带电粒子在电场中运动题目及答案

合集下载

微型专题03 带电粒子在电场中的运动(四种题型)(练习题)(解析版)

微型专题03 带电粒子在电场中的运动(四种题型)(练习题)(解析版)

第十章静电场中的能量微型专题3 带电粒子在电场中的运动(四种题型)一、单选题:1.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图1所示。

则此电场的电场线分布可能是( )【解析】从v-t图象可以看出物体的速度逐渐减小,图线的斜率逐渐增大,v-t图线中图线的斜率表示物体的加速度大小,故物体做加速度逐渐增大的减速运动,所以带负电的粒子顺着电场线运动,电场力做负功,速度逐渐减小,且电场线沿粒子运动方向逐渐密集,故选项A正确,选项B、C、D错误。

【答案】A2.如图所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【答案】D【解析】两平行金属板水平放置时,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.3.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.14【答案】C【解析】电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(Lv)2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.4.一匀强电场的电场强度E 随时间t 变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t =0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)( )A.带电粒子只向一个方向运动B.0~2 s 内,电场力做功等于0C.4 s 末带电粒子回到原出发点D.2.5~4 s 内,电场力做功等于0 【答案】D【解析】画出带电粒子速度v 随时间t 变化的图象如图所示,v-t图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s 末带电粒子不能回到原出发点,A、C错误;2 s末速度不为0,可见0~2 s内电场力做的功不等于0,B错误;2.5 s末和4 s末,速度的大小、方向都相同,则2.5~4 s内,电场力做功等于0,所以D正确.5.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则下列说法正确的是( )A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒【答案】B【解析】由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A错,B对;从a→b,电场力做负功,电势能增大,C 错;由于有电场力做功,机械能不守恒,D错.6.如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab 长为s,竖直边ad长为h.质量均为m、带电量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v0等于( )A.s22qEmhB.s2qEmhC.s42qEmhD.s4qEmh【答案】B【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd的中心,则在水平方向有1 2s=v0t,在竖直方向有12h=12·qEm·t2,解得v0=s2qEmh,故选项B正确,选项A、C、D错误.7.如图甲所示,Q1、Q2为两个被固定的点电荷,a、b、c三点在它们连线的延长线上,其中Q1带负电。

(物理)物理带电粒子在电场中的运动题20套(带答案)及解析

(物理)物理带电粒子在电场中的运动题20套(带答案)及解析

(物理)物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角cosxvvα=1cos2α=60α∴=2.如图所示,在两块长为3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t的变化规律如图所示,则t=0时刻,从O点射人的粒子P经时间t0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B.(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P经过右侧磁场偏转后在电场变化的第一个周期内能够回到O点,求右侧磁场的宽度d 应满足的条件和电场周期T的最小值T min.【答案】(1)0mvBqL=(2)223cosd R a R L≥+=;min(632)3LTvπ+=【解析】【分析】【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R1,则012qv B mvR=由几何关系:222113()()2L LR R=+-解得0mvBqL=(2)粒子P从O003L v t=01122y L v t =解得0y v =设合速度为v ,与竖直方向的夹角为α,则:0tan yv v α== 则=3πα00sin 3v v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=,解得23R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t v πα--=解得()min 023L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧距PQ 为L 处有一与电场E 2平行的屏.现将一电子(电荷量为e ,质量为m ,重力不计)无初速度地放入电场E 1中的A 点,最后电子打在右侧的屏上,A 点到MN 的距离为2L,AO 连线与屏垂直,垂足为O ,求:(1) 电子到达MN 时的速度;(2) 电子离开偏转电场时偏转角的正切值tan θ; (3) 电子打到屏上的点P ′到点O 的距离.【答案】(1) eELv m=L . 【解析】 【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm 2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .4.如图所示,在空间坐标系x <0区域中有竖直向上的匀强电场E 1,在一、四象限的正方形区域CDEF 内有方向如图所示的正交的匀强电场E 2和匀强磁场B ,已知CD =2L ,OC =L ,E 2 =4E 1。

