高等数学讲义-一元函数微分学

合集下载

第2章 一元函数微分学

第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。

(完整版)一元函数微分学课件

(完整版)一元函数微分学课件

(一)求曲线的切线方程与法线方程

≠0时,法线方程为
-1/
(二)函数的单调性与极值
1 函数单调性
定理
2 函数的极值
定理(极值的必要条件) 设f(x)在点x0处可导,且x0为f(x)的极值点,则f'(x0)=0.
(三)函数的最大值与最小值
设函数y=f(x)在闭区间[a,b]上有定义,x0∈[a,b],若对于任意x∈[a,b], 恒有f(x)≤f(x0)(或f(x)≥f(x0)),则f(x0)为函数y=f(x)在闭区间[a,b]上 的最大值(或最小值),称点x0为f(x)在[a,b]上的最大值点(或最 小值点)。 注 极值与最值的区别
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.
★ 如果 f ( x)在开区间a, b内可导,且 f(a)及
f(b)都存在,就说 f ( x) 在闭区间a, b上可导.
f
(x)在点 x0处的导数
记为y
,dy xx0 dx
或 df (x)
x x0
dx
x x0

y
x x0
lim
x0
y x
lim
x0
f ( x0 x) x
f ( x0 )
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim

高等数学讲义-一元函数微分学

高等数学讲义-一元函数微分学

第二章 一元函数微分学§2.1 导数与微分(甲)内容要点 一、导数与微分概念 1、导数的定义设函数)(x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ∆,相应地函数增量)()(00x f x x f y -∆+=∆。

如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0x x y =',x x dxdy=,)(x x dxx df =等,并称函数)(x f y =在点0x 处可导。

如果上面的极限不存在,则称函数)(x f y =在点0x 处不可导。

导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆,则000()()()limx x f x f x f x x x →-'=-我们也引进单侧导数概念。

右导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→-+∆-'==-∆ 左导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x---→∆→-+∆-'==-∆ 则有)(x f 在点0x 处可导)(x f ⇔在点0x 处左、右导数皆存在且相等。

2.导数的几何意义与物理意义如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。

切线方程:000()()()y f x f x x x '-=-法线方程:00001()()(()0)()y f x x x f x f x '-=--≠' 设物体作直线运动时路程S 与时间t 的函数关系为)(t f S =,如果0()f t '存在,则0()f t '表示物体在时刻0t 时的瞬时速度。

(优选)一元函数微分学ppt讲解

(优选)一元函数微分学ppt讲解

x0 x
1
(二)导数的运算 • 基本初等函数的导数公式
导数的四则运算法则
设u=u(x),v=v(x)都可导,则
反函数的求导法则
复合函数的求导法则
隐函数求导法则
设y=f(x)由方程F(x,y)=0确定,求y′,只需直接由方 程F(x,y)=0关于x求导,将y当做中间变量,依复 合函数链式法则求之。
★ f (x)在开区间(a,b)内的导函数为f '(x)
f '(a ) lim f '(x) xa
f '(b ) lim f '(x) xb
称为导函数的右极限 称为导函数的左极限
★ 设f (x)在闭区间[a,b]连续, 开区间(a,b)内的可导,记导函数为f '(x) 若f '(a 0)存在,则f (x)在a点右可导, 若f '(b 0)存在,则f (x)在b点左可导
记为y
,dy xx0 dx
或 df (x)
x x0
Hale Waihona Puke dxx x0关于导数的说明:
★ 导数是因变量在点x0处的变化率,它反映了 因变量随自变量的变化而变化的快慢程度. ★ 如果函数 y f (x)在开区间I内的每点
处都可导,就称函数f (x)在开区间I内可导.
★ 对于任一x I ,都对应着f (x)的一个确定的
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.

高等数学 一 微积分》讲义

高等数学 一 微积分》讲义

2
11/69
( 2 ) 因 为 ex2 − 1 ~ x2 ,
sin 3x
~
3x
,1−
cos 2x
~
1 2
(2
x
)2
=
2x2

ln(1 + x) ~ x
( ) 所以
e x2 − 1 sin 3 x lim x→0 (1 − cos 2 x)ln(1 +
x)
= lim x→0
x2 ⋅(3x) (2x2)⋅ x
3n+2
=
lim
1 5

1 52
( 4 )n−1 5
n→∞ 1 + 3( 3 )n+1
5
=
1− 5
1 52
lim( 4 )n−1 n→∞ 5
=
1
1 + 3lim( 3 )n+1 5
n→∞ 5
(2)
lim
x − cos x
=
lim
1−
cos x x
=1
x→+∞ x − sin x x→+∞ 1 − sin x
=

