分析滚动轴承的设计计算
滚动轴承的受力分析载荷计算失效和计算准则

滚动轴承的受力分析载荷计算失效和计算准则滚动轴承是一种常用的机械元件,它能够在高速旋转的条件下承受并转移载荷。
在设计和应用滚动轴承时,关键的工作之一是进行受力分析和载荷计算,以确保轴承能够正常工作并减少失效的风险。
本文将从受力分析、载荷计算、失效和计算准则几个方面详细介绍滚动轴承。
一、滚动轴承的受力分析滚动轴承受到的力主要有径向力和轴向力两种。
径向力是垂直于轴线的力,它可以分为径向载荷和径向惯性力两部分。
轴向力是平行于轴线的力,它可以分为轴向载荷和轴向惯性力两部分。
受力分析的目的是确定轴承所受的载荷大小和方向,以便选择适当的轴承型号和设计。
二、滚动轴承的载荷计算载荷计算是根据受力分析的结果,确定轴承承受的载荷大小和方向。
在实际应用中,轴承承受的载荷通常包括静载荷和动载荷两部分。
静载荷是指静止条件下轴承所承受的最大力,动载荷是指旋转条件下轴承所承受的最大力。
根据载荷计算的结果,可以选择适当的轴承并确定其使用寿命。
滚动轴承的失效可以分为疲劳失效和磨损失效两种。
疲劳失效是由于载荷作用下轴承材料的疲劳破裂引起的,磨损失效是由于轴承表面的磨损引起的。
根据滚动轴承的失效机理,制定了一系列的计算准则,用于评估轴承的寿命和失效风险。
常用的滚动轴承计算准则包括基本额定寿命、等效动载荷、寿命调整系数和动接触角等。
基本额定寿命是指在特定载荷下,轴承能够连续工作的寿命。
等效动载荷是指在复杂工况下,将径向载荷和轴向载荷转化成等效的径向载荷。
寿命调整系数则考虑了不同工作条件下的调整因素,用于修正基本额定寿命。
动接触角是指滚动元件与外圈之间的接触角度,它可以影响轴承的刚度和额定寿命。
综上所述,滚动轴承的受力分析、载荷计算、失效和计算准则是设计和应用滚动轴承时的重要内容,它们能够帮助我们选择适当的轴承型号、确保轴承的使用寿命并减少失效的风险。
在实际工程中,我们应该根据具体的工作条件和要求,进行合理的受力分析和载荷计算,并遵循相关计算准则,以确保滚动轴承的安全可靠运行。
浙师大 滚动轴承实验报告

Fa 2 Fd 2
当时,同前理,被“放松”的轴承 1 只受其本身派生的轴向力 Fd1,即
(11)
Fa1 Fd 1
而被“压紧”的轴承 2 所受的总轴向力为
(12)
Fa 2 Fd 1 Fae
(13)
图 7 接触球轴承和圆锥滚子轴承轴向的分析 综上可知, 计算角接触球轴承和圆锥滚子轴承所受轴向力的方法可以归结为: 先通过派生轴向力及外加轴向载荷的计算与分析,判定被.‘放松”或被“压紧” 的轴承; 然后确定被 “放松” 轴承的轴向力仅为其本身派生的轴向力, 被 “压紧” 轴承的轴向力则为除去本身派生的轴向力后其余各轴向力的代数和。 轴承反力的径向分力在轴心线上的作用点叫轴承的压力中心。图 7 a)b)两 种安装方式, 对应两种不同的压力中心的位置。但当两轴承支点间的距离不是很 小时,常以轴承宽度中点作为支点反力的作用位置,这样计算起来比较方似于滚动体的受载情况,可用图 6 示意地描述。 (三)滚动轴承组合设计计算 左、右滚动轴承可轴向移动,均装有轴向载荷传感器,可通过电脑或数显测试 并计算单个滚动轴承轴向载荷与总轴向载荷的关系; 进行滚动轴承组合设计计算。 1、滚动轴承的当量动载荷 滚动轴承的基本额定动载荷是在一定的运转条件下确定的,如载荷条件为: 向心轴承仅承受纯径向载荷 Fr,推力轴承仅承受纯轴向载荷 Fa。实际上,轴承 在许多应用场合,常常同时承受径向载荷 Fr 和轴向载荷 Fa。因此,在进行轴承 寿命计算时, 必须把实际载荷转换为确定基本额定动载荷的载荷条件相一致的当 量动载荷,用 P 表示。这个当量动载荷,对于以承受径向载荷为主的轴承,称为 径向当量动载荷,用 Pr 表示;对于以承受轴向载荷为主的轴承,称为轴向当量 动载荷,用 Pa 表示。当量动载荷 P(Pr 或 Pa)的一般计算公式为
轴承设计寿命计算公式汇总

一、滚动轴承承载能力的一般说明滚动轴承的承载能力与轴承类型和尺寸有关。