第10讲-【答案解析】带电粒子在电场中的运动

第10讲-【答案解析】带电粒子在电场中的运动

例7
答案: ACD
解答:
A
.由
qU1
=
1 2
mv02
可知,其他条件不变时,当 U1
变大,则电子进入偏转电场的速度变大,故
A
正确
B
.设偏转极板的长度为
L
,由
qU1
=
1 2
mv02
,t
=
L v0
,得 t
=
L
m 2eU1 ,其他条件不变,当U1 变
大时,运动时间变短,故 B 错误
C
.由
F
=
U2q d
可知, U 2
移相等,根据 y = 1 at 2 ,可知运动时间相等,所以在 b 飞离电场的同时, a 刚好打在负极板上.故 A 正 2
确.
B
、b
、 c 竖直方向上的位移不等,
yc
<
yb
.根据
y
=
1 2
at 2
可知, tc
<
tb
.则知 c
先飞离电
场.故 B 错误. C 、在垂直于电场方向即水平方向,三个粒子做匀速直线运动,则有: v = x .因 t
类比重力场,将电场力与重力的合力视为等效重力 mg′ ,大小为
7
_带电粒子在电场中的运动_参考答案
= mg′
= (qE )2 + (mg )2
2 3mg

3
tan=θ q= E 3 ,得θ = 30° , mg 3
等效重力的方向与斜面垂直指向右下方,小球在斜面上做匀速运动。因要使小球能安全通过圆轨道,在圆轨

m ,与比荷有关,故 C 错误。 q
例9
答案: AC

带电粒子在电场中的偏转大题

带电粒子在电场中的偏转大题

1、一带电粒子以一定的初速度垂直进入匀强电场,在电场中做类平抛运动。

下列说法正确的是:A. 粒子的电势能一直减小B. 粒子的动能一直增大C. 粒子的速度方向与电场力方向的夹角一直减小D. 粒子的加速度方向与电场力方向相反(答案:A)2、一个带正电的粒子,在电场中仅受电场力作用,从A点运动到B点。

在此过程中,粒子的速度大小随时间变化的图象可能是:A. 速度大小不变B. 速度大小均匀增大C. 速度大小先减小后增大D. 速度大小先增大后减小(答案:C,若粒子先做减速运动,电场力方向与初速度方向相反,后做加速运动,则可能出现此情况)3、带电粒子以相同的速度分别垂直进入水平方向的匀强电场和匀强磁场中,粒子将:A. 在电场和磁场中都做匀速圆周运动B. 在电场中做类平抛运动,在磁场中做匀速圆周运动C. 在电场和磁场中都做匀变速曲线运动D. 在电场中做匀变速直线运动,在磁场中做匀速直线运动(答案:B)4、一带电粒子在电场中运动,只受电场力作用,下列说法正确的是:A. 粒子的运动轨迹一定与电场线重合B. 粒子的速度方向一定与电场力方向相同C. 粒子的速度大小一定变化D. 粒子的动能可能不变(答案:D,如粒子在匀强电场中做匀速圆周运动,动能不变)5、一初速度为零的带电粒子,经过电压为U的加速电场后,垂直进入电势差为U的匀强偏转电场。

已知加速电场和偏转电场的宽度相同,下列说法正确的是:A. 偏转距离随着加速电压U的增大而增大B. 偏转距离与加速电压U无关C. 粒子从偏转电场射出时的速度随着加速电压U的增大而增大D. 粒子从偏转电场射出时的速度方向与加速电压U无关(答案:B)6、带电粒子在电场中偏转时,下列说法正确的是:A. 电场力对粒子一定做正功B. 电场力对粒子可能不做功C. 粒子的电势能可能增加D. 粒子的动能一定增加(答案:B,若粒子初速度与电场力方向垂直且向电场力反方向偏转,则电场力先做负功,电势能增加,动能减小)7、一带电粒子在匀强电场中运动,电场力与运动方向成某一角度,粒子只受电场力作用。