1⎜
2
lim
x→0
⎜ ⎜
sin x 2
x
⎞2 ⎟ ⎟ ⎟
=
1 2
2
⎝2⎠
π
(4)lim(nsin π ) =
n→∞
n
limπ
n→∞
sin

n
π

π
lim(nsin )
n→∞
n
n
10/69
注意:等价无穷小
x → 0时, x ~ sin x, x ~ tan x, x ~ arcsin x , 1 − cos x ~ x2 2

第2章--一元函数微分学

第2章--一元函数微分学

即 y lim f ( x x) f ( x)
x0
xቤተ መጻሕፍቲ ባይዱ
或 f ( x) lim f ( x h) f ( x) .
h0
h
注意: 1. f ( x0 ) f ( x) xx0 .
12
2.导函数(瞬时变化率)是函数平均变化率的逼近函 数.
播放 13
由定义求导数步骤:
(1) 求增量 y f (x x) f (x);
,
解得
x01
1,
x02
1,
从而知过点(0,-1)可作两条直线与 y x2 相切,
其斜率分别为 k1 2, k2 2,
二直线方程分别为 y 1 2x, y 1 2x.
19
四、可导与连续的关系
定理 若函数y=f(x)在点x0 处可导 则它在点x0 处必定连续 .
证明 设函数 f ( x)在点 x0可导,
x1
2 3
x2
2 3
切点为 2, 4 6 3 9
2, 4 6 3 9
所求切线方程为 y 4 6 和 y 4 6
9
9
57
三、复合函数和隐函数的求导法
1、复合函数的求导法则
定理 如果函数u ( x)在点 x0可导 , 而y f (u)
在点u0 ( x0 )可导 , 则复合函数 y f [( x)]在点
★ 若函数y=f(x)在开区间(a,b)内可导,且在左端 点处右可导和右端点处左可导,则称函数f(x)在闭 区间[a,b]内可导。
11
★对于任一x∈ I,都对应着 f (x) 的一个确定的 导数值, 这个函数叫做原来函数f ( x) 的导函数.
记作 y, f ( x), dy 或 df ( x) . dx dx

《大学数学课件一元函数微积分学》

《大学数学课件一元函数微积分学》

曲线长度与曲率
曲线长度公式
曲线长度的计算需要对曲线进行参数化,然 后对其微分求和。实数的曲线长度困难,函 数的曲线长度一般参数化之后再求积分。
计算曲率
曲率定义为在曲线某一点处曲线凝聚程度的 量,凡是具有确定的曲率的曲线上的点组成 的集合,成为曲线的曲率线。
微积分的实际应用举例
金融领域应用
微积分在金融等经济学领域中有广泛的应用,能 够帮助我们更好地理解时间价值、股市价格、股 息、衍生证券等。
龙虾曲线
一种分段光滑的曲线,通过迭代形成,是高阶 导数比较经典的应用之一。
复分析
复函数又叫做复变量函数,它是一个变量为一 个复数的函数。复分析是以复函数为研究对象 的数学分支。
不定积分的概念与求法
基本积分法
通过多种方法计算不定积 分:代换法、分部积分法、 三角函数积分法、有理函 数积分法、分式分解。
应用于牛顿第二定律
在物理领域中,微积分的应用非常广泛,牛顿第 二定律是牛顿—莱布尼茨公式的一个重要应用例 子。
定积分的概念与性质
定积分概念
在一定区间内,用先进(上)的近似值与落后(下)的近似值的平均数来逐 渐缩小误差范围的整个过程,那么最后这个误差的范围越来越小。
牛顿—莱布尼茨公式
定积分的本质意义就是计算曲线下对应的面积,和物理中的质量、体积密度、 功力密度有关,是牛顿—莱布尼茨公式的重要应用场景。
极限概念
当自变量趋近于某个值时,函数值趋近于一个限的极限。
高阶导数及其应用
高阶导数的定义
高阶导数指的是对导数的导数(即二阶导数、三阶导数……)
泰勒展开式
泰勒公式是一个非常重要的工具.利用泰勒公式,可以把函数转化成为一些比较简单的多项式的和的 形式,从而来研究一些不易计算的函数。

第二章-一元函数微分学.docx

第二章-一元函数微分学.docx

第二章一元函数微分学导数的概念定义设函数y=f(x)在点x 0的某一邻域内有定义,若自变量x 在点X 。

处的改变 量为△ x(x 0+Ax 仍在该邻域内).函数y 二f(x)相应地有改变量△『= f(xo+Z\x)・f(xo),若果极限点Xo 处的导数,记作 ____ 或 _________ f '(Xo),即f(x 0)= ___________________ . 此时称函数y 二f(x)在点Xo 处可导.如果上述极限不存在,则称函数y 二f(x)在点 X 。

