带电粒子在电场中运动常见题型
微型专题03 带电粒子在电场中的运动(四种题型)(练习题)(解析版)

第十章静电场中的能量微型专题3 带电粒子在电场中的运动(四种题型)一、单选题:1.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下以一定的初速度从A点沿电场线运动到B点,其速度v与时间t的关系图象如图1所示。
则此电场的电场线分布可能是( )【解析】从v-t图象可以看出物体的速度逐渐减小,图线的斜率逐渐增大,v-t图线中图线的斜率表示物体的加速度大小,故物体做加速度逐渐增大的减速运动,所以带负电的粒子顺着电场线运动,电场力做负功,速度逐渐减小,且电场线沿粒子运动方向逐渐密集,故选项A正确,选项B、C、D错误。
【答案】A2.如图所示,两平行的带电金属板水平放置.若在两板中间a点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将( )A.保持静止状态B.向左上方做匀加速运动C.向正下方做匀加速运动D.向左下方做匀加速运动【答案】D【解析】两平行金属板水平放置时,带电微粒静止,有mg=qE,现将两板绕过a点的轴(垂直于纸面)逆时针旋转45°后,两板间电场强度方向逆时针旋转45°,电场力方向也逆时针旋转45°,但大小不变,此时电场力和重力的合力大小恒定,方向指向左下方,故该微粒将向左下方做匀加速运动,选项D正确.3.如图所示,两极板与电源相连接,电子从负极板边缘沿垂直电场方向射入匀强电场,电子恰好从正极板边缘飞出,现保持负极板不动,正极板在竖直方向移动,并使电子入射速度变为原来的2倍,而电子仍从原位置射入,且仍从正极板边缘飞出,则两极板间距离变为原来的( )A.2倍B.4倍C.12D.14【答案】C【解析】电子从负极板边缘垂直电场方向射入匀强电场,做类平抛运动.假设电子的带电荷量为e ,质量为m ,初速度为v ,极板的长度为L ,极板的间距为d ,电场强度为E .由于电子做类平抛运动,所以水平方向有:L =vt ,竖直方向有:y =12at 2=12·eE m ·(Lv)2=d .因为E =U d ,可得:d 2=eUL 22mv 2,若电子的速度变为原来的两倍,仍从正极板边缘飞出,则由上式可得两极板的间距d 应变为原来的12,故选C.4.一匀强电场的电场强度E 随时间t 变化的图象如图4所示,在该匀强电场中,有一个带负电粒子于t =0时刻由静止释放,若带电粒子只受电场力作用,则下列说法中正确的是(假设带电粒子不与板相碰)( )A.带电粒子只向一个方向运动B.0~2 s 内,电场力做功等于0C.4 s 末带电粒子回到原出发点D.2.5~4 s 内,电场力做功等于0 【答案】D【解析】画出带电粒子速度v 随时间t 变化的图象如图所示,v-t图线与时间轴所围“面积”表示位移,可见带电粒子不是只向一个方向运动,4 s 末带电粒子不能回到原出发点,A、C错误;2 s末速度不为0,可见0~2 s内电场力做的功不等于0,B错误;2.5 s末和4 s末,速度的大小、方向都相同,则2.5~4 s内,电场力做功等于0,所以D正确.5.如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则下列说法正确的是( )A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒【答案】B【解析】由于小球在竖直平面内做匀速圆周运动,所以重力与电场力的合力为0,电场力方向竖直向上,小球带正电,A错,B对;从a→b,电场力做负功,电势能增大,C 错;由于有电场力做功,机械能不守恒,D错.6.如图所示,场强大小为E、方向竖直向下的匀强电场中有一矩形区域abcd,水平边ab 长为s,竖直边ad长为h.质量均为m、带电量分别为+q和-q的两粒子,由a、c两点先后沿ab和cd方向以速率v0进入矩形区域(两粒子不同时出现在电场中).不计重力,若两粒子轨迹恰好相切,则v0等于( )A.s22qEmhB.s2qEmhC.s42qEmhD.s4qEmh【答案】B【解析】根据对称性,两粒子轨迹的切点位于矩形区域abcd的中心,则在水平方向有1 2s=v0t,在竖直方向有12h=12·qEm·t2,解得v0=s2qEmh,故选项B正确,选项A、C、D错误.7.如图甲所示,Q1、Q2为两个被固定的点电荷,a、b、c三点在它们连线的延长线上,其中Q1带负电。
带电粒子在交变电场中的运动

A.0<t<2×10-10 s
B
B.2×10-10 s<t<4×10-10 s
C.4×10-10 s<t<6×10-10 s
D.6×10-10 s<t<8×10-10 s
3.如图(甲)所示,两个平行金属板P、Q正对竖直放置,两板
间加上如图(乙)所示的交变电压.t=0时,Q板比P板电势高
U0,在两板的正中央M点有一电子在电场力作用下由静止 开始运动(电子所受重力可忽略不计),已知电子在0-4t0时 间内未与两板相碰.则电子速度方向向左且速度大小逐渐
增大的时间是( )
A.0<t<t0 C.2t0<t<3t0
B.t0<t<2t0 D.3t0<t<4t0
题型(二) 偏转运动问题(分解研究)
例.在金属板A、B间加上如图乙所示的大小不变、方 向周期性变化的交变电压U0,其周期是T。现有电子以 平行于金属板的速度v0从两板中央射入。己知电子的质 量为m,电荷量为e,不计电子的重力,求: (1)若电子从t=0时刻射入,在半个周期内恰好能从A板 的边缘飞出,则电子飞出时速度的大小。