高考物理带电粒子在电场中的运动题20套(带答案)及解析

高考物理带电粒子在电场中的运动题20套(带答案)及解析

高考物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。

整个空间存在电场强度E =100N/C 的水平向左的匀强电场。

现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。

求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。

【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。

-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。

此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。

高中物理带电粒子在电场中的运动题20套(带答案)及解析

高中物理带电粒子在电场中的运动题20套(带答案)及解析

高中物理带电粒子在电场中的运动题20套(带答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。

带电粒子在电场中的运动(含解析)

带电粒子在电场中的运动(含解析)

带电粒子在电场中的运动一、带电粒子在电场中的直线运动1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =U d,v 2-v 02=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 02 非匀强电场中:W =qU =E k2-E k1●带电粒子在匀强电场中的直线运动【例1】如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )图6A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点【答案】A【解析】根据平行板电容器的电容的决定式C = εr S 4πkd 、定义式C =Q U和匀强电场的电压与电场强度的关系式U =Ed 可得E = 4πkQ εr S,可知将C 板向右平移到P ′点,B 、C 两板间的电场强度不变,由O 点静止释放的电子仍然可以运动到P 点,并且会原路返回,故选项A 正确.【变式1】 两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射入,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh U B .edUh C.eU dh D.eUh d【答案】D【解析】由动能定理得:-e U d h =-E k ,所以E k =eUh d,故D 正确. 二、带电粒子在交变电场中的直线运动【例2】 匀强电场的电场强度E 随时间t 变化的图象如图所示.当t =0时,在此匀强电场中由静止释放一个带电粒子(带正电),设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度不为零D .0~3 s 内,电场力做的总功为零【答案】D【解析】由牛顿第二定律可知带电粒子在第1 s 内的加速度和第2 s 内的加速度的关系,因此粒子将先加速1 s 再减速0.5 s ,速度为零,接下来的0.5 s 将反向加速……,v -t 图象如图所示,根据图象可知选项A 错误;由图象可知前2 s 内的位移为负,故选项B 错误;由图象可知3 s 末带电粒子的速度为零,故选项C 错误;由动能定理结合图象可知0~3 s 内,电场力做的总功为零,故选项D 正确.●带电粒子在电场力和重力作用下的直线运动问题【例3】如图所示,在竖直放置间距为d 的平行板电容器中,存在电场强度为E 的匀强电场.有一质量为m 、电荷量为+q 的点电荷从两极板正中间处静止释放.重力加速度为g .则点电荷运动到负极板的过程( )A .加速度大小为a =Eq m+g B .所需的时间为t =dm Eq C .下降的高度为y =d 2D .电场力所做的功为W =Eqd 【答案】B【解析】点电荷受到重力、电场力的作用,所以a =(Eq )2+(mg )2m ,选项A 错误;根据运动独立性,水平方向点电荷的运动时间为t ,则d 2=12Eq mt 2,解得t =md Eq ,选项B 正确;下降高度y =12gt 2=mgd 2Eq,选项C 错误;电场力做功W =Eqd 2,选项D 错误. 【例4】如图所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b 沿直线运动到d ,且bd 与竖直方向所夹的锐角为45°,则下列结论不正确的是( )A .此液滴带负电B .液滴的加速度大小为2gC .合力对液滴做的总功等于零D .液滴的电势能减少【答案】C【解析】带电液滴由静止开始沿bd 做直线运动,所受的合力方向必定沿bd 直线,液滴受力情况如图所示,电场力方向水平向右,与电场方向相反,所以此液滴带负电,故选项A 正确;由图知液滴所受的合力F =2mg ,其加速度为a =F m =2g ,故选项B 正确;因为合力的方向与运动的方向相同,故合力对液滴做正功,故选项C 错误;由于电场力所做的功W 电=Eqx bd sin 45°>0,故电场力对液滴做正功,液滴的电势能减少,故选项D 正确.三、带电粒子在电场中的偏转1.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 02 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 02得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l 2. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 02,其中U y =U dy ,指初、末位置间的电势差.【例5】 质谱仪可对离子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生电荷量为q 、质量为m 的正离子,自a 板小孔进入a 、b 间的加速电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器(可上下移动).已知a 、b 板间距为d ,极板M 、N 的长度和间距均为L ,a 、b 间的电压为U 1,M 、N 间的电压为U 2.不计离子重力及进入a 板时的初速度.求:(1)离子从b 板小孔射出时的速度大小;(2)离子自a 板小孔进入加速电场至离子到达探测器的全部飞行时间;(3)为保证离子不打在极板上,U 2与U 1应满足的关系.【答案】 (1)2qU 1m (2)(2d +L )m 2qU 1(3) U 2<2U 1 【解析】(1)由动能定理qU 1=12mv 2,得v =2qU 1m (2)离子在a 、b 间的加速度a 1=qU 1md 在a 、b 间运动的时间t 1=v a 1=2m qU 1·d 在MN 间运动的时间:t 2=Lv =L m 2qU 1离子到达探测器的时间:t =t 1+t 2=(2d +L )m 2qU 1; (3)在MN 间侧移:y =12a 2t 22=qU 2L 22mLv 2=U 2L 4U 1由y <L2,得 U 2<2U 1. 【变式2】 如图所示,电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相同的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则下列说法不正确的是( )A .A 和B 在电场中运动的时间之比为1∶2B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1【答案】D【解析】粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2;竖直方向由h =12at 2得a =2h t 2,它们沿竖直方向运动的加速度大小之比为a A ∶a B =4∶1;根据a =qE m 得m =qE a ,故m A m B =112,A 和B 的位移大小不相等,故选项A 、B 、C 正确,D 错误.【变式3】 如图所示,喷墨打印机中的墨滴在进入偏转电场之前会带上一定量的电荷,在电场的作用下带电荷的墨滴发生偏转到达纸上.已知两偏转极板长度L =1.5×10-2 m ,两极板间电场强度E =1.2×106 N/C ,墨滴的质量m =1.0×10-13 kg ,电荷量q =1.0×10-16 C ,墨滴在进入电场前的速度v 0=15 m/s ,方向与两极板平行.不计空气阻力和墨滴重力,假设偏转电场只局限在平行极板内部,忽略边缘电场的影响.(1)判断墨滴带正电荷还是负电荷?(2)求墨滴在两极板之间运动的时间;(3)求墨滴离开电场时在竖直方向上的位移大小y .【答案】(1)负电荷 (2)1.0×10-3 s (3)6.0×10-4 m【解析】(1)负电荷.(2)墨滴在水平方向做匀速直线运动,那么墨滴在两板之间运动的时间t =L v 0.代入数据可得:t =1.0×10-3 s(3)离开电场前墨滴在竖直方向做初速度为零的匀加速直线运动,a =Eq m代入数据可得:a =1.2×103 m/s 2离开偏转电场时在竖直方向的位移y =12at 2 代入数据可得:y =6.0×10-4 m.。