处不可导.下面是两种等价形式:f'(Xo)= __________________ = ___________________ •当 Xo =0,W: r (0)= _____________ ,如果y 二f(x)在开区间(a,b)内每一点都可导,则称函数f(x)在开区间(a,b)内可导, 由于对于(a,b)内每一点x,都对应一个导数值F(x),因此又称此F(x)为函数f(x) 在(a,b)内的 __简称为 _____ ,记作 __ 或一—.f(x)在点x 0的导数f'(xo)可以看做是导数f'(x)在点x=x 0处的函数值,即 f(x 0)= • 注意:f'(xo)工[f(x°)y■.・ /(兀0 +山)一/(旺)如果y=f(x)在点X 。

及其左侧邻域内有定义,当hm —T —存在时,则称该极值为f(x)在点X 。

处的 ______ 记为—.同理,定义右导数性质 函数y=f(x)在点x 0处可导<・・> ________左导数与右导数常用于判定分段函数在其分段点处的导数. 导数的几何意义 如果函数y 二f(x)在点X 。

处的导数F(x°)存在,则在几何上表明曲线尸f(x)在点 (xo, f(x 0))处存在切线,且切线斜率为_•可导函数与连续性的关系函数y 二f(x)在点xo 处可导,是函数y 二f(x)在点xo 处连续的 _______ 条件. 如u 二u(x),v=v(x)都在x 处可导,由导数的定义可以推得u±v 在x 处也可导,且 (u±vf= ________ (导数的和差运算公式).导数的运算3.1基本初等函数的导数公式c'=_(c 为常数)(兀")‘二 ________ ( n G R) (a x y= ________________(e x y = _________ (logx) = ------------------------------ (In xY = ____________(sin x)f = _________ (cos xY = ______________ (tan x)z = _____________(cot x)f = _________ (arcsin x)f - ____________ (arccos x)z = ____________存在,则称此极限值为函数沪f(x)在2.(arctan x\ = _________ {arc cot xY = ______________________________3.2导数的四则运算法则设u二u(x),v=v(x)都在X处可导侧(cuf= ___ (c 为常数) (u±vf= ___________ (uvf= ________________(;)z= _______ (vHO) (^= ___________ ( vHO ,c 为常数)3.3反函数的求导法则设函数x=(p(y)在某个区间内单调町导,且啓(y)H0,则其反函数y二f(x)在其对应区间内也可导,且有f(x)= ____ •3.4复合函数的求导法则设y = f(u)z u = g(x)复合成y =f[g(x)],若u二g(x)在点x处可导"二f(u)在相应点u = g(x)可导,则复合函数y =f[g(x)]在点x可导,且有链式法则旷 -------- = ---------3.5隐函数的求导法则设y=f(x)是由方程F(x,y) = 0确定的.求V只须直接由方程F(x’y) = 0关于x求导,将y看做是______ 依复合函数链式法则求之.3.6由参数方稈确定的函数的求导法则设y二y(x)是由{ 所确定的.其中(p⑴,叭t)为可导函数,且卩⑴H O,则空_ 一一------ 一--------3.7对数求导法对于幕函数y = 或y由若干个函数连乘、除、开方所构成,通常可以先用—改变函数类型.如y = u:两端取对数:___________ ,化幕指函数为隐函数,如y =N),两端取对数:化为隐函数,然后利用隐函数的求导法则求导.3.8高阶导数二阶及二阶以上的导数统称为高阶导数,对于求n阶导数,需要注意从屮找出规律,以便得到n阶导数的________ .常见n阶导数公式:(a x)(n) = _______ (e x)(n) = ______________ (x n)(n) = ______________(x w )(fl ) = ____ (正整数 m<n )(sin 工)(")= _____ _______(cos x )(n ) = ________ _______4. 洛必达法则 4.1未定型〃訂的极限⑴设函数f(x)与F(x)满足以下条件:① 在点X 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lim
n
an
a.
例 1 用定义证 l i mqn 0 n 0 , 去找 N
q( 1 )常用
可从 an a 出发解不等式.
例 2 证 lim n a 1 ( a 0 ) 常用 n