例.在金属板A、B间加上如图乙所示的大小不变、方 向周期性变化的交变电压U0,其周期是T。现有电子以 平行于金属板的速度v0从两板中央射入。己知电子的质 量为m,电荷量为e,不计电子的重力,求: (2)若电子从t=0时刻射入,恰能平行于金属板飞出,则 金属板至少多长?
例.在金属板A、B间加上如图乙所示的大小不变、方 向周期性变化的交变电压U0,其周期是T。现有电子以 平行于金属板的速度v0从两板中央射入。己知电子的质 量为m,电荷量为e,不计电子的重力,求: (3)若电子恰能从两板中央平行于板飞出,电子应从哪一 时刻射入?两板间距至少多大?
高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E tg g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图所示,在两块长为3L 、间距为L 、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m 、电荷量为q 的带正电粒子流从两板左端连线的中点O 以初速度v 0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos d R a R L ≥+= ;min 0(632)L T π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得033y v v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α== 则=3πα0023sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=, 解得23L R =右侧磁场沿初速度方向的宽度应该满足的条件为223cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min 06323L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.3.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W4.在如图甲所示的直角坐标系中,两平行极板MN垂直于y轴,N板在x轴上且其左端与坐标原点O重合,极板长度l=0.08m,板间距离d=0.09m,两板间加上如图乙所示的周期性变化电压,两板间电场可看作匀强电场.在y轴上(0,d/2)处有一粒子源,垂直于y轴连续不断向x轴正方向发射相同的带正电的粒子,粒子比荷为qm=5×107C/kg,速度为v0=8×105m/s.t=0时刻射入板间的粒子恰好经N板右边缘打在x轴上.不计粒子重力及粒子间的相互作用,求:(1)电压U 0的大小;(2)若沿x 轴水平放置一荧光屏,要使粒子全部打在荧光屏上,求荧光屏的最小长度; (3)若在第四象限加一个与x 轴相切的圆形匀强磁场,半径为r =0.03m ,切点A 的坐标为(0.12m ,0),磁场的磁感应强度大小B =23T ,方向垂直于坐标平面向里.求粒子出磁场后与x 轴交点坐标的范围.【答案】(1)40 2.1610V U =⨯ (2)0.04m x ∆= (3)0.1425m x ≥【解析】 【分析】 【详解】(1)对于t =0时刻射入极板间的粒子:0l v T = 7110T s -=⨯211()22T y a =2y T v a= 22yT y v = 122dy y =+ Eq ma =U E d=解得:40 2.1610V U =⨯(2)2Tt nT =+时刻射出的粒子打在x 轴上水平位移最大:032A T x v = 所放荧光屏的最小长度A x x l ∆=-即:0.04x m ∆= (3)不同时刻射出极板的粒子沿垂直于极板方向的速度均为v y . 速度偏转角的正切值均为:0tan y v v β=37β=ocos37v v=o 6110m/s v =⨯即:所有的粒子射出极板时速度的大小和方向均相同.2v qvB m R=0.03m R r ==由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点B 离开磁场.由几何关系,恰好经N 板右边缘的粒子经x 轴后沿磁场圆半径方向射入磁场,一定沿磁场圆半径方向射出磁场;从x 轴射出点的横坐标:tan 53C A Rx x ︒=+0.1425m C x =.由几何关系,过A 点的粒子经x 轴后进入磁场由B 点沿x 轴正向运动. 综上所述,粒子经过磁场后第二次打在x 轴上的范围为:0.1425m x ≥5.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.6.长为L的平行板电容器沿水平方向放置,其极板间的距离为d,电势差为U,有方向垂直纸面向里的磁感应强度大小为B的匀强磁场.荧光屏MN与电场方向平行,且到匀强电、磁场右侧边界的距离为x,电容器左侧中间有发射质量为m带+q的粒子源,如图甲所示.