2021新版浅谈电压互感器二次回路短路故障机防范措施
电力系统电气二次回路常见故障及防范措施

电力系统电气二次回路常见故障及防范措施在变压器和母线,以及发电机的保护当中,保护装置能为维护电网的稳定性和安全性发挥出积极的作用。
因此,只有及时对变电站继电保护二次回路的隐患开展排查和有效预防,才能保障电力设备的安全。
但是,随着外界环境对电网运行的要求越来越高,使得变电站继电保护二次回路隐患的排查工作变得愈加困难起来,继电保护的作用也无法充分发挥出来。
1、电力系统电气二次回路常见故障1.1电流互感器隐患问题若是整个系统中出现电流互感器故障问题,就会使得回路开路构造中出现高电压,对电气设备的常规化运行以及工作人员都会造成严重的安全威胁,基于此,要对其运行故障问题开展集中的处理和控制。
究其原因,主要是由于保护装置以及设备质量存在问题,电流互感器本身端子排质量隐患的可能性较高。
并且,人为操作不符合标准化要求也是导致回路开路的主要因素。
除此之外,电流互感器输出电流偏差增大,主要是由于回路存在接地问题,形成分流就会对整个系统的运行构造造成影响。
12元件老化隐患问题在继电保护电气二次回路常规化运行过程中,元件的老化问题也是导致整个系统出现安全问题的重要因素,因此,需要相关部门结合实际需求开展集中的处理和控制。
比方,在继电保护电气二次回路中出现磨损元件,就会在磨损程度加剧的同时,对稳定性以及合理性造成约束,整个系统的运行效果出现问题,形成安全隐患。
1.3电气二次回路的故障分析与排查分析故障的原因应从原理图和标准技术参数入手,回路分析法及推理分析法是时下两种应用最为广泛的方法。
首先根据现场设备的具体情况和现象推测出可能出故障的线路或部件,故障出现在主电路还是控制电路,交流电路还是直流电路都很重要,其次就是要分析出故障的类型是另一个需要关注的问题,开路、短路、接地都要语义分析,然后根据该回路元件、导线、连接方式等推断或者确定故障可能原因和具体部位。
电气装置各组成部分都有其内在联系是检修人员用于判断的重要依据,如连接顺序、动作顺序、电流流向、电压分配等,常常需要根据某一部分故障联系到对其他部分影响,要根据故障现象推理找出故障根源。
浅谈一起电压互感器反充电事件分析及防范措施

浅谈一起电压互感器反充电事件分析及防范措施摘要: 本文通过案例分析事件的详细经过和发生原因; 针对不同的检修人员和运行人员,提出了具体的防范措施。
三年多的运行和操作经验,表明方法可行。
关键词: 母线; 电压互感器; 继电器; 反充电在各级运行管理规程中,都明确规定了系统一次设备倒闸操作时,应特别注意防止PT二次回路向一次设备反充电,因为PT相当于一个内阻极小的电压源,在二次向一次反充电过程中,会产生极大的电流,将运行的另一组PT 二次保险熔断,严重时,还会造成人身和设备损坏事故,因此,PT 反充电事故是电气人员的大忌。
电气人员应明确反充电的危害,并建立相关的防范措施。
1 事件经过在某500 kV 变电站# 2 主变扩建项目竣工送电过程中, 施工单位以220 kVI母作为试验母线做# 2 主变带负荷试验。
当时运行方式如图1 所示,I母仅接入# 2 主变中压侧202 开关及母联231 开关, 其余所有元件均运行于Ⅱ母。
当带负荷试验结束, 运行人员接调度令断开母联231 开关后, 位于保护小室的# 2 主变保护C 屏立刻冒出浓烟和难闻气味。
紧接着运行在Ⅱ母上所有线路的A 套保护出现交流电压回路断线告警,同时220 kV母线保护RCS-915CD报Ⅱ母电压开放告警。
现场人员检查发现Ⅱ母电压互感器端子箱内第一绕组交流电压总空气开关跳闸。
初步分析, 可能是202 开关的检同期电压回路有问题, 导致I母电压互感器发生反充电, 故立即将该开关的检同期电压回路隔离, 同时检查Ⅱ母电压互感器第一绕组交流电压回路绝缘情况, 未发现异常后合上该绕组总空气开关。
各220 kV 线路A 套保护告警立刻复归, 同时母线保护RCS-915CD装置Ⅱ母电压开放告警也复归, 变电站恢复正常运行。
图 1 主接线示意图2 事故分析事后检查发现烧毁部位为# 2主变保护C屏中压侧202开关FST-32 操作箱中ZJ、YQJ等四块插件。