2例证3 lim证n n
alim1 n
2nn22(a31n
0)1
2
.常用
法 2 提供了一种求 N 的技巧.将 an a 适当放大,使 an a bn , ――― 插项
an a ,
则称数列an以 a 为极限,或称 an 收敛于 a ,记作
lim
n
an
a

an a ( n ) .
Note:
(1)
一般情况下,用定义证
lim
n
an
a
0 ,去找 N , 可从 an a 出发解不等式.
(2) 0 , N 的取法不唯一.未必要取到最小的 N
(3)一个数列收敛与否,与前面有限项无关.
的一般项
n
(1)n1 1 n 当n
无 (限1增n)n大1 时越,来a越n 无接限近接于近常于数常1数.
1,
an 1 无a限 •2 接近a•4于零a•6.
O
1 3 51
2 46
a5

a• 3
64
53
a1

2x
an
n (1)n1 n
1
(1)n1 n

an
1
1 n

an
1
1 n
任 给 总存在正整数 使当
分段函数
在定义域的不同子区间上用不同的表达式
表示的对应规律.

sin x, x 0, f ( x) 2x 1, x 0.
常见的分段函数
(1)符号函数
1,
x 0, x 0.
(2)取整函数 y [x] N
当 n x n1, n 0, 1, 2,L 时, y [x] n N
已知 S 1 g t 2 ,求在 t 2 时的瞬时速度V (2) . 2
落体在[2, t] 上的平均速度:
V (t) S(t) S(2) 1 g(t 2) , t2 2
当 t 无限地接近于2 时,V (t) 无限地接近于V (2)2g .
t 2.1
2.01
2.001 2.0001 2.00001
V (t ) 2.05 g 2.005 g 2.0005 g 2.00005 g 2.000005 g
§2 数列的极限
数列 按自然数顺序排列的一列数:
a1, a2 , L , an , L , 记为an .
数列分为无穷数列和有限数列

(1)
1 2n
:
11
1
, 2
, 4
L,
2n ,
L
(2)
(3)Dirichlet(狄利克雷)函数 1, x Q,
D(x) 0, x Q.
十分经典的函数
是不是所有的周期函数都有最小的正周期?
Ch2 一元函数的极限与连续性
§1 问题的提出
例1 圆的面积
两个实例
正六边形
正十二边形
割圆术: 割之弥细,所失弥少,割之又割,
以至于不可割,则与圆合体而无所失也。
恒有
1 4 1 100 1 1000
4 100 1000
n4 n 100
n1000
1 an 1 4
1 an 1 100
1 an 1 1000
0
N?
n N an 1
Def 1. ( N 定义)
设an为一数列, a --定常数.若对 0 ,
总 正整数 N ,使得当 n N 时,恒有
(1)n
n
:
1
(1)n
1, , L ,
,L
2
n
(3)
an :
0, 1 , 0, 1 , 0, 1 , L 4 16 64

(4)
n
n
1
:
0, 1 , 2 , L , n 1 , L
23
n
(5)
1 (1)n
2
:
0, 1, 0, 1, L
(6)
2( 1)n n
:
11 , 4, , 16, L
再解不等式 bn 来确定 N .
① 原理: A B, B C A C
② bn 不能放得太大,要保证bn 0,且 bn 要比较简单.
例 4 证 an (1)n 发散.

lim
n
an
a
方法: 某个 0>0 ,使 N ,
总有 n0 N ,使 an0 a 0 .
例5

例 1, 2, 3, L , 10, 1 , 1 ,L , 1 , L 11 12 n
因此,一个数列去掉或添加有限项
不影响其敛散性与其极限值.
Note:
(4)如何证
lim
n
an
a
方法: 某个 0>0 ,使 N N ,
比较
总有 n0 N ,使 an0 a 0
0, N N , n N , 恒有 an a .
Ch1 一元函数
一、基本初等函数(5 类)
幂函数、指数函数、对数函数、三角函数及反三角函数.
二、初等函数 由基本初等函数经过有限次四则运算和复合运算, 且只能用一个解析表达式表示的函数.

xes i nx ln(1 x )2
y
x5 x4 1
三、非初等函数 高数中常见的非初等函数: 分段函数.
n2
lim
n
a
n
0
(a 1) .
28
极限存在:n 无限增大时, an 无限地接近于某个常数 a
极限不存在(或发散): 1.振荡 2.发散到
如n : 1, 2, 3, L ,
当 n 时, an n ;
如n : 1, 2, L ,
当 n 时, an n .
如何描述数列的极限
例,
n
无限增大时,数列
n(
1)n1 n
A 表示半径为 R 的圆的面积,
An 圆内接正62n1 边形的面积
62n1
1 2
R 2 s in622n1

R
圆内接正62n1 边形的面积数列为:
A 1 ,A 2 ,A 3 ,…,A n ,…,
n 无限增大时,圆内接正 62n1 边形无限地接近于圆, An 就无限地接近于常数 AR2 .
例 2 自由落体运动的瞬时速度
相关文档
最新文档