假设a、b、c三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O点;b粒子在电、磁场中向上偏转;c粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a、b、c粒子在原来位置上以各自的原速度水平射入电场,结果a粒子仍恰好打在荧光屏上的O点;b、c中有一个粒子也能打到荧光屏,且距O点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B dq m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.Uq Bqv d=, BdU v =, L LBd t v U==, 222122a Uq L B qdy t dm mU ==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d =(2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122dy L L x +, 1()2x y d L =+(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md =122221·2y Uq t m y t d v +=,22158qU y t md=, 124=5y y , 11224==5Uqy W d Uq W y d7.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。
现用大小F =4.5N 、方向水平向右的恒力推滑块,滑块到达B 点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心。
小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。
取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x ;(3)若小球从P 点飞出后落到水平轨道上的Q 点(图中未画出)后不再反弹,求Q 、C 两点间的距离L 。
【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s ,匀强电场的电场强度大小是7.5×104N/C ;(2)小球到达P 点时的速度大小是2.5m/s ,B 、C 两点间的距离是0.85m 。
(3)Q 、C 两点间的距离为0.5625m 。
【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:Fd =12m 1v 2, 代入数据解得:v =6m/s小球到达P 点时,受力如图所示,由平衡条件得:qE =m 2g tanθ, 解得:E =7.5×104N/C 。
(2)小球所受重力与电场力的合力大小为:G 等=2cos m g①小球到达P点时,由牛顿第二定律有:G等=m22Pvr②联立①②,代入数据得:v P=2.5m/s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v1、v2,以向右方向为正方向,由动量守恒定律得:m1v=m1v1+m2v2 ③由能量守恒得:22211122111222m v m v m v=+④联立③④,代入数据得:v1=﹣2m/s(“﹣”表示v1的方向水平向左),v2=4m/s小球碰后运动到P点的过程,由动能定理有:qE(x﹣r sinθ)﹣m2g(r+r cosθ)=222221122Pm v m v-⑤代入数据得:x=0.85m。
高二物理上册带电粒子在电场中的运动知识总结及题型练习

带电粒子在电场中的运动1.电容器两个彼此绝缘且又相距很近的导体,中间夹上一层绝缘物质....(电介质),就组成了一个电容器...。
电容器可以容纳电荷....。
相距很近的两平行金属板就是一种最简单的电容器。
接通电源可对电容器充电..,将两极板用导线短接可对电容器放电..,如下图。
2.电容⑴ 物理意义:反映电容器__________________________的物理量。
⑵ 定义:电容器(某一极板)所带的电荷量Q 与电容器两极板间电压U 的比值。
⑶ 公式:_________________C =。
⑷ 单位:__________________,符号是F 。
常用单位有μF 、pF ,6121F 10μF 10pF ==。
公式QC U=是电容的定义式...,对任何电容器都适用。
对于一个电容器来说,其电容是确定的,和电容器是否带电无关..。
3.平行板电容器的电容 平行板电容器的电容r 4πSC kdε=。
可见,电容C 与两极板正对面积....S 、电介质的相对介电常数......r ε成正比,与_________________________成反比,式中k 是________________________。
公式r 4πSC kd ε=是平行板电容器电容的决定式...,只适用于平行板电容器。
4.平行板电容器动态分析的基本步骤⑴ 认清电容器是Q 、U 中的哪一个量不变。
若电容器始终与电源连接....,则两板间的电势差U 保持不变。
若电容器与电源断开....,则两板所带电荷量Q 保持不变。
⑵ 用决定式r 4πSC kd ε=,来判断电容C 的变化趋势。
⑶ 由定义式QC U=,来判断Q 、U 中会发生变化的那个量的变化趋势。
⑷ 由U E d =或QE S∝(r 4πU Q kQ E d Cd S ε===),来分析场强的变化。
⑸ 由F qE =,来分析点电荷的受力变化。
⑹ 选定零电势位置,用U Ed =来分析某点的电势变化。
带电粒子在电场中运动常见题型

带电粒子在电场中运动常见题型1. “带电粒子在匀强磁场中的圆周运动”的范围型问题例1如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。
要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域?【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。