从插件位置及烧焦程度看, 着火点应是YQJ插件, 其他插件是YQJ 着火后引燃或熏黑的。
电压互感器二次回路多点接地分析

《继电保护》课程报告电压互感器二次回路多点接地分析及防范措施姓名:xxxx学号:xxxx学科专业:电气工程年级:xxxx学期:xxxx完成时间:xxxx综合评语成绩学分任课教师评卷时间电压互感器二次回路多点接地分析及防范措施xxxx摘要:随着电力系统不断发展,电力设备的更新换代越来越快,在对变电站内继电保护及安全自动装置的基建、大修、改造后,因施工过程中造成的继电保护用电压互感器的二次回路接地不满足要求,直接或间接引发继电保护及安全自动装置误动,造成开关跳闸的事故时常发生,从而电网的安全稳定运行水平下降,使电力用户供电可靠性受到影响。
由于二次回路接地不满足要求易被忽视且不易检查,一旦发生事故,处理过程复杂,处理时间长,严重影响售电量。
因此,在设备投入运行前对二次回路接地的情况必须针对性分析和检查,避免事故的发生。
关键词:电压互感器;二次回路;多点接地;查找方法1、电压互感器二次回路接地要求公用电压互感器的二次回路只允许在控制室内有一点接地,为保证接地可靠,各电压互感器的中性线不得接有可能断开的开关或熔断器等。
独立的、与其他互感器无电气联系的电压互感器的二次回路,可在控制室内,也可在开关场实现一点接地,为了避免将高压引入控制室,接地点宜设在配电装置户外端子箱内100mm²接地铜排上。
线路电压抽取用电压互感器的二次回路及高压电容器组的放电电压互感器的二次回路应在开关场一点接地。
来自开关场电压互感器二次绕组的四根引入线和电压互感器开口三角绕组的两根引入线应使用各自独立的电缆,并在控制室内一点接地。
已在控制室一点接地的电压互感器二次绕组,在开关场将二次绕组中性点放电间隙或氧化锌阀片接地的,其击穿电压峰值应大于30ImaxV(Imax为电网接地故障时通过变电站的可能最大接地电流有效值,单位KA),并应定期检查放电间隙或氧化锌阀片,防止其被击穿造成电压互感器二次回路多点接地的现象[1]。
2、查找电压二次回路多点接地的方法电压互感器二次回路只能有一个接地点,然而,一般情况下站内同电压等级的电压互感器电压都引致控制室内的电压切换屏,并辐射去自动化测控、保护装置和故障录波仪,在电压切换屏内将各压变的N600并接一点接地。
高压电流互感器二次回路错接线引起的问题及隐患

高压电流互感器二次回路错接线引起的问题及隐患摘要:随着我国经济的不断发展,科学技术也在不断进步,电力企业为了能够充分满足人们的用电需求,不断创新供电技术,更新电力设备。
然而,纵观我国电力企业供电现状来看,仍然存在电量不平衡等情况,通过查找,发现引发这种情况的常见原因就是高压电流互感器二次回路错接线因素。
因此,本文通过对这一因素引发的问题进行分析,并阐述其带来的安全隐患。
希望能够为相关人士提供参考和借鉴,从而为电力企业稳定发展奠定良好的基础。
关键词:电流互感器;二次回路;错接线;问题;隐患引言今年来,随着我国电力企业的发展规模逐渐扩大,电力设备的更新换代也越来越快,在为社会群众提高生活质量的同时,也有一些新的问题日益凸显。
常见的有高压电流互感器二次回路接线没有满足具体要求。
高压电流互感器和电压互感器主要发挥变电站继电保护作用,如果出现接线错误情况,会导致开关跳闸等事故,从而直接影响电力系统的供电安全,为广大用户带来极大的不便。
与此同时,电压互感器二次回路接线在实际工作中极其容易被忽视,并且检查具有一定的复杂性[1]。
如果一旦存在的事故隐患爆发,不仅会为技术人员的处理带来巨大难度,还会使供电企业面临巨大的经济损失。
因此,本文针对高压电流互感器二次回路错接线引起的问题进行分析,并对其隐患进行阐述具有一定的现实意义。
一、常见高压电流互感器二次回路接线方式在变电站这种,常见的常见高压电流互感器二次回路接线方式有以下几种:两相星形接线方式、三相星形接线方式、单相接线方式、电流接线方式以及三角形接线方式,技术人员在高压电流互感器二次回路接线过程中,需要结合实际情况选择科学的接线方式,如单线接线方式,由于只有一个电流互感器,因此技术人员在操作过程中具有便捷性,通过单相接线不仅能够测量小电流接地系统零序电流,还能够测量三相对称电流中的电流,同时保护过符合。
