子空间迭代法(课件)
chapter03线性代数方程组迭代解法PPT课件

不完全分解
当矩阵无法进行完全分解时,迭代法可以作为 替代方案进行求解。
数值稳定性
对于某些数值不稳定的问题,迭代法可以提供更稳定的近似解。
迭代解法的优缺点分析
优点
适用于大规模问题,计算量相对较小; 适用于不完全分解和数值不稳定问题; 能够提供近似解,满足工程精度要求。
缺点
需要设定初始解向量或近似解向量; 迭代过程可能不收敛或收敛速度慢; 对于某些问题可能无法得到准确解。
SOR方法案例分析
01
SOR(Successive Over-Relaxation)方法是一种改进
的迭代方法,通过引入松弛因子来加速收敛。
02
SOR方法适用于系数矩阵为稀疏、对称正定的情况,
广泛应用于实际工程问题。
03
SOR方法的收敛速度与松弛因子的选择有关,选择合
适的松弛因子可以加快收敛速度。
Jacobi方法案例分析
松弛方法
松弛方法是另一种改进的迭代 算法,用于求解线性代数方程
组。
该方法通过引入松弛因子来调 整迭代过程中的系数矩阵,以
提高收敛速度和稳定性。
松弛方法适用于系数矩阵为非 对角占优的情况,尤其在处理 稀疏矩阵时具有优势。
总结词:松弛方法是一种适用 于非对角占优矩阵的迭代算法 ,通过调整松弛因子提高收敛 速度和稳定性。
收敛速度与系数矩阵
收敛速度与系数矩阵的特征值和范数有关,不同的迭 代法适用于不同的系数矩阵情况。
加速迭代法
为了提高迭代法的收敛速度,可以采用一些加速技巧, 如预处理技术、共轭梯度法等。
03 几种常见的迭代解法
Gauss-Seidel迭代法
Gauss-Seidel方法是一种迭 代算法,用于求解线性代数
预处理子空间迭代法的一些基本概念

CG算法的预处理技术:、为什么要对A进行预处理:其收敛速度依赖于对称正定阵A的特征值分布特征值如何影响收敛性:特征值分布在较小的范围内,从而加速CG的收敛性特征值和特征向量的定义是什么?(见笔记本以及收藏的网页)求解特征值和特征向量的方法:Davidson方法:Davidson 方法是用矩阵( D - θI)- 1( A - θI) 产生子空间,这里D 是A 的对角元所组成的对角矩阵。
θ是由Rayleigh-Ritz 过程所得到的A的近似特征值。
什么是子空间法:Krylov子空间叠代法是用来求解形如Ax=b 的方程,A是一个n*n 的矩阵,当n充分大时,直接计算变得非常困难,而Krylov方法则巧妙地将其变为Kxi+1=Kxi+b-Axi 的迭代形式来求解。
这里的K(来源于作者俄国人Nikolai Krylov姓氏的首字母)是一个构造出来的接近于A的矩阵,而迭代形式的算法的妙处在于,它将复杂问题化简为阶段性的易于计算的子步骤。
如何取正定矩阵Mk为:Span是什么?:设x_(1,)...,x_m∈V ,称它们的线性组合∑_(i=1)^m?〖k_i x_i \|k_i∈K,i=1,2...m〗为向量x_(1,)...,x_m的生成子空间,也称为由x_(1,)...,x_m张成的子空间。
记为L(x_(1,)...,x_m),也可以记为Span(x_(1,)...,x_m)什么是Jacobi迭代法:什么是G_S迭代法:请见PPT《迭代法求解线性方程组》什么是SOR迭代法:什么是收敛速度:什么是可约矩阵与不可约矩阵?:不可约矩阵(irreducible matrix)和可约矩阵(reducible matrix)两个相对的概念。
定义1:对于n 阶方阵A 而言,如果存在一个排列阵P 使得P'AP 为一个分块上三角阵,我们就称矩阵A 是可约的;否则称矩阵A 是不可约的。
定义2:对于n 阶方阵A=(aij) 而言,如果指标集{1,2,...,n} 能够被划分成两个不相交的非空指标集J 和K,使得对任意的j∈J 和任意的k∈K 都有ajk=0, 则称矩阵 A 是可约的;否则称矩阵A 是不可约的。
Krylov子空间迭代法