临界半径R0由dCosθRR0=+有: θ+=Cos1dR0;故粒子必能穿出EF的实际运动轨迹半径R≥R0即:θ+≥=Cos1dqBmvR0有:)Cos1(mqBdv0θ+≥。
由图知粒子不可能从P点下方向射出EF,即只能从P点上方某一区域射出;又由于粒子从点A进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG直线上方射出;由此可见EF中有粒子射出的区域为PG,且由图知:θ+θ+θ=θ+θ=cotdCos1dSincotdSinRPG0。
【总结】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系确定范围。
例2如图9-11所示S为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m、带电-e的电子,MN是一块足够大的竖直挡板且与S的水平距离OS=L,挡板左侧充满垂直纸面向里的匀强磁场;①若电子的发射速率为V0,要使电子一定能经过点O,则磁场的磁感应强度B的条件?图9-8 图9-9 图9-10②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?③若磁场的磁感应强度为B ,从S 发射出的电子的速度为m eBL2,则档板上出现电子的范围多大?【解析】①要使电子一定能经过点O ,即SO 为圆周的一条弦,则电子圆周运动的轨道半径必满足2LR ≥,由2L eB mv 0≥ 得:eL mv 2B 0≤②要使电子从S 发出后能到达档板,则电子至少能到达档板上的O 点,故仍有粒子圆周运动半径2L R ≥, 由2L eB mv 0≥ 有:m 2eBLv 0≥③当从S 发出的电子的速度为m eBL 2时,电子在磁场中的运动轨迹半径L2qB mv R /==作出图示的二临界轨迹,故电子击中档板的范围在P1P2间;对SP1弧由图知L3L )L 2(OP 221=-= 对SP2弧由图知L15L )L 4(OP 222=-=【总结】本题利用了动态园法寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
微型专题03 带电粒子在电场中的运动(四种题型)(课件)(共33张PPT)

面方向的偏转距离Δy;
(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所
受重力,请利用下列数据分析说明其原因.已知U=2.0×102 V,d=4.0×10-2 m,m
=9.1×10-31 kg,e=1.6×10-19 C,g=10 m/s2.
新教材 新高考
1
解析(1)根据动能定理,有 eU0= mv02,
里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形
中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体
在圆周运动过程中速度最小(称为临界速度)的点.
新教材 新高考
例4.如图所示,半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带
电荷量为+q的珠子,现在圆环平面内加一个匀强电场,使珠子由最高点A从静止开始
仍沿水平方向并恰好从B板边缘水平飞出(g取10 m/s2,sin 37°=0.6,cos
37°=0.8)。求:
(1)液滴的质量;
(2)液滴飞出时的速度。
新教材 新高考
答案:(1)8×10-8 kg
7
(2) 2 m/s
解析:(1)根据题意画出带电液滴的受力图如图所示,可得
qEcos α=mg
E=
暗示以外,一般都不考虑重力。(但并不能忽略质量)
2.带电微粒:如带电小球、液滴、尘埃等。除非有说
明或明确的暗示以外,一般都考虑重力。
注意:某些带电体是否考虑重力,要根据题目暗示或运动状态来判定
新教材 新高考
带电粒子在匀强电场中运动状态:
静止
平衡(F合=0)
匀速直线运动
匀变速运动
(F合≠0)
匀变速直线运动—加速、减速
高中物理压轴题05 带电粒子在电场中运动(解析版)

压轴题05带电粒子在电场中的运动1.本专题是电场的典型题型,包括应用静电力的知识解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于电场的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:电场力的性质、电场力能性质、带电粒子在电场中的平衡、加速、偏转等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型静电场的性质,电容器的动态分析,电场中的图像问题,带电粒子在电场中的运动问题,力电综合问题等。
考向一:静电场力的性质1.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)表达式:F=k q1q2r2,式中k=9.0×109N·m2/C2,叫做静电力常量.(3)适用条件:真空中的点电荷.①在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式;②当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷.(4)库仑力的方向:由相互作用的两个带电体决定,且同种电荷相互排斥,异种电荷相互吸引.(5)应用库仑定律的四条提醒a.在用库仑定律公式进行计算时,无论是正电荷还是负电荷,均代入电量的绝对值计算库仑力的大小.b.两个点电荷间相互作用的库仑力满足牛顿第三定律,大小相等、方向相反.c.