(完整)全等三角形提高练习精选27题及答案
(完整版)全等三角形基础练习及答案

全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。
全等三角形题库(精品)(70题)-含答案

全等三角形题库(70题)一、解答题(本大题共70小题,共560.0分)1.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD.AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何.【答案】解:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,{BD=AC∠ABE=∠ACF AB=CG,∴△ABD≌△GCA(SAS),∴AD=GA,(2)结论:AG⊥AD.理由:∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.【解析】(1)先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD= GA,∠BAD=∠G;(2)结论:AG⊥AD.由(1)可以得出∠GAD=90°,进而得出AG⊥AD.本题考查了全等三角形的判定及性质的运用、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会利用等量代换证明垂直,属于中考常考题型.2.如图,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;【答案】解:作DM⊥AF于M,EN⊥AF于N,∵BC⊥AF,∴∠BFA=∠AMD=90°,∵∠BAD=90°,∴∠1+∠2=∠1+∠B=90°,∴∠B=∠2,在△ABF与△DAM中,{∠BFA=∠AMD ∠B=∠2AB=AD,∴△ABF≌△DAM(AAS),∴AF=DM,同理,△ACF≌△EAN(AAS),AF=EN,∴EN=DM,∵DM⊥AF,EN⊥AF,∴∠GMD=∠GNE=90°,在△DMG与△ENG中,{∠DMG =∠ENG ∠DGM =∠EGN DM =EN, ∴△DMG≌△ENG(AAS),∴DG =EG ,即点G 是DE 的中点.【解析】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.作DM ⊥AF 于M ,EN ⊥AF 于N ,根据余角的性质得到∠B =∠2,根据全等三角形的性质得到AF =DM ,同理AF =EN ,求得EN =DM ,由全等三角形的性质得到DG =EG ,于是得到点G 是DE 的中点.3. 如图,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.【答案】解:猜想:DE +BF =EF.证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF = 12∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,{∠4=∠1AB =AD ∠ABG =∠ADE, ∴△AGB≌△AED(ASA),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,{AG =AE ∠GAF =∠EAF AF =AF, ∴△AGF≌△AEF(SAS),∴GF =EF ,∴DE +BF =EF .【解析】本题考查了全等三角形的判定与性质,解题的关键是作辅助角,将DE 和BF 放在一起,便于数量关系的猜想和证明.通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.4. 已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD≌△ACE ;②直接判断结论BC =DC +CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.【答案】解:(1)①∵△ABC 和△ADE 是等边三角形,∴∠BAC =∠DAE =60°,AB =BC =AC ,AD =DE =AE .∴∠BAC −∠DAC =∠DAE −∠DAC ,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;【解析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出BC= DC+CE;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE= AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD−AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+DF=AB+BE+DF=AB+2BE,∴AD−AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,{BH=BG∠OBH=∠OBG OB=OB,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,{∠DOH=∠DOF OD=OD∠ODH=∠ODF,∴△ODH≌△ODF(ASA),∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【解析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2.(1)求证:△ABC≌△ADE;(2)找出图中与∠1、∠2相等的角(直接写出结论,不需证明).【答案】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE,∴△ABC≌△ADE(SAS);(2)解:∵△ABC≌△ADE,∴∠B=∠D,∵∠AMB=∠DMF,∴∠1=∠MFD,∵∠MFD=∠NFC,∴∠1=∠NFC,∴与∠1、∠2相等的角有∠NFC,∠MFD.【解析】(1)根据等式的性质可得∠BAC=∠DAE,然后利用SAS判定△ABC≌△ADE;(2)利用三角形内角和定理可得∠1=∠MFD,再由对顶角相等可得∠1=∠NFC.此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD−BE;(3)当直线MN绕点C旋转到图(3)的位置时,请写出DE,AD,BE之间的等量关系.【答案】解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE−CD=AD−BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE−AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD−CE=BE−AD.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE−CD=AD−BE;(3)DE=BE−AD,与(2)同理,即可证明:DE=BE−AD.8.如图,已知∠AOB=∠COD=90°,AB=CD,OA=OC.求证:(1)△AOB≌△COD(2)DE=BF.【答案】证明:(1)∵∠AOB=∠COD=90°,∴在Rt△AOB和Rt△COD中,{AB=CDOA=OC,∴Rt△AOB≌Rt△COD(HL),即△AOB≌△COD;(2)∵△AOB≌△COD∴OD=OB,∠A=∠C,∵∠AOB=∠COD=90°∴∠AOB−∠EOF=∠COD−∠EOF,即∠AOE=∠COF在△AOE和△COF中,{∠AOE=∠COF OA=OF∠A=∠C,∴△AOE≌△COF(ASA),∴OE=OF,∵OD=OB,∴OD−OE=OB−OF,即DE=BF.【解析】(1)根据题意,利用HL定理可以证明结论成立;(2)根据(1)中的结论,再根据三角形全等的性质和判定,可以证明结论成立.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用数形结合的思想解答.9. 