采用IOM后,仍然需要存储v(1), v(2), …v(m),因为在第(vi)步 中仍然需要这些向量. 解决这个问题可以考虑采用H的LU分解,通过自身分解的迭代更新以减少每 一步的存储量 使xm的更新依赖于xm-1,
14
Arnoldi方法-DIOM
lower bidiagonal
banded upper triangular
15
Arnoldi方法-DIOM
16
Arnoldi方法-DIOM
17
Thanks for your time !
18
得到基于Galerkin原 理构成的算法
5
Arnoldi方法-基本算法
6
Arnoldi方法-基本算法
7
Arnoldi方法-MGS
8
Arnoldi方法-HO
9
Arnoldi方法-FOM
10
Arnoldi方法-FOM
11
Arnoldi方法-FOM(m)
12
Arnoldi方法-IOM
13
Arnoldi方法-DIOM
Krylov子空间方法
March 23, 2016
内
• Arnoldi算法
– Arnoldi过程 – Gram-Schmidt Arnoldi – HouseHolder Arnoldi
容
• 子空间和Krylov子空间
• FOM
– IOM – DIOM
2
子空间
• 空间
– 集合,元素都是向量 – 线性空间(向量空间)
• 线性空间(交换律,结合律,幺元性,零元性,可 逆性,数乘分配律等)
• 子空间
– 线性空间的非空子集
子空间迭代法课件副本

参数自适应调整
研究自适应调整算法参数的方 法,以适应不同问题和计算环
境的需求。
04
子空间迭代法的实现细节
BIG DATA EMPOWERS TO CREATE A NEW
ERA
预处理技巧
矩阵分解
通过将原矩阵分解为若干个简单的矩 阵,降低迭代法的计算复杂度。
稀疏近似
利用矩阵的稀疏性,用近似矩阵代替 原矩阵,提高计算效率。
详细描述
优化问题涉及到寻找函数的最优值,子空间迭代法通过 迭代搜索子空间中的最优解,能够快速找到局部最优解 ,尤其适用于非线性优化问题。
THANKS
感谢观看
详细描述
子空间迭代法通过构造矩阵的特征子空间,利用迭代优化技术寻找特征值和特 征向量。这种方法能够有效地处理大型矩阵的特征值问题,并且可以应用于各 种工程领域,如结构动力学、流体动力学等。
优化问题求解
总结词
子空间迭代法可以应用于求解约束优化和非线性优化问题, 通过迭代寻找最优解。
详细描述
子空间迭代法可以将复杂的优化问题转化为子空间优化问题 ,利用梯度下降、共轭梯度等方法进行迭代优化。这种方法 在处理大规模约束优化和非线性优化问题时具有较好的效果 ,能够有效地提高求解效率。
自适应子空间迭代法
总结词
自适应子空间迭代法是一种改进的子空间迭 代法,它根据问题的特性和迭代过程中的信 息,自适应地调整子空间的划分方式和迭代 策略。
详细描述
自适应子空间迭代法能够根据问题的特性和 迭代过程中的信息,动态地调整子空间的划 分方式和迭代策略。这种方法能够更好地适 应问题的变化,提高算法的收敛速度和精度 。自适应子空间迭代法通常需要更多的计算 资源和存储空间,但其灵活性和适应性使其 成为解决复杂问题的重要工具。
(完整版)Krylov子空间迭代法

February 10, 2020
内容
• 子空间和Krylov子空间
• Arnoldi算法
– Arnoldi过程 – Gram-Schmidt Arnoldi – HouseHolder Arnoldi
• FOM
– IOM – DIOM
2
子空间
• 空间
– 集合,元素都是向量 – 线性空间(向量空间)
根据Cayley-Hamilton定理有
������������ + ������������−1������������−1+. . . +������1������1 + ������0������0 = 0
即
VP= -������������ 其中������ = [������0, ������1, . . . , ������������−1ሿ,������ = ������0, ������1, . . . , ������������−1 ������ Krylov子空间: ������������(������, ������) = ������������������������{������, ������������, . . . , ������������−1������ሽ Krylov矩阵: ������������(������, ������) = [������, ������������, . . . , ������������−1������ሿ
• 线性空间(交换律,结合律,幺元性,零元性,可 逆性,数乘分配律等)
• 子空间
– 线性空间的非空子集
• 包含零元素,并且满足加法和乘法的封闭性
– 扩张(符合记作span)
09-多自由度系统的数值计算方法