库仑力存在极大值,由公式F=k q1q2r2可以看出,在两带电体的间距及电量之和一定的条件下,当q1=q2时,F最大.d.对于两个带电金属球,要考虑金属球表面电荷的重新分布.2.电场强度的三个公式的比较电场强度――――→点电荷电场E =k Q r 2―――→任何电场E =F q ―――→匀强电场E =U d ――→叠加平行四边形定则3.电场强度的计算与叠加在一般情况下可由上述三个公式计算电场强度,但在求解带电圆环、带电平面等一些特殊带电体产生的电场强度时,上述公式无法直接应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中运动常见题型1. “带电粒子在匀强磁场中的圆周运动”的范围型问题例1如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。
要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域?【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相交于O/即为该临界轨迹的圆心。
临界半径R0由d Cos θR R 00=+ 有: θ+=Cos 1dR 0; 故粒子必能穿出EF 的实际运动轨迹半径R ≥R0即:θ+≥=Cos 1d qB m v R 0 有: )Cos 1(m qBdv 0θ+≥ 。
由图知粒子不可能从P 点下方向射出EF ,即只能从P 点上方某一区域射出;又由于粒子从点A 进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG 直线上方射出;由此可见EF 中有粒子射出的区域为PG ,且由图知:θ+θ+θ=θ+θ=cot d Cos 1dSin cot d Sin R PG 0。
【总结】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
例2如图9-11所示S 为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m 、带电-e 的电子,MN 是一块足够大的竖直挡板且与S 的水平距离OS =L ,挡板左侧充满垂直纸面向里的匀强磁场; ①若电子的发射速率为V0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件? ②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?③若磁场的磁感应强度为B ,从S 发射出的电子的速度为m eBL2,则档板上出现电子的范围多大?图9-8 图9-9 图9-10图9-11 图9-12【解析】①要使电子一定能经过点O ,即SO 为圆周的一条弦,则电子圆周运动的轨道半径必满足2LR ≥,由2L eB mv 0≥ 得:eL mv 2B 0≤②要使电子从S 发出后能到达档板,则电子至少能到达档板上的O 点,故仍有粒子圆周运动半径2LR ≥, 由2L eB mv 0≥ 有:m 2eBLv 0≥③当从S 发出的电子的速度为m eBL 2时,电子在磁场中的运动轨迹半径L2qB mv R /==作出图示的二临界轨迹,故电子击中档板的范围在P1P2间;对SP1弧由图知L 3L )L 2(OP 221=-= 对SP2弧由图知L 15L )L 4(OP 222=-= 【总结】本题利用了动态园法寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
2. “带电粒子在匀强磁场中的圆周运动”的极值型问题寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值。
例3图9-13中半径r =10cm 的圆形区域内有匀强磁场,其边界跟y 轴在坐标原点O 处相切;磁场B =0.33T 垂直于纸面向内,在O 处有一放射源S 可沿纸面向各个方向射出速率均为v=3.2×106m/s 的α粒子;已知α粒子质量为m=6.6×10-27kg ,电量q=3.2×10-19c ,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t 各多少?【解析】α粒子在匀强磁场后作匀速圆周运动的运动半径:r 2m 2.0qB m vR ===α粒子从点O 入磁场而从点P 出磁场的轨迹如图圆O/所对应的圆弧所示,该弧所对的圆心角即为最大偏转角θ。
由上面计算知△SO/P 必为等边三角形,故θ=60°此过程中粒子在磁场中运动的时间由即为粒子在磁场中运动的最长时间。
【总结】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。
例4一质量m 、带电q 的粒子以速度V0从A 点沿等边三角形ABC 的AB 方向射入强度为B 的垂直于纸面的圆形匀强磁场区域中,要使该粒子飞出磁场后沿BC 射出,求圆形磁场区域的最小面积。
【审题】由题中条件求出粒子在磁场中作匀速圆周运动的半径为一定,故作出粒子沿AB 进入磁场而从BC 射出磁场的运动轨迹图中虚线圆所示,只要小的一段圆弧PQ 能处于磁场中即能完成题中要求;故由直径是圆的最大弦可得圆形磁场的最小区域必为以直线PQ 为直径的圆如图中实线圆所示。
【解析】由题意知,圆形磁场区域的最小面积为图中实线所示的圆的面积。
∵△ABC 为等边三角形,故图中α=30°则:qB m v 3RCos 2PQ r 20=α==故最小磁场区域的面积为22222B q 4v m 3r S π=π=。
【总结】根据轨迹确定磁场区域,把握住“直径是圆中最大的弦”。