高中物理压轴题05 带电粒子在电场中运动(解析版)

高中物理压轴题05 带电粒子在电场中运动(解析版)

压轴题05带电粒子在电场中的运动1.本专题是电场的典型题型,包括应用静电力的知识解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于电场的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:电场力的性质、电场力能性质、带电粒子在电场中的平衡、加速、偏转等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型静电场的性质,电容器的动态分析,电场中的图像问题,带电粒子在电场中的运动问题,力电综合问题等。

考向一:静电场力的性质1.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)表达式:F=k q1q2r2,式中k=9.0×109N·m2/C2,叫做静电力常量.(3)适用条件:真空中的点电荷.①在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式;②当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷.(4)库仑力的方向:由相互作用的两个带电体决定,且同种电荷相互排斥,异种电荷相互吸引.(5)应用库仑定律的四条提醒a.在用库仑定律公式进行计算时,无论是正电荷还是负电荷,均代入电量的绝对值计算库仑力的大小.b.两个点电荷间相互作用的库仑力满足牛顿第三定律,大小相等、方向相反.c.库仑力存在极大值,由公式F=k q1q2r2可以看出,在两带电体的间距及电量之和一定的条件下,当q1=q2时,F最大.d.对于两个带电金属球,要考虑金属球表面电荷的重新分布.2.电场强度的三个公式的比较电场强度――――→点电荷电场E =k Q r 2―――→任何电场E =F q ―――→匀强电场E =U d ――→叠加平行四边形定则3.电场强度的计算与叠加在一般情况下可由上述三个公式计算电场强度,但在求解带电圆环、带电平面等一些特殊带电体产生的电场强度时,上述公式无法直接应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在电场中的运动班级_________姓名_________一、带电粒子在电场中做偏转运动1. 如图所示,在平行板电容器之间有匀强电场,一带电粒子(重力不计)以速度v 0垂直电场线射人电场,经过时间t l 穿越电场,粒子的动能由E k 增加到2E k ; 若这个带电粒子以速度32 v 0 垂直进人该电场,经过时间t 2穿越电场。