以点A 为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD ,CE .(1)试说明:BD =CE ;(2)延长BD 交CE 于点F ,求∠BFC 的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】解:(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,∠BAD =∠EAC =90°,AD =AE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE .(2)∵△ADB≌△AEC ,∴∠ACE =∠ABD ,而在△CDF 中,∠BFC =180°−∠ACE −∠CDF ,又∵∠CDF =∠BDA ,∴∠BFC =180°−∠DBA −∠BDA =∠DAB =90°.(3)BD =CE 成立,且两线段所在直线互相垂直,即∠BFC =90°.理由如下:∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠EAD =90°,∵∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAD =∠CAE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE ,∠ACE =∠DBA ,【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可以得到∠BFC= 180°−∠ACE−∠CDF=180°−∠DBA−∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.10.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【答案】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵{AE=AB∠EAC=∠BAF AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,所以EC⊥BF.【解析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF 是证明的关键,也是解答本题的难点.11.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFG AF=AF,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA ∠CGA=∠CDA AG=AD,∴△CGA≌△CDA(AAS),∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【解析】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据题意和题目中的条件可以找出△BAC≌△DAE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.12.如图1,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,作FG⊥BC于点G;(1)求证:BE=CG(2)探究线段BE、EN、DN间的等量关系,并说明理由;(3)如图2,当点E运动到BC的中点时,若AB=6,求MN的长.【答案】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,{∠ABE=∠EGF ∠BAE=∠GEF AE=EF,∴△ABE≌△EGF(AAS),∴AB=EG,∴BE=CG.(2)解:结论:EN=BE+DN.理由:如图1中,延长EB到K,使得BK=DN.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABC=∠ABK=90°,∵DN=BK,∴△ADN≌△ABK(SAS),∴AK=AN,∠BAK=∠DAN,∵EA=EF,∠AEF=90°,∴∠EAF=45°,∴∠KAE=∠BAK+∠BAE=∠DAN+∠BAE=45°,∴∠EAK=∠EAN=45°,∵AE=AE,∴△EAK≌△EAN(SAS),∴EN=EK,∵EK=BK+BE=DN+BE,∴EN=BE+DN.(3)解:如图2中,作FK⊥AB于K,交CD于J.∵BE=CE=3,∴FG=BE=CG=3,∵AB//CD,∴∠FKB=∠FJC=90°,∵∠G=∠JCG=90°,∴四边形FGCJ是矩形,∵CG=FG,∴四边形FGCJ是正方形,CG=FG=3,∵EC=CG,CM//FG,∴CM=12FG=32,∴JM=CJ−CM=32,∵四边形BGFK是矩形,∴FK=BG=9,BK=FG=AK=3,∵JN//AK,∴NJAK =FJFK,∴NJ3=39,∴NJ=1,∴MN=NJ+JM=1+32=52.【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等即可解决问题.(2)结论:EN=BE+DN.如图1中,延长EB到K,使得BK=DN.构造全等三角形解决问题即可.(3)如图2中,作FK⊥AB于K,交CD于J.分别求出NJ,JM即可解决问题.此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.13.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60゜,则∠AFB=________;(2)如图2,若∠ACD=α,则∠AFB=_____________(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.【答案】解:(1)120°;(2)180°−α;(3)∠AFB=180°−α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB,∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°−∠ECB=180°−α,即∠AFB=180°−α.【解析】本题考查了全等三角形的性质和判定,三角形外角性质,三角形的内角和定理(1)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(2)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(3)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CEB+∠CBE,根据三角形内角和定理求出即可.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°−60°=120°,故答案为:120°;(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=180°−∠ACD=180°−α,故答案为:180°−α;(3)见答案.14.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】解:(1)AE=BD,AE⊥BD;(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC−∠CDE=135°−45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.【解析】【分析】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(1)结论:AE=BD,AE⊥BD.如图1中,延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD(SAS),即可解决问题;(2)结论:AD=2CM+BD,只要证明△ACE≌△BCD(SAS),即可解决问题.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)见答案.15.