相同外形尺寸下,滚子轴承的承载能力约为球轴承的1.5~3倍。
向心类轴承主要用于承受径向载荷,推力类轴承主要用于承受轴向载荷。
角接触轴承同时承受径向载荷和轴向载荷的联合作用,其轴向承载能力的大小随接触角α的增大而增大。
二、滚动轴承的寿命计算轴承的寿命与载荷间的关系可表示为下列公式:或式中:──基本额定寿命(106转);──基本额定寿命(小时h);C──基本额定动载荷,由轴承类型、尺寸查表获得;P──当量动载荷(N),根据所受径向力、轴向力合成计算;──温度系数,由表1查得;n──轴承工作转速(r/min);──寿命指数(球轴承,滚子轴承)。
三、温度系数f t当滚动轴承工作温度高于120℃时,需引入温度系数(表1)表1 温度系数工作温度/℃<120 125 150 175 200 225 250 300f t 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60四、当量动载荷当滚动轴承同时承受径向载荷和轴向载荷时,当量载荷的基本计算公式为式中:P——当量动载荷,N;——径向载荷,N;——轴向载荷,N;X——径向动载荷系数;Y——轴向动载荷系数;——负荷系数五、载荷系数f p当轴承承受有冲击载荷时,当量动载荷计算时,引入载荷系数(表2)表2 冲击载荷系数f p载荷性质f p举例无冲击或轻微冲击 1.0~1.2 电机、汽轮机、通风机、水泵等中等冲击 1.2~1.8 车辆、机床、起重机、内燃机等强大冲击 1.8~3.0 破碎机、轧钢机、振动筛等六、动载荷系数X、Y表3 深沟球轴承的系数X、Y表4 角接触球轴承的系数X、Y表5 其它向心轴承的系数X、Y 表6 推力轴承的系数X、Y七、成对轴承所受轴向力计算公式:角接触球轴承:圆锥滚子轴承:式中e为判断系数,可由表4查出;Y应取表5中的数值。
●正排列:若则若则●反排列:若则若则八、成对轴承当量动载荷根据基本公式:式中:P——当量动载荷,N;——径向载荷,N;——轴向载荷,N;X——径向动载荷系数;Y——轴向动载荷系数;——负荷系数。
机械设计(9.7.1)--滚动轴承的静强度计算

9-7 滚动轴承的静强度计算 一、失效形式
静止、缓慢旋转(n <10r/min)
短期过载 滚动体与内、外圈塑性变形 失效形式基本额定静载荷C 0:
受最大载荷的滚动体和滚道处产生的永久
变形的总和为滚动体直径的1/10000时的载荷。
一、失效形式
载荷变动大,受冲击载荷作用的旋转轴
承按动载荷作用进行寿命计算,验算静强度
1.承受纯径向载荷轴承
2.承受纯轴向载荷轴承R
P =0A
P =0当量静载荷
二、当量静载荷P 0
3.同时承受径向载荷和轴向载荷A
Y R X P 000+=
三、计算公式
000S P C 按静载荷选择轴承公式深 深 深 深 深 A / R≤ 0.8
A / R > 0.8X 0
Y 0X 0Y 01
00.60.5X 0
Y 0深 深 深
深 深 深 C 深0.50.46AC 深
0.38
B 深0.26
深 深 深 深 深 深
设计手册。
机械设计(9.5.1)--滚动轴承寿命计算公式

一、基本概念
1.轴承的寿命
在一定载荷作用下,轴承运转到任一滚动体或内、外圈滚道上出现疲劳点蚀前所经历的总转数。
寿命数据离散性非常大。
2.一批轴承的寿命
对于一批同型号的滚动轴承,在一定条件下进行疲劳试
验,对试验数据统计处理后,得
出轴承的疲劳破坏概率与转数间
的关系。
一、基本概念
3.基本额定寿命
一批同型号的轴承,在同一条件下运转,当有10%的轴承产生疲劳点蚀时,
轴承所经历的总转数L
(单位106转)或工作
10
(单位h),称为滚动轴承的基本小时数L
10h
额定寿命。
4.基本额定动载荷
=1(106)时轴承能
基本额定寿命L
10
够承受极限载荷称为基本额定动载荷,用C
表示。
反映了轴承承载能力的大小。
二、计算公式
L 10/106r 0151015C
P /N r 10,1610101010εε
εε
