆ ⊥ L, (4.4)
定解条件
r = b − Ax ˜⊥L 其中 x ˜ 是近似解, L 是另一个 m 维子空间. 不同的 L 对应不同的投影方法 当 L = K 时, 我们称为 正交投影法 , 否则称为 斜投影法

krylov子空间迭代法

krylov子空间迭代法

krylov子空间迭代法Krylov子空间迭代法是一种有效的求解线性方程组的迭代方法,因Krylov于1908年提出而得名。

它是一种基于子空间的迭代方法,可以在较少的计算量下,解决高维线性方程组的较大特征值的问题。

Krylov子空间迭代法的基本思想是:将线性方程组中的高维系数矩阵P划分为n个受限的Krylov子空间,用这些子空间来模拟矩阵P的特征值的变化趋势。

这样,可以使线性方程组的解从低维子空间转移到高维子空间,从而求出线性方程组的解。

Krylov子空间迭代法具有以下优点:(1)采用Krylov子空间技术可以降低计算维度,减少计算量,提高计算效率;(2)将子空间技术与迭代法相结合,实现了近似求解线性方程组的解;(3)Krylov子空间迭代法能有效收敛,解的可靠性高;(4)运行简便,无需调整参数;(5)可用于求解各种类型的线性方程组。

由于Krylov子空间迭代法的优越性,它已经广泛应用于工程、数学、物理、生物等多学科的计算和仿真中。

从根本上讲,Krylov子空间迭代法是一种非常有效的迭代方法,它可以有效地解决线性方程组的特征值问题。

下面我们将介绍Krylov 子空间迭代法的算法步骤:(1)输入高维系数矩阵P、初始向量v、迭代次数m及收敛准则ε;(2)构造Krylov子空间:V=[v,Pv, Pv,……,P^m-1v];(3)用V中的向量代替P,将Pv-λv转化为V的线性方程;(4)求解V线性方程组;(5)求出V的特征值λ;(6)利用第4步求出的解v,求出线性方程组的解x;(7)若特征值收敛,则停止迭代;(8)重复第2至第7步,直至特征值收敛;(9)输出计算结果。

以上就是Krylov子空间迭代法的算法步骤。

Krylov子空间迭代法的算法实现起来相对简单,只需要实现以上的几个步骤即可。

由于Krylov子空间迭代法的有效性,它已经被广泛应用于工程、数学、医学、物理、生物等多学科的计算和仿真中。

总之,Krylov子空间迭代法是一种高效的求解线性方程组的迭代方法,它可以有效收敛,具有较高的求解精确度和计算效率。

krylov子空间算法

krylov子空间算法

Krylov 子空间的定义:定义:令N R υ∈,由1m A υυυ-,,,A 所生成的子空间称之为由υ与A 所生成的m 维Krylov 子空间,并记(),m K A v 。

主要思想是为各迭代步递归地造残差向量,即第n 步的残差向量()n r 通过系数矩阵A 的某个多项式与第一个残差向量()0r 相乘得到。

即()()()0n r p A r =。

但要注意,迭代多项式的选取应该使所构造的残差向量在某种内积意义下相互正交,从而保证某种极小性(极小残差性),达到快速收敛的目的。

Krylov 子空间方法具有两个特征:1.极小残差性,以保证收敛速度快。

2.每一迭代的计算量与存储量较少,以保证计算的高效性。

投影方法线性方程组的投影方法方程组Ax b =,A 是n n ⨯的矩阵。

给定初始()0x ,在m 维空间K(右子空间)中寻找x 的近似解()1x 满足残向量()1r b Ax =-与m 维空间L(左子空间)正交,即()1b Ax L -⊥,此条件称为Petrov-Galerkin 条件。

当空间K=L 时,称相应的投影法为正交投影法,否则称为斜交投影法.投影方法的最优性:1. (误差投影)设A 为对称正定矩阵,()0x 为初始近似解,且K=L,则()1x 为采用投影方法得到的新近似解的充要条件是()()()()01min z x Kx z ϕϕ∈+=其中,()()()12,z A x z x z ϕ=--2.(残量投影)设A 为任意方阵,()0x 为初始近似解,且L AK =,则()1x 为采用投影方法得到的新近似解的充要条件是()()()()01min z x Kx z ψψ∈+=其中()()122,z b Az b Az b Az ψ=-=--矩阵特征值的投影方法对于特征值问题Ax x λ=,其中A 是n ×n 的矩阵,斜交投影法是在m 维右子空间K 中寻找i x 和复数i λ满足i i i Ax x L λ-⊥,其中L 为m 维左子空间.当L=K 时,称此投影方法为正交投影法. 误差投影型方法: 取L=K 的正交投影法非对称矩阵的FOM 方法(完全正交法) 对称矩阵的IOM 方法和DIOM 方法 对称矩阵的Lanczos 方法 对称正定矩阵的CG 方法 残量投影型方法: 取L=AK 时的斜交投影法GMERS 方法(广义最小残量法) 重启型GMERS 方法、QGMERS 、DGMERSArnoldi 方法标准正交基方法:Arnoldi 方法是求解非对称矩阵的一种正交投影方法。