3. “带电粒子在匀强磁场中的圆周运动”的多解型问题 抓住多解的产生原因:(1)带电粒子电性不确定形成多解。
(2)磁场方向不确定形成多解。
(3)临界状态不唯一形成多解。
(4)运动的重复性形成多解。
例5如图9-15所示,第一象限范围内有垂直于xoy 平面的匀强磁场,磁感应强度为B 。
质量为m ,电量大小为q 的带电粒子在xoy 平面里经原点O 射入磁场中,初速度v0与x 轴夹角θ=60o ,试分析计算:(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角多大? (2)带电粒子在磁场中运动时间多长?【解析】粒子运动半径:。
如图9-16,有带电粒子沿半径为R 的圆运动一周所用的时间为(1)若粒子带负电,它将从x 轴上A 点离开磁场,运动方向发生的偏转角A 点与O 点相距若粒子带正电,它将从y 轴上B 点离开磁场,运动方向发生的偏转角B 点与O 点相距(2)若粒子带负电,它从O 到A 所用的时间为若粒子带正电,它从O 到B 所用的时间为【总结】受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度下,正负粒子在磁场中运动轨迹不同,导致形成双解。
图9-15 图9-16例6一质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( )A.B.C.D.【解析】当负电荷所受的洛仑兹力与电场力方向相同时,根据牛顿第二定律可知, 得此种情况下,负电荷运动的角速度为当负电荷所受的洛仑兹力与电场力方向相反时,有,得此种情况下,负电荷运动的角速度为 应选A 、C 。
【总结】本题中只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成双解。
例7如图9-17甲所示,A 、B 为一对平行板,板长为L ,两板距离为d ,板间区域内充满着匀强磁场,磁感应强度大小为B ,方向垂直纸面向里,一个质量为m ,带电量为+q 的带电粒子以初速,从A 、B 两板的中间,沿垂直于磁感线的方向射入磁场。
求在什么范围内,粒子能从磁场内射出?【解析】如图9-17乙所示,当粒子从左边射出时,若运动轨迹半径最大,则其圆心为图中O1点,半径。
因此粒子从左边射出必须满足。
由于r v mBqv 200 所以 即:当粒子从右边射出时,若运动轨迹半径最小,则其圆心为图中O2点,半径为。
由几何关系可得:图9-17因此粒子从右边射出必须满足的条件是,即所以当或时,粒子可以从磁场内射出。
【总结】本题只问带电粒子在洛伦兹力作用下飞出有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180o从入射界面这边反向飞出,于是形成多解,在解题时一定要考虑周全。
例8如图9-18所示,在x轴上方有一匀强电场,场强为E,方向竖直向下。
在x轴下方有一匀强磁场,磁感应强度为B,方向垂直纸面向里。
在x轴上有一点P,离原点的距离为a。
现有一带电量+q的粒子,质量为m,从y轴上某点由静止开始释放,要使粒子能经过P点,其初始坐标应满足什么条件?(重力作用忽略不计)图9-18【解析】(1)粒子从y轴上由静止释放,在电场加速下进入磁场做半径为R的匀速圆周运动。
由于粒子可能偏转一个、二个……半圆到达P点,故①设释放处距O的距离为y1,则有: ②③由①②③式有【总结】带电粒子在部分是磁场,部分是电场的空间运动时,运动往往具有重复性,因而形成多解。
4 带电粒子在几种“有界磁场”中的运动(1)带电粒子在环状磁场中的运动例9核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。
如图9-19所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。
设环状磁场的内半径为R1=0.5m,外半径10C/㎏,中空区域内带电粒子具有各R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×7个方向的速度。
试计算:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。
(2)所有粒子不能穿越磁场的最大速度。
图9-19【解析】(1)轨迹如图9-20所示由图中知2122121)(r R R r -=+,解得m r 375.01=由1211r V m BqV =得sm m Bqr V /105.1711⨯==所以粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度为s m V /105.171⨯=。
(2)当粒子以V2的速度沿与内圆相切方向射入磁场且轨道与外圆相切时,则以V1速度沿各方向射入磁场区的粒子都不能穿出磁场边界,如图9-21所示。
由图中知m R R r 25.02122=-=由2222r V m BqV =得sm m Bqr V /100.1722⨯==所以所有粒子不能穿越磁场的最大速度s m V /100.172⨯=(2)带电粒子在有“圆孔”的磁场中运动例10如图9-22所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r ,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B 。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q 的粒子,从紧靠内筒且正对狭缝a 的S 点出发,初速为零。