⎪⎭⎫ ⎝⎛=====P C L C L P C P L L P 时
当常数
二、计算公式
h
6010r 10t 6h 106t 10εε⎪⎭⎫ ⎝⎛=⎪⎭
⎫ ⎝⎛=P C f n L P C f
L 当轴承的预期寿命取定时,可求出轴承应具有的基本额定动载荷
9-5 滚承寿命算公式 三、不同可靠度下滚承寿命算
动轴计动轴计
三、不同可靠度下滚动轴承寿命计算
10
1L L n α=
可靠度R / %
909596979899α1 1.00.620.530.440.330.21。
机械设计基础第节滚动轴承轴向力的计算

机械设计基础第节滚动轴承轴向力的计算滚动轴承是一种常用的机械元件,用于支撑与传递轴向载荷和径向载荷。
在机械设计中,计算滚动轴承轴向力是非常重要的一部分,涉及到轴承的选型和设计。
本文将介绍滚动轴承轴向力的计算方法。
一、轴向载荷的种类在机械系统中,轴向载荷分为静载荷和动载荷两种。
1.静载荷:轴向载荷恒定不变的情况下的载荷称为静载荷。
静载荷通常由设备的自重、安装在轴上的其他零件的重量、负荷的重量等构成。
2.动载荷:轴向载荷大小在运行过程中有变化的载荷称为动载荷。
动载荷通常通过计算得出,可以是来自于负载的力或力矩引起的轴向力。
二、静载荷的计算静载荷的计算主要包括扭矩产生的轴向力、径向载荷以及其他附加载荷的计算等。
1.扭矩产生的轴向力:扭矩产生的轴向力是由于传递扭矩而引起的轴向力。
一般情况下,扭矩产生的轴向力可以通过计算得出,计算公式如下:Fa=(KT×Md)/L其中,Fa为扭矩产生的轴向力,KT为轴向力系数,Md为传递的扭矩,L为轴承的有效传递长度。
2.径向载荷:径向载荷是指垂直于轴向的力。
径向载荷通常由设备的自重、传动装置的重量、负载的重量等构成。
径向载荷的计算需要考虑设备的结构和工作环境等因素。
3.其他附加载荷:其他附加载荷通常包括轴向预紧力、温度变化引起的载荷、振动引起的载荷等。
这些附加载荷需要在设计过程中进行综合考虑。
三、动载荷的计算动载荷的计算需要考虑到设备在运行中的工况、运行速度、负载类型等因素。
常见的动载荷计算方法有以下几种:1.动载荷的估计:根据设备的工作环境和使用条件,根据经验公式或实验结果进行动载荷的估计。
2.动载荷的测量:通过测量设备在运行过程中的实际载荷,得到动载荷的大小。
3.动载荷的模拟计算:通过建立设备的动态模型,对工作过程进行模拟计算,得到动载荷的大小。
四、滚动轴承轴向力的选型在计算得到滚动轴承的轴向力后,还需要根据轴承的轴向载荷容量、速度等特性进行选型。
轴向载荷容量是指滚动轴承在承受轴向力时的极限载荷能力,通常通过轴向载荷容量图进行选型。
轴承设计寿命计算公式

一、滚动轴承承载能力的一般说明滚动轴承的承载能力与轴承类型和尺寸有关。
相同外形尺寸下,滚子轴承的承载能力约为球轴承的1.5~3倍。
向心类轴承重要用于承受径向载荷,推力类轴承重要用于承受轴向载荷。
角接触轴承同时承受径向载荷和轴向载荷的联合作用,其轴向承载能力的大小随接触角α的增大而增大。
二、滚动轴承的寿命计算轴承的寿命与载荷间的关系可表达为下列公式:或式中:──基本额定寿命(106转);──基本额定寿命(小时h);C──基本额定动载荷,由轴承类型、尺寸查表获得;P──当量动载荷(N),根据所受径向力、轴向力合成计算;──温度系数,由表1查得;n──轴承工作转速(r/min);──寿命指数(球轴承,滚子轴承)。
三、温度系数f t当滚动轴承工作温度高于120℃时,需引入温度系数(表1)表1 温度系数工作温度/℃<120 125 150 175 200 225 250 300f1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60t四、当量动载荷当滚动轴承同时承受径向载荷和轴向载荷时,当量载荷的基本计算公式为式中:P——当量动载荷,N;——径向载荷,N;——轴向载荷,N;X——径向动载荷系数;Y——轴向动载荷系数;——负荷系数五、载荷系数f p当轴承承受有冲击载荷时,当量动载荷计算时,引入载荷系数(表2)表2 冲击载荷系数f p载荷性质f p举例无冲击或轻微冲击 1.0~1.2 电机、汽轮机、通风机、水泵等中档冲击 1.2~1.8 车辆、机床、起重机、内燃机等强大冲击 1.8~3.0 破碎机、轧钢机、振动筛等六、动载荷系数X、Y表3 深沟球轴承的系数X、Y表4 角接触球轴承的系数X、Y表5 其它向心轴承的系数X、Y 表6 推力轴承的系数X、Y七、成对轴承所受轴向力计算公式:角接触球轴承:圆锥滚子轴承:式中e为判断系数,可由表4查出;Y应取表5中的数值。