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,D在线段BC上,E是线段AD上一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:∠CAE=∠CBF;(2)当A、E、F三点共线时,取AF的中点G,连接CG,求证:AE2+EF2=4CG2;(3)如图3,若AC=BC=3√3,∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.【答案】(1)证明:∵△ABC,△ECF都是等腰直角三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF;(2)解:延长AC至点H,使CH=AC,连接HF,BE.由(1)得:△ACE≌△BCF,∴AE=BF,且∠CAD=∠DBF,∵∠ADB=∠CAD+∠ACD=∠DBF+∠DFB,∴∠DFB=∠ACD=90°,∴BF2+EF2=BE2,易证△CEB≌△CFH,∴BE=HF=2CG,∴BF2+EF2=BE2=4CG2;(3)解:过点F作FH⊥BC于H,如图3所示:∵△ABC是等腰直角三角形,∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAD=15°,∴∠CAE=45°−15°=30°,∴∠ACE=∠CAE=30°,∴AE=CE=CF,同(1)得:△ACE≌△BCF(SAS),∴BF=AE,∠ACE=∠BCF=30°,∴CF=BF,∴∠BCF=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=12BC=3√32,FH=√33CH=32,CF=BF=2FH=3,∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°−30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=3,∴S△DEF=S△ECD+S△CDF−S△ECF=√34×32+12×3×32−12×3×3=9√3−94.【解析】(1)证明△ACE≌△BCF(SAS),即可解决问题;(2)延长AC至点H,使CH=AC,连接HF,BE,由(1)得△ACE≌△BCF,进而得到BF2+ EF2=BE2,易证△CEB≌△CFH,即可解决问题;(3)过点F作FH⊥BC于H,如图3所示,同(1)得△ACE≌△BCF,再证明△BCF是底角为30°的等腰三角形,再求出CH,FB,CF的长,然后根据S△DEF=S△ECD+S△CDF−S△ECF 计算即可.本题属于三角形综合题,考查了等腰直角三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.平面直角坐标系中,A(a,0),B(b,b),C(0,c),且满足:√a−4+(2b−a−c)2+|b−c|=0,E、D分别为x轴和y轴上动点,满足∠DBE=45°.(1)求A、B、C三点坐标;(2)如图1,若D为线段OC中点,求E点坐标;(3)当E,D在x轴和y轴上运动时,试探究CD、DE和AE之间的关系.【答案】解:(1)∵√a−4+(2b−a−c)2+|b−c|=0,∴a=4,b=c,2b−a−c=0,∴b=4,c=4,∴点A(4,0),点B(4,4),点C(0,4);(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,∵点A(4,0),点B(4,4),点C(0,4),∴OA=OC=BC=AB=4,∵D为线段OC中点,∴CD=DO=2,∵将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∴BD=BH,∠CBD=∠HBA,CD=AH=2,∵∠DBE=45°,∴∠CBD+∠EBA=45°,∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∵OH=OA+AH=4+2=6,∴DE=EH=6−OE,∵DE2=OD2+OE2,∴(6−OE)2=4+OE2,∴OE=8,3,0);∴点E坐标为(83(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,由(2)可知:DE=EH,AH=CD,∴DE=AE+AH=AE+CD,如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴AE=AH+EH=CD+DE;如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴CD=AH=AE+EH=AE+DE.【解析】(1)由非负性可求a,b,c的值,即可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAH,可得BD=BH,∠CBD=∠HBA,CD= AH=2,由“SAS”可证△DBE≌△HBE,可得DE=EH,由勾股定理可求OE的长,即可求E点坐标;(3)分三种情况讨论,由旋转的性质,全等三角形的性质可求解.本题是四边形综合题,考查了非负性,正方形的性质,旋转的性质,全等三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.17.如图,在锐角三角形AOB中,分别以OA、OB为腰在△AOB外作等腰直角三角形OAE和等腰直角三角形OBD.(1)如图1,连接BE、AD,求证:BE=AD.(2)如图2,以O为原点、AB边上的高OC所在的直线为y轴.建立平面直角坐标系,连接ED与y轴交于点F.①若A点坐标为(n,m),请用n、m表示;E点的坐标(________,________)及D点的横坐标为________.②△AOB的面积S△AOB与△EOD的面积S△EOD有什么数量关系?请写出你的结果,并给出证明.【答案】解:(1)∵△OAE、△OBD均为等腰直角三角形,∴OD=OB,OA=OE,∠DOB=∠AOE=90°.∴∠EOA+∠AOB=∠BOD+∠AOB,即∠EOB=∠AOD.在Rt△EOB和Rt△AOD中,∴Rt△EOB≌Rt△AOD.∴BE=AD.(2)①m;−n;−m.②S△AOB=S△EOD,证明如下:如图所示:过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M.∵∠EOD+∠DOM=180°,∠EOD+∠NOB=180°,∴∠DOM=∠NOB.在△OBN和△ODM中,∴△OBN≌△ODM.∴MD=BN.又∵AO=OE,∴12AO⋅BN=12OE⋅DM,即S△AOB=S△EOD.【解析】【分析】本题主要考查三角形全等的性质与判定,等腰直角三角形的性质与判定,点的坐标的确定等知识的综合运用.(1)依据等腰直角三角形的性质可得到OD=OB,OA=OE,∠DOB=∠AOE=90°,然后依据等式的性质可证明∠EOB=∠AOD,接下来,依据SAS可证明Rt△EOB≌Rt△AOD,最后,依据全等三角形的性质可得到BE=AD.(2)①过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.先证明∠OEG=∠AOC,然后再证明△OEG≌△AOC,依据全等三角形的性质可得到OG=AC,EG=OC,从而可得到点E的坐标,接下来再证明△ODH≌△OBC.从而可得到OH=OC,故此可得到点D的横坐标;②过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M,先证明△OBN≌△ODM,从而可得到MD=BN,最后,依据三角形的面积公式求解即可.【解答】(1)见答案;(2)①如图所示:过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.∵∠EOA=90°,∴∠EOG+∠AOC=90°.又∵∠EOG+∠OEG=90°,∴∠OEG=∠AOC.在△OEG和△AOC中,∴△OEG≌△AOC.∴OG=AC,EG=OC.∵A(n,m)∴E(m,−n).∵∠DOH+∠HOB=90°,∠HOB+∠BOC=90°,∴∠DOH=∠BOC.