二三相星形接线方式,是有三只互感器按照星形进行连接,也就是说,技术人员在接线过程中需要将三只互感器公用一个零线,而零线在电力系统运行过程中没有电流通过,但是不代表零线没有作用,如果在系统出现不对称故障时,通过零线起到保护作用。
电压互感器二次回路的短路保护及反馈电压的防范措施

电压互感器二次回路的短路保护及反馈电压的防范措施运行中的电压互感器二次回路不允许短路,因此,必须在二次侧装设短路保护设备。
(1)电压互感器二次回路的短路保护设备主要有快速熔断器和自动空气开关两种。
根据二次回路所接的继电保护和自动装置的特性,对于110KV及以上、有可能造成继电保护和自动装置不正确动作的场合,宜采用自动空气开关,66KV以下电压等级没有接距离保护的电压互感器二次回路和测量装置专用的电压回路,宜首选简单方便的快速熔断器。
(2)开口三角形绕组不装设短路保护。
正常情况时三相电压对称,三角形开口处电压为零,因此引出端子上没有电压。
只有在系统发生接地故障时才有3倍的零序电压出现。
如果引出端子上短路保护,即使该绕组发生短路故障,也只有很小的电流产生,不起任何作用。
而且若因该保护本身出现故障造成开路也不易被发现,在发生接地故障时反而影响保护动作的可靠性。
(3)电压互感器二次回路主回路的自动空气开关或熔断器通常安装在电压互感器端子箱内,端子箱内尽可能靠近电压互感器安装,以减小保护死区。
(4)对主回路和分支回路的短路保护设备都应设有监视措施,当这些保护设备动作时能够发出预告信号。
反馈电压的防范措施:
在电压互感器停用或检修时,即需要断开电压互感器一次
侧隔离开关,又要切断电压互感器二次回路,以防二次侧向一次侧反冲电,在一次侧引起高电压,造成人身和设备事故。
因此,在电压互感器二次回路必须采取技术措施防止反馈电压产生。
对于N相接地的电压互感器,除接地的N相外,其他各相引出端都应由该电压互感器隔离开关辅助动合触电控制,当电压互感器停电检修时,在断开一次侧隔离开关的同时,二次侧回路野营自动断开。
二次回路异常造成电压互感器烧毁故障的分析

二次回路异常造成电压互感器烧毁故障的分析摘要:电压互感器是电力系统中的重要设备,关系到保护、测量、计量系统的正常运行。
而开口三角电压回路由于正常运行时没有工作电压且回路不允许装设空气开关,若回路中存在问题不容易被发现,极易造成电压互感器损坏。
本文针对一起两段母线电压互感器同时烧毁的故障,分析在操作过程中电压并列回路中存在的问题,并提出改进方案。
关键词:电压互感器二次回路电压并列引言:电压互感器正常工作时接近于一个理想电压源,如果意外让其二次回路短路,很容量造成电压互感器损坏。
而电压二次并列回路相对复杂,回路设计时考虑不周或因为运行人员操作不当造成二次电压意外并列,极容易在某些情况下造成电压互感器损坏。
故障经过:某日,监控中心发现某110KV变电站10kV I、II母电压Ua为0V,B相为5.98V C相为9.92V,3U0为0V。
同时监控系统中该站还存在如下报文:15时36分29秒某某变10kV 924线路接地15时36分43秒某某变10kV II段PT保护电压空开断开15时36分50秒某某变10kV I段PT保护电压空开断开通知运维操作队到变电站现场检查发现10kV I、II母电压互感器柜冒烟,两台电压互感器均已烧坏。
紧急停电后将两段母线电压互感器转检修。
故障前运行方式:110kV I、II母并列运行,35kV及10kV I、II母分列运行。
#1主变带35kV I段、10kV I段负荷运行,#2主变带35kV II段、10kVII段负荷运行,10kV 两段母线电互感器均在运行。
故障造成10kV 母线所有线路保护复压开放,同时无法监测母线电压,损失电量若干,并且短期内还无法恢复,需紧急调拨合适的电压互感器进行抢修。
抢修小组到现场后检查10kV 母联开关确在分位,10kV 电压并列装置上QK把手打在“本地”位置,BK把手打在“并列”位置,装置上的“电源”灯和“并列”灯均亮。
对电压回路电缆进行检查均没有发现问题。
浅析电压互感器原理特性及防范短路故障措施

浅析电压互感器原理特性及防范短路故障措施摘要:简要分析电压互感器原理特性,导致电压互感器二次短路故障原因分析及防范措施。