●正排列:若则若则●反排列:若则若则八、成对轴承当量动载荷根据基本公式:式中:P——当量动载荷,N;——径向载荷,N;——轴向载荷,N;X——径向动载荷系数;Y——轴向动载荷系数;——负荷系数。
滚动轴承设计计算

(h)
通式
例6
6212轴承,承受径向力FR=5500N的平稳载荷,转速n=1250r/min,正常温度,试求寿命Lh 。
解: ∵纯径载 ∴P= FR=5500 N
C=47.8 KN
∵ 球轴承∴ ε= 3
查手册 :
∵ 正常温度平稳载荷 ∴ fT=1; fP=1
例7:轴径 d=50 mm, 纯径向载荷FR=6000N,载荷平稳,常温下工作,转速 n=1250 r/min, 预期寿命L h= 5000h.试选择此轴承.
二、滚动轴承的应力分析
三、滚动轴承的失效形式和计算准则
一、滚动轴承的载荷分析
§2 滚动轴承的受力分析、失效和计算准则
1)向心轴承:
FR0max
在径向力Fr的作用下
深沟球 60000
圆柱 滚子 N0000
半圈滚动体受载
各滚动体受力不均 受的最大力为 FR0max
Fr
一、滚动轴承的载荷分析—
载荷平稳∴fP=1;常温 ∴fT=1; P=X FR +YFA =4×0.4+3.55×1.7=7.64kN
∴30204不适用
再选30304查手册C=33kN>C /=31.5KN,可以吗? 不可以。∵此时e、x、Y、P值均发生了变化。
选轴承30304
查表:Cr =33 kN X=0.4 Y=2 e=0.3
二、轴承的寿命计算:
(r)
球轴承ε= 3
滚子轴承ε=10/ 3
且:载荷平稳;
常温 <1000C
可靠度90%;
对向心、向心推力轴承是纯径向力; 对推力轴承是纯轴向力。
C — 基本额定动载荷
P — 轴承所受动载荷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析滚动轴承的设计计算
本文通过对深沟球轴承安全接触角和轴向承载能力的设计计算,确认其在轨道车辆门系统驱动机构上的应用可行性。
标签:深沟球轴承;轴向承载;接触角;应力集中
1.概述
深沟球轴承主要用以承受径向载荷,同时也能承载一定的轴向载荷。
深沟球轴承在承受轴向载荷时,钢球与内、外圈沟道之间会形成一定的接触角。
如载荷过大,则接触椭圆将被挡边截去一部分,因而在钢球与挡边附近产生应力集中,导致轴承早期疲劳失效。
本文旨在通过对北京地铁9号线侧门系统的驱动机构力学模型进行分析计算丝杆端支撑座内轴承的受力情况,从而确定将原先方案的一对角接触球轴承更改为一对深沟球轴承后,系统能否满足使用要求、避免门系统驱动机构的丝杆轴承在改用深沟球轴承后出现上述提前失效的现象,进行以下校核计算。
[1~6]
2.计算极限轴向载荷
2.1丝杆支撑受力分析:
驱动机构的双头丝杆有三个支撑,分别为靠近电机侧的左支撑、中间支撑和右支撑。
其中,丝杆在中间支撑和右支撑位置只受周向固定,轴向没有限位,为自由状态,可适应丝杆热胀冷缩时产生的长度变化。
我们假设丝杆承受的最大开/关门力300N全部作用在左支撑上,通过左支撑内的两只深沟球轴承传递给机构安装底板。
丝杆轴向、径向受力分析如示意图(a)所示。
由图(a)可知,丝杆的升角为45.52762°,丝杆承受轴向力为300N时,其径向分力约为295N。
丝杆及其上零件承受的重力作用在左支撑轴承上的垂向分力约为80N。
据此,作用在左支撑深沟球上的轴向载荷为Fa=300N,径向载荷Fr=375N。