(完整版)Krylov子空间迭代法

(完整版)Krylov子空间迭代法
Krylov子空间方法
February 10, 2020
内容
• 子空间和Krylov子空间
• Arnoldi算法
– Arnoldi过程 – Gram-Schmidt Arnoldi – HouseHolder Arnoldi
• FOM
– IOM – DIOM
2
子空间
• 空间
– 集合,元素都是向量 – 线性空间(向量空间)
根据Cayley-Hamilton定理有
������������ + ������������−1������������−1+. . . +������1������1 + ������0������0 = 0

VP= -������������ 其中������ = [������0, ������1, . . . , ������������−1ሿ,������ = ������0, ������1, . . . , ������������−1 ������ Krylov子空间: ������������(������, ������) = ������������������������{������, ������������, . . . , ������������−1������ሽ Krylov矩阵: ������������(������, ������) = [������, ������������, . . . , ������������−1������ሿ
• 线性空间(交换律,结合律,幺元性,零元性,可 逆性,数乘分配律等)
• 子空间
– 线性空间的非空子集
• 包含零元素,并且满足加法和乘法的封闭性
– 扩张(符合记作span)

第四讲Krylov子空间方法

第四讲Krylov子空间方法

如果没有特别注明, 本章内容都是在实数域中讨论.
4.1 投影方法
设 K 是 Rn 的一个子空间, 维数为 dim(K) = m ≪ n. 我们需要在 K 中寻找精确解的一 个 “最佳” 近似. 由于 K 的维数是 m, 为了能够唯一确定这个近似解, 我们需要设置 m 个约 束. 在通常情况下, 我们要求残量满足 m 个正交性条件:
x˜ = x(0) + V y.
· 4-2 ·
由正交性条件 (4.5) 可知 r0 − AV y ⊥ wi, i = 1, 2, . . . , m,
即 W AV y = W r0.
如果 W AV 是非奇异的, 则可解得 y = (W AV )−1W r0. 因此, 近似解 x˜ 可表示为 x˜ = x(0) + V (W AV )−1W r0.
vj+1 = wj /hj+1,j
14: end for
如果计算到第 k (k < m) 步时有 hk+1,k = 0, 则方法会提前终止. 此时 Avk 必定可以由 v1, v2, . . . , vk 线性表出 (这里不考虑浮点运算的舍入误差).
算法 4.1 中的向量 vi 称为 Arnoldi 向量. 需要注意的是, 在该算法中, 我们是用 A 乘以 vj, 然后与之前的 Arnoldi 向量正交化, 而不是计算 Ajr. 事实上, 它们是等价的.
r = b − Ax˜ ⊥ L,
(4.2)
其中 x˜ 是我们所要寻找的近似解, L 是另一个 m 维子空间. 这就是数值计算中常用的 PetrovGalerkin 条件. 如果 L = K, 则称为 Galerkin 条件. 子空间 L 也称为 约束空间 (constraint subspace). 相应地, K 通常称为 搜索空间.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 直接不完全正交化方法
采用IOM后,仍然需要存储v(1), v(2), …v(m),因为在第(vi)步 中仍然需要这些向量. 解决这个问题可以考虑采用H的LU分解,通过自身分解的迭代更新以减少每 一步的存储量 使xm的更新依赖于xm-1,
14
Arnoldi方法-DIOM
lower bidiagonal
banded upper triangular
15
Arnoldi方法-DIOM
16
Arnoldi方法-DIOM
17
Thanks for your time !
18
得到基于Galerkin原 理构成的算法
5
Arnoldi方法-基本算法
6
Arnoldi方法-基本算法
7
Arnoldi方法-MGS
8
Arnoldi方法-HO
9
Arnoldi方法-FOM
10
Arnoldi方法-FOM
11
Arnoldi方法-FOM(m)
12
Arnoldi方法-IOM
13
Arnoldi方法-DIOM
Krylov子空间方法
March 23, 2016

• Arnoldi算法
– Arnoldi过程 – Gram-Schmidt Arnoldi – HouseHolder Arnoldi

• 子空间和Krylov子空间
• FOM
– IOM – DIOM
2
子空间
• 空间
– 集合,元素都是向量 – 线性空间(向量空间)
• 线性空间(交换律,结合律,幺元性,零元性,可 逆性,数乘分配律等)
• 子空间
– 线性空间的非空子集
• 包含零元素,并且满足加法和乘法的封闭性
– 扩张(符合记作span)
• 包含所有向量的最小子空间3Biblioteka Krylov子空间4
Krylov子空间法
Ax=b ,|A|!=0
给定任意的x(0),令 x=x(0)+z Az=r(0),r(0)=b-Ax(0) X(m)=x(0)+z(m) 选定子空间Km和Lm 以及他们的基{vi},{wi}
相关文档
最新文档