关键词:原理特性短路故障防范措施1、原理特性1.1、电压互感器是电力系统重要组成设备,是交流电路中一次系统和二次系统间联络元件,其基本结构主要由一次绕组、二次绕组和铁心构成,一、二次绕组和铁心之间均有相匹配的绝缘措施。
电压互感器正常工作时,二次回路电压与一次回路电压成正比,磁通密度接近饱和。
其一次侧直接并联在被测高压两端,二次侧接电压表、电压传感器等高阻抗负载,相当于变压器空载运行。
电压互感器一次侧和二次侧的电压比等于两侧的匝数比,一般来说电压互感器的二次电压为220V、100V或57.7V,供保护、计量、测量仪表、操作回路使用的装置,通俗讲就是一台降压变压器。
若电压互感器二次侧短路时其二次侧电流等于二次侧电压除以二次侧线圈电阻(该电阻很小)这样将在二次侧产生一个很大的电流,由此引起的电动力、损耗可以在极短的时间内损坏电压互感器。
1.2、接线方式电压互感器的接线应保证其正确性,一次绕组和被测电路并联,二次绕组应和所接的测量仪表、电保护装置或自动装置的电压线圈并联,同时要注意极性的正确性。
1.2.1、Y,yn接线方式(图一):主要采用三铁芯柱三相电压互感器,多用于小电接地故障,高压侧中性点不允许接地,故不能测量对地电压。
信息请1.2.2、YN,yn接线方式:多用于大电流接地系统。
1.2.3、YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定,但此接线方式在10kV及以下的系统中不采用。
1.2.4、Vv 接线方式(图二):广泛用于中性点绝缘系统或经消弧线圈接地的35k及以下的高压三相系统,特别是10kV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接线,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表。
浅谈变电站继电保护二次回路作业安全技术措施

浅谈变电站继电保护二次回路作业安全技术措施摘要:继电保护装置对电网的安全运行具有重要作用。
当电力设备出现故障时,继电保护装置会及时采取应对措施,切断故障,避免损失的进一步扩大。
继电保护检修作业是保障继电保护装置正常运行的重要一环,然而在继电保护二次回路检修作业过程中存在很多危险因素。
电力系统中时常发生因检修作业而导致继电保护装置误动作的人为因素事件,严重影响电网的安全稳定运行。
本文以变电站主接线为3/2接线方式的继电保护为例,针对继电保护二次回路作业中出现的典型问题进行分析,提出了相应的预防处理措施。
关键词:变电站;继电保护;二次回路;安全技术措施引言近年来,继电保护二次回路检修作业引发的人为因素事故事件时有发生,而继电保护装置误动作会严重影响电网的安全稳定运行。
因此,充分分析继电保护二次回路检修作业存在的风险,从技术控制措施和管理控制措施两方面进行深入探讨,对提高继电保护检修水平,避免人为事故具有重要意义。
一、继电保护的原理及主要作用电力系统在发生故障后,通常伴随电流增大、电压降低、电流与电压之间相位角改变、测量阻抗改变、产生负序电流等变化,继电保护根据电力系统发生故障前后电气物理量变化的特征为基础来构成[1]。
保护动作原理是基于电力系统故障等非正常运行情况引起的物理变化而建立的继电保护动作数学模型,通常包含故障量测量、故障逻辑判断、隔离执行指令几个部分。
继电保护主要实现功能为:正确、及时切除系统中的故障点,避免故障在整个电力系统蔓延,保证非故障系统的正常运行;及时向运行维护人员反应非正常的电气量特征及设备,提示运行维护人员进行处理。
二、继电保护不正确动作典型原因分析在继电保护系统检修、故障处理、设备改造等作业中,涉及大量的二次回路作业,容易发生人为责任事件。
继电保护二次回路作业人为因素事故事件通常由以下原因导致:误动(误碰)电流、电压、跳闸出口回路,定值误整定,安措执行不到位,设备运维不良,仪器仪表使用不当。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021新版浅谈电压互感器二次回路短路故障机防范措施
Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place.