2.2轴承的轴向承载能力计算
深沟球轴承6202-2Z 的结构尺寸及相关参数如下:(GB/T 276-1994)
轴承外径D=35mm,轴承内径d=15 mm,轴承宽度B=11 mm;内圈挡边直径d2=21.6 mm,外圈挡边直径D2=29.4 mm,内圈沟道直径di=19.3mm,外圈沟道直径D3=31.3mm,外圈沟道曲率系数fe = 0.525;内圈沟道曲率系数fi = 0.515;径向游隙ur = 0.018;球径Dw=5.953mm,钢球数Z=8;Cr=7.65kN,C0r=3.72kN。
相关尺寸关系图,如示意图(b)。
其中,α是接触椭圆到达挡圈挡边处的安全接触角(压力角)
(a)丝杆受力分析
(b)轴承尺寸关系图
①确定θe 与θi
cosθe = 1-(D3-D2)/Dw =0.6808,θe = 47.1°
cosθi = 1-(d2-di)/Dw =0.6136,θi = 52.1°
②确定初始接触角α0
q = fe + fi – 1 = 0.04(曲率中心距参数)
cosα0= 1- ur /(2qDw)= 0.9622,α0 = 15.8°
③确定安全接触角α
根据[5]第11章(P144~145),轴承的相关参数如下:
Re = D3 / 2 = 15.65mm,fm =(fe + fi)/2=0.52,查表3-1[5]得,c= 4.517E-04 Σρ=4/Dw –1/(fmDW)1/Re = 0.288
F(ρ)= [1/Re - 1/(fmDW)]/ Σρ = 0.889,查表1-1[5]得,ea=0.07017,
代入式11-14[5]有,sin(θe –α)≥[2 ea /(DWΣρ)1/3]{[(2fm-1)/c][(cosα0/cosα)-1]}1/2sin(47.1°–α)≥[2×0.07017/(5.953×0.288)1/3]{[(2×0.52-1)/0.0004517]×[(cos15.8°/ cosα)-1]}1/2= 1.1034 [(0.9622/ cosα)-1]1/2
利用上式进行迭代计算,得安全接触角α ≤ 27.9°,将其代入下式FaL ≤ {[(2fm-1)/c][(cosα0/cosα)-1]}3/2 Z DW2 sinα={[(2×0.52-1)/0.288][(cos15.8°/ cos27.9°)-1]}3/2×8×5.953 2 ×sin27.9°= 2872.1(N)= 2.87(kN)即接触椭圆不爬出外圈挡圈的极限轴向载荷为2.87 kN。
(注:①、②计算公式[1])
承载能力校核确定深沟球轴承的P0
根据[5]第9章,深沟球轴承的当量静载荷
查[5]表9-1,深沟球轴承的X0=0.6,Y0 =0.5,则P0 = 0.6 Fr + 0.5 Fa = Fr = 375 N,故取P0 = 375 N。
从而,可知C0r = 3720 N >> P0(375 N)
根据上述的计算与分析可知,北京地铁9号线侧门驱动机构采用深沟球轴承6202-2Z代替初始方案所选的角接触球轴承,轴承的轴向承载能力足够。
近十年的在线运营中,此处没有出现过因轴承边缘应力集中而导致深沟球轴承的寿命明显缩短的现象。
3.结论
深沟球轴承在轻载工况下,可替代角接觸球使用。
正确地分析计算、合理地选用适合的轴承,既可以降低结构成本,也能简化机构,如果采用双面有密封防尘盖的深沟球轴承,还可以实现在整个大修周期内的免维护。
参考文献:
[1] .董玉雪等.深沟球轴承安全接触角与轴向承载能力的计算.轴承.2007年5期
[2] .杨晓蔚.国内外深沟球轴承的设计方法的对比.轴承.2010年2期
[3] .邓四二、贾群义.滚动轴承设计原理.北京:中国标准出版社,2008
[4] .刘家文译、埃斯曼等著.滚动轴承设计与应用手册.武汉:华中工学院出版社.1985
[5] .黄志强译、冈本纯三著.球轴承的设计计算.北京:机械工业出版社,2003
[6] .张松林主编.最新轴承手册.北京:电子工业出版社,2007。