求:( l )带电粒子两次穿越电场的时间之比t 1:t 2; ( 2 )带电粒子第二次穿出电场时的动能。

2.如图所示的真空管中,质量为m ,电量为e 的电子从灯丝F发出,经过电压U1加速后沿中心线射入相距为d 的两平行金属板B、C间的匀强电场中,通过电场后打到荧光屏上,设B、C间电压为U2,B、C板长为l 1,平行金属板右端到荧光屏的距离为l 2,求:⑴电子离开匀强电场时的速度与进入时速度间的夹角. ⑵电子打到荧光屏上的位置偏离屏中心距离.解析:电子在真空管中的运动过分为三段,从F发出在电压U1作用下的加速运动;进入平行金属板B、C间的匀强电场中做类平抛运动;飞离匀强电场到荧光屏间的匀速直线运动. ⑴设电子经电压U1加速后的速度为v 1,根据动能定理有: 21121mv eU =电子进入B、C间的匀强电场中,在水平方向以v 1的速度做匀速直线运动,竖直方向受电场力的作用做初速度为零的加速运动,其加速度为: dmeU m eE a 2==电子通过匀强电场的时间11v l t =电子离开匀强电场时竖直方向的速度v y 为: 112mdv l eU at v y == v 0电子离开电场时速度v 2与进入电场时的速度v 1夹角为α(如图5)则d U l U mdv l eU v v tg y 112211212===α ∴dU l U arctg1122=α ⑵电子通过匀强电场时偏离中心线的位移dU l U v l dm eU at y 1212212122142121=•== 电子离开电场后,做匀速直线运动射到荧光屏上,竖直方向的位移 dU l l U tg l y 1212222==α ∴电子打到荧光屏上时,偏离中心线的距离为 )2(22111221l l d U l U y y y +=+= 3. 在真空中存在空间范围足够大的、水平向右的匀强电场.若将一个质量为m 、带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直方向夹角为︒37的直线运动。

现将该小球从电场中某点以初速度0v 竖直向上抛出,求运动过程中(取8.037cos ,6.037sin =︒=︒) (1)小球受到的电场力的大小及方向;(2)小球运动的抛出点至最高点之间的电势差U . 解析:(1)根据题设条件,电场力大小 mg mg F e 4337tan =︒= ① 电场力的方向向右(2)小球沿竖直方向做初速为0v 的匀减速运动,到最高点的时间为t ,则: 00=-=gt v v ygv t 0=②沿水平方向做初速度为0的匀加速运动,加速度为x a g m F a e x 43==③图 5此过程小球沿电场方向位移为:gv t a s x x 8321202==④小球上升到最高点的过程中,电场力做功为: 2329mv S F qU W x e ===qmv U 3292= ⑤4. 在足够大的空间中,存在水平向右的匀强电场,若用绝缘细线将质量为m 的带正电的小球悬挂在电场中,其静止时细线与竖直方向夹角θ=37°.现去掉细线,将该小球从电场中的某点竖直向上抛出,抛出时的初速度大小为v 0,如图13所示.求: (1)电场强度的大小.(2)小球在电场内运动过程中的最小速率.(3)小球从抛出至达到最小速率的过程中,电场力对小球所做的功.(sin37°=0.6,cos37°=0.8) 5. 如图所示,在空间中取直角坐标系Oxy ,在第一象限内平行于y 轴的虚线MN 与y 轴距离为d ,从y 轴到MN 之间的区域充满一个沿y 轴正方向的匀强电场,场强大小为E 。