( 安全管理 )
单位:______________________
姓名:______________________
日期:______________________
编号:AQ-SN-0494
2021新版浅谈电压互感器二次回路短路故
障机防范措施
摘要:介绍电压互感器二次回路短路,常见故障原因,常规检查及巡视的方法,叙述PT二次回路短路故障在线监测及防范措施。
关键词:电压互感器二次回路短路故障在线监测防范
1概述
电压互感器是电力系统运行中重要设备组成,是交流电路中一次系统和二次系统间联络元件,用于传递信息供给测量仪器、仪表和保护、控制装置等,它属于特种变压器,工作原理与变压器基本相同。
基本结构主要由一次绕组、二次绕组和铁心构成,一、二次绕组和铁心之间均有相匹配的绝缘措施,在正常情况下,二次回路电压与一次回路电压成正比。
从电压互感器的原理特性上不难看出,其二次绕组不能短路或
接地运行。
二次电压的大小,与一次电压相关,二次电压产生的磁势,平衡一次电压磁势。
若发生二次回路短路故障,此时阻抗无限大,二次电压等于零、磁势也等于零,一次电压就将全部作用于激磁,使铁心严重饱和、正弦交变磁通变为梯形波,二次绕组将感应较大的电流,磁饱和会使铁损增加而发热,持续时间较长时,会使绕组的绝缘性能下降或烧坏。
同时还会造成二次侧熔断器熔丝熔断,影响表计:严重时,可能引起保护装置误动作和烧毁电压互感器。
为此,国标DL408-91《电业安全工作规程》第十章“继电保护、仪表等二次回路上的工作要求”中强调“严格防止带电电压互感器二次回路短路或接地”。
2常见原因
引起电压互感器二次回路短路故障原因较多,下面简述几种常见的原因:
(1)回路中联结电缆短路。
(2)二次回路导线受潮、腐蚀及损伤而发生一相接地,又发展成二相接地短路。
(3)内部存在有金属短路缺陷,造成二次回路短路。
(4)户外端子箱严重受潮,端子联结处产生锈蚀。
(5)电压互感器接线中的隐患。
(6)在预试、检修过程中遗忘。
3常规检查
短路故障,可通过巡视,从以下几种现象进行判断,发现缺陷:
(1)电压互感器运行中,本体有较大的不均匀噪声。
(2)电压互感器运行时,本体有较高的温升,有较大的异味。
(3)所接表计指示不正常、保护装置误动作。
(4)电压互感器烧坏、二次绕组烧坏。
4在线监测及防护
由于电压互感器在电力系统运行中数量较多,而且每台设备二次侧又有多组绕组,在运行人员巡查过程中很难及时发现故障缺陷,使之缺陷长期存在,可能最终造成重大的人身和设备事故。
下面介绍一种方法,
图1的工作原理:由监测单元通过分别监测PT二次各回路中的
电流,当回路电流升至一定值并持续一定时间时[注:保护、报警电流临界值及保护动作时间可设定(初始值:电流≥8A,20ms)],视为该二次同路短路,此时发给保护单元信号,使保护单元动作、断开(该单元接通应有阻抗匹配功能),同时发给故障点指示报警单元(安装在主控室内)声、光报警并指示出故障点的所在回路,便于检修人员及时找到故障所在的回路。
既可进行在线监测,又有对电压互感器二次同路短路自动缺陷消缺、并有故障点指示的作用。
5结束语
(1)电压互感器二次回路短路故障可用加强巡查的方法,通过故障所发生的现象发现缺陷,也可用在线监测的办法,及时发现故障隐患,及时消缺,从而避免该故障对人身及设备的安全隐患。
(2)实时监测电压互感器二次回路短路故障的方法同样符合
DL408-91导则中规定。
XXX图文设计
本文档文字均可以自由修改。