A a1 1 a2 2 a s s
1 , 2 ,, s 是选取的s个线性独立的假设振型
1 2 s , a a1 a2 a s
T
n s 矩阵
A a
Theory of Vibration with Applications
ET max U max
U max T
2 n
Theory of Vibration with Applications
返回首页
多自由度系统
多自由度系统的数值计算方法—瑞利法
设A为振型矢量,对于简谐振动,其最大动能和最大势能为
M x K x 0
1 Tmax 2 A T MA 2 1 Vmax A T KA 2
A C1 AN C2 AN Cn AN Ci ANi AN C 1 2 n
i 1 n
Theory of Vibration with Applications
返回首页
多自由度系统
多自由度系统的数值计算方法—瑞利法
现取假设振型A是正则振型矢量的线性组合,即
i 1 n
n
C
i 1
2 i
2 2 C 2 2 C 2 2 Cn n 1 2 2 3 3 C C C 1 1 1 1 1 1 2 1 2 2 2 C2 C3 Cn 1 C C C 1 1 1
返回首页
多自由度系统
多自由度系统的数值计算方法—瑞利法
瑞利第一商值是否为系统某一主频率的平方,则决定于 所取矢量A。如果A与某一主振型矢量接近,则所得瑞利 商是相应的固有频率的近似值。实际上,对高阶振型很难 做出合理的假设,而对于第一阶主振型则比较容易估计, 所以此方法常用于求基频,现推证如下。 按照振型叠加的原理,系统的任何可能位移,包括假设 振型,都可以描述为各阶主振型的线性组合。现取假设振 型A是正则振型矢量的线性组合,即
线性代数方程组迭代法PPT课件

超松弛法
收敛速度快
总结词
总结词
计算量较大
ABCD
详细描述
超松弛法具有较快的收敛速度,尤其对于大型线 性方程组,能够显著减少迭代次数。
详细描述
由于超松弛法的计算量较大,因此在实际应用中 可能需要考虑计算效率的问题。
CHAPTER 04
迭代法的实现步骤
初始化
设置初值
为方程组的解向量设定一个初始值。
迭代法的应用场景
当方程组的系数矩阵难以直接求解时 ,迭代法可以作为一种有效的替代方 案。
在科学计算、工程技术和经济领域中 ,许多问题可以转化为线性代数方程 组求解,而迭代法在这些领域有广泛 的应用。
迭代法的优缺点
优点
迭代法通常比直接法更加灵活和通用,对于大规模和高维度的线性代数方程组, 迭代法更加高效。
缺点
迭代法需要选择合适的迭代公式和参数,并且需要满足收敛条件,否则可能无 法得到正确的解。此外,迭代法的计算过程比较复杂,需要较高的计算成本。
CHAPTER 02
迭代法的基本原理
迭代法的数学模型
迭代法是一种求解线性代数方程组的数值方法,通过不断迭代逼近方程的 解。
迭代法的数学模型通常表示为:$x_{n+1} = T(x_n)$,其中$x_n$表示第 $n$次迭代时的近似解,$T(x)$表示迭代函数。
03
非线性方程组的迭代法在求解优化问题、控制问题 等领域有广泛应用。
在优化问题中的应用
01
迭代法在优化问题中也有广泛应用,如求解无约束优化问题、 约束优化问题和多目标优化问题等。
02
常见的优化问题迭代法包括梯度下降法、牛顿法和共轭梯度法
等。
这些方法通过不断迭代来逼近最优解,广泛应用于机器学习、
子空间迭代法的两种Rayleigh商加速技术