初速度可以忽略的电子经过另一个电势差为U 的电场加速后,从y 轴上的A 点以平行于x 轴的方向射入第一象限区域,A 点坐标为(0,h )。

已知电子的电量为e ,质量为m ,加速电场的电势差U >Ed 24h ,电子的重力忽略不计,求:(1)电子从A 点进入电场到离开该电场区域所经历的时间t 和离开电场区域时的速度v ; (2)电子经过x 轴时离坐标原点O 的距离l 。

解析:(1)由 eU =12 mv 02 得电子进入偏转电场区域的初速度v 0=2eU m设电子从MN 离开,则电子从A 点进入到离开匀强电场区域的时间 t =dv 0=d m 2eU; y =12 at 2=Ed 24U因为加速电场的电势差U >Ed 24h , 说明y <h ,说明以上假设正确所以v y =at =eEm ⨯ d m 2eU=eEd m m 2eU离开时的速度v =v 02+v y 2=2eU m +eE 2d 22mU(2)设电子离开电场后经过时间t’到达x 轴,在x 轴方向上的位移为x’,则 x’=v 0t’ ,y’=h -y =h -v y2t =v y t’则 l =d +x’= d +v 0t’= d +v 0(h v y -t 2 )= d +v 0v y h -d 2 =d 2 +v 0v y h代入解得 l =d 2+2hUEd一、带电粒子在电场中做圆周运动6.在方向水平的匀强电场中,一不可伸长的不导电细线一端连着一个质量为m 、电量为+q 的带电小球,另一端固定于O 点。

将小球拉起直至细线与场强平行,然后无初速释放,则小球沿圆弧作往复运动。

已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ(如图)。

求:(1)匀强电场的场强。

(2)小球经过最低点时细线对小球的拉力。

解:(1)设细线长为l ,场强为E ,因电量为正,故场强的方向为水平向右。

从释放点到左侧最高点,由动能定理有=∆=+K E G E W W ,故)sin 1(cos θθ+=qEl mgl ,解得)sin 1(cos θθ+=q mg E(2)若小球运动到最低点的速度为v ,此时线的拉力为T ,由动能定理同样可得221mv qEl mgl =-,由牛顿第二定律得lv mmg T 2=-,联立解得]sin 1cos 23[θθ+-=mg T 7.如图所示,水平轨道与直径为d =0.8m 的半圆轨道相接,半圆轨道的两端点A 、B 连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m 的匀强电场中,一小球质量m =0.5kg,带有q =5×10-3C 电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g =10m/s 2,(1)若它运动的起点离A 为L ,它恰能到达轨道最高点B ,求小球在B 点的速度和L 的值. (2)若它运动起点离A 为L =2.6m ,且它运动到B 点时电场消失,它继续运动直到落地,求落地点与B 点的距离.m O θ+q(1)因小球恰能到B 点,则在B 点有22d mv mg B= (1分) m/s 22==gdv B (1分) 小球运动到B 的过程,由动能定理221B mv mgd qEL =- (1分) m 145212==+=qEmgd qE mgd mv L B (1分)(2)小球离开B 点,电场消失,小球做平抛运动,设落地点距B 点距离为s ,由动能定理小球从静止运动到B 有221B v m mgd L qE '=-' m/s 2422=-'='mmgdL qE v B (2分)221gt d =s 4.02==gdt m 258='=t v x B m 4.222=+=x d s (2分)7.如图所示,在E = 103V/m 的水平向左匀强电场中,有一光滑半圆形绝缘轨道竖直放置,轨道与一水平绝缘轨道MN 连接,半圆轨道所在竖直平面与电场线平行,其半径R = 40cm ,一带正电荷q = 10-4C 的小滑块质量为m = 40g ,与水平轨道间的动摩因数μ = 0.2,取g = 10m/s 2,求: (1)要小滑块能运动到圆轨道的最高点L ,滑块应在水平轨道上离N 点多远处释放? (2)这样释放的滑块通过P 点时对轨道压力是多大?(P 为半圆轨道中点)解析:(1)滑块刚能通过轨道最高点条件是,/2,2s m Rg v Rv m mg ===滑块由释放点到最高点过程由动能定理:mgEq gR v m S mv R mg mgS Eq μμ-⎪⎭⎫⎝⎛+=∴221212S 22=-- 代入数据得:S =20m(2)滑块过P 点时,由动能定理:Rm Eq g v v mv mv EqR mgR P P )(---++=∴=221212222 在P 点由牛顿第二定律:()Eq mg N R mv Eq N P+=∴=-32代入数据得:N =1.5N8. 如图所示,在沿水平方向的匀强电场中有一固定点o ,用一根长度为l =0.40 m 的绝缘细线把质量为m=0.20 kg ,带有正电荷的金属小球悬挂在o 点,小球静止在B 点时细线与竖直方向的夹角为 =037.现将小球拉至位置A 使细线水平后由静止释放,求:(1)小球运动通过最低点C 时的速度大小.(2)小球通过最低点C 时细线对小球的拉力大小.(3)如果要使小球能绕o 点做圆周运动,则在A 点时沿垂直于OA 方向上施加给小球的初速度的大小范围。