南京航空航天大学硕士学位论文摘要本文研究求解大型对称矩阵特征值问题的子空间迭代法。
为了加速子空间迭代法的收敛性,我们应用Rayleigh商最小化技术得到两种新的改进算法。
第一种改进算法是用Rayleigh商加速子空间迭代法。
它用每次迭代得到的Ritz矩阵和将Ritz反迭代得到的矩阵,二者构造一个带参数矩阵的线性组合,适当选取参数矩阵,使组合后的矩阵的列向量的Rayleigh商达到最小,从而更接近最小特征向量。
第二个改进算法是用带位移的Rayleigh商加速子空间迭代法。
与第一个改进算法类似,都是构造了一个带参数矩阵的线性组合,不过它选用的矩阵不同,是用Ritz矩阵和将Ritz矩阵带位移反迭代后得到的矩阵构造的,同样通过选取适当的参数矩阵,使其Rayleigh商达到最小,从而加速子空fD】的收敛性。
本文分析了这两个改进算法中参数矩阵的选取及其性质,数值稳定性和算法的收敛性,并给出了数值实验,将新方法和原始子空间方法进行比较,数值实验表明新改进的两个算法比子空间方法更优越。
关键词:对称正定矩阵,特征值,特征向量,子空间迭代法,Rayleigh商反迭代,带位移的反迭代。
子空间迭代的两种Rayleigh商加速技术ABSTRACTInthispaper,weconsiderthesubspaceiterationmethodforsolvinglargesymmetriceigenproblems,Inordertoacceleratetheconvergencerate,weimprovetheoriginalmethodwithaccelerationtechnique,andpresenttwonewalgorithmsInmythefirstproposedalgorithm,AcombinationofthelatestmatrixreceivedbyinverseiterationandtheRitzmatrixisformedinvolvinganundeterminedparametermatrix,whichisdeterminedbyminimizingtheRayleighquotient,thenitwillneartheminimaleigenvector.Inmythesecondproposedalgorithm,Wecreateacombinationasthesameasthefirstone,butinthesecondonethecombinationinvolvinganundeterminedparametermatrix,whichisdeterminedbyminimizingtheRayleighquotientisformedbythelatestmatrixreceivedbyashiftedinverseiterationandtheRitzmatrix,thenacceleratetheconvergencerateofsubspace.Inthepaper.Weanalysisthechoosingmethodoftheparametermatrixanditssomeproperty,thenumericalstabilityandconvergence.Ournumericalresultsshowthatthetwoproposedalgorithmsaresuperiortotheoriginalsubspaceiterationmethod.Keywords:symmetricmatix,eigenvalue,eigenvector,subspaceimrationmethod’Rayleighquotient,inverseiteration,theshiftedinverseiteration。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T M M
其中
李兹(Ritz)法
求出n自由度系统的前s阶主振型 正交性
0 i T j ( a )M a 1
i T j i T T
i i A a
i 1 , 2 , , s
i j i j
A 0 1 2 s
M A 0 Ⅰ
D M
将A0代入动力矩阵中进行迭代,并对 各列阵分别归一化
目的是使 Ⅰ 比A0含有较强的低 阶振型成分,缩小高阶成分
按李兹法求出
AⅠ
A a Ⅰ Ⅰ Ⅰ
以求出的 A Ⅰ 作为假设振型进行迭代
MA Ⅱ Ⅰ
再按李兹法求出 A
A a Ⅱ Ⅱ Ⅱ
子空间迭代法的几何解释
从几何观点上看,原n阶特征值系统有n个线性无关的特征矢 量,它们之间是正交的,张成一个n维空间。
1 2 n A 、 A 、 、 A
而假设的s个线性无关的n维矢量张成一个s 维子空间,
、 、 、 1 2 s
迭代的功能是使这s个矢量的低阶成分不断地相对放大,即向 1 2 s 、 A 、 、 A 张成的子空间 A 靠拢。
多自由度系统的数值计算方法
——子空间迭代法
子空间迭代法
No Image
子空间迭代法对求解自由度数较大系统的较 低的前若干阶固有频率及主振型非常有效。
李兹(Ritz)法
A a a a 1 1 2 2 s s
, , , 1 2 s 是选取的s个线性独立的假设振型
j
0 i j ( AM ) A ( a ) M a 1 i j
李兹(Ritz)法是一种缩减系统自由度数的近似方法
矩阵迭代法求第一阶固有频率和主振型
动力矩阵
1 ( M 2 I)A0 p
选取某个经过归一化 的假设振型A0
D M
MA 1 A 2 p
子空间迭代法的几何解释
如果只迭代不进行正交化,最后这s个矢量将指向同
一方向,即A(1)的方向。
由于用李兹法作了正交处理,则这些矢量不断旋转, 最后分别指向前s个特征值的方向。 即由张成的一个s 维子空间,
、 、 、 1 2 s
1 2 s 经反复地迭代正交化的旋转而逼近于由 A 、 A 、 、 A
Aa
T T a K a 2 R (A ) T T p Ⅰ a M a
a a a a 1 2 s 1 2 s
T
n s 矩阵
s维待定系数
采用取驻值的方法求系数a…
n个自由度缩减至s 自由度!
2 K a p M a 0
所张成的子空间。
子空间迭代法的优点
可以有效克服由于等固有频率或几个频率非常接 近时收敛速度慢的困难。
与其他方法相比,具有精度高和可靠的优点。
因此,它已成为大型复杂结构振动分析的最有
效的0 1 1
再以A1为假设振型进行迭代, 并且归一化得到A2
A 1 A 0
D A a A 1 2 2
若A 2 A 1 ,则继续 重复上述迭代步骤
A 直至 A k k 1 时停止
ak
1 p2
D A a k 1 kA k
子空间迭代法
按照李兹法,可假设s个振型且s>P