(g 取10 m/s2,sin 037=O.60,cos 037=0.80)解:9.如图所示,在匀强电场中一带正电的小球以某一初速度从绝缘斜面上滑下,并沿与斜面相切的绝缘圆轨道通过最高点.已知斜面倾角为300, 圆轨道半径为R,匀强电场水平向右,场强为E,小球质量为m ,带电量为Emg33,不计运动中的摩擦阻力,则小球至少应以多大的初速度滑下?在此情况下,小球通过轨道最高点的压力多大?解析:小球的受力如图9所示,从图中可知:3333===Emg mgE mg qE tg θ,030=θ.所以带电小球所受重力和电场力的合力始终垂直于斜面,小球在斜面上做匀速直线运动,其中mg mg F 332cos ==θ 把小球看作处于垂直斜面向下的等效力场F 中,等效力加速度g m F g 332,==,小球在B点的速度最小,为Rg Rg v B 332,==,由功能关系可得:,2222121Rmg mv mv B A += Rg g R Rg Rg v v B A 331033243324,2=+=+=此即为小球沿斜面下滑的最小速度.设C点的速度为v c ,则)cos 1(2121,22θ-=-R mg mv mv B C Rg Rg Rg R g v v B C )232()231(334332)cos 1(2,2-=-+=-+=θ 小于球通过最高点C时,向心力由重力和轨道压力提供,因而有:图 8 图 9Rmv mg N C2=+mg RRgm mg R mv N C --=-=)232(2 mg )332(-=如图甲所示,A 、B 是一对平行放置的金属板,中心各有一个小孔P 、Q ,PQ 连线垂直金属板,两板间距为d .现从P 点处连续不断地有质量为 m 、带电量为+q 的带电粒子(重力不计),沿PQ 方向放出,粒子的初速度可忽略不计.在t =0时刻开始在A 、B 间加上如图乙所示交变电压(A 板电势高于B 板电势时,电压为正),其电压大小为U 、周期为T .带电粒子在A 、B 间运动过程中,粒子间相互作用力可忽略不计.(1)如果只有在每个周期的0~4T时间内放出的带电粒子才能从小孔Q 中射出,则上述物理量之间应满足怎样的关系.(2)如果各物理量满足(1)中的关系,求每个周期内从小孔Q 中有粒子射出的时间与周期T 的比值.乙甲-UU Q A BP(1)在04T →时间内,进入A 、B 板间的粒子,在电场力的作用下,先向右做匀加速运动,在T T→2时间内再向右做匀减速运动,且在04T →时间内,越迟进入A 、B 板间的粒子,其加速过程越短,减速运动过程也相应地缩短,当速度为零后,粒子会反向向左加速运动。

相关文档
最新文档