在△ODH和△OBC中,∴△ODH≌△OBC.∴OH=OC.∴点D的横坐标为−m.故答案为:m;−n;−m;②见答案.18.已知,△ABC是等边三角形,D是直线BC上一点,以D为顶点做∠ADE=60°.DE交过C且平行于AB的直线于E,求证:AD=DE;当D为BC的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取AB的中点F,连结DF,然后证明△AFD≌△DCE.从而得到AD=DE,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:AD=DE(2)如图3、当D在BC的延长线上时,求证:AD=DE(3)当D在CB的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).【答案】(1)证明:在AB上截取AF=DC,连接FD,如图2所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB//CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图3所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB//CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDEAF=CD∠F=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图4所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB//CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE.【解析】(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD= 60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.19.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时,如图1,线段CE、BD的位置关系为______,数量关系为______;②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由;(2)如图3,如果AB≠AC∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE ⊥BC ?小明通过(1)的探究,猜想∠ACB =45°时,CE ⊥BC.他想过点A 做AC 的垂线,与CB 的延长线相交,构建图2的基本图案,寻找解决此问题的方法.小明的想法对吗?如不对写出你的结论;如对按此方法解决问题并写出理由.【答案】垂直 相等【解析】解:(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE =BD .理由:如图1,∵∠BAD =90°−∠DAC ,∠CAE =90°−∠DAC ,∴∠BAD =∠CAE .又BA =CA ,AD =AE ,∴△ABD≌△ACE (SAS)∴∠ACE =∠B =45°且CE =BD .∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,即CE ⊥BD .故答案为:垂直,相等;②都成立∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE在△DAB 与△EAC 中,{AD =AE ∠BAD =∠CAE AB =AC∴△DAB≌△EAC(SAS),∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD(2)小明的想法对的当∠ACB =45°时,CE ⊥BD理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB=45°,∠AGC=90°−∠ACB,∴∠AGC=90°−45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,{AC=AG∠DAG=∠EAC AD=AE∴△GAD≌△CAE(SAS),∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.本题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.20.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足为D、E.求证:(1)△ABD≌△CAE;(2)DE=BD+CE.【答案】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,∵{∠DBA=∠EAC ∠BDA=∠AEC AB=AC,∴△ABD≌△CAE(AAS),(2)由(1)得:△ABD≌△CAE,∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.【解析】证明∠DBA=∠EAC,这是解决该题的关键性结论;证明△ABD≌△CAE,得到BD=AE,AD=CE,即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.21.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE= BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.【答案】证明:(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.(1)根据BD⊥直线l,CE⊥直线l得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD= CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.22.如图①,已知CA=CB,CD=CE,∠ACB=∠DCE=ɑ,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含ɑ的式子表示∠AMB的度数(3)当ɑ=90°时,AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【答案】解:(1)如图①,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB;∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图①,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°−α,∴∠BAM+∠ABM=180°−α,∴△ABM中,∠AMB=180°−(180°−α)=α;(3)△CPQ为等腰直角三角形.证明:如图②,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,{CA=CB∠CAP=∠CBQ AP=BQ,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理的综合应用.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题时注意掌握全等三角形的对应边相等,对应角相等的运用.(1)由CA=CB,CD=CE,∠ACD=∠BCE,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.23.据图回答问题(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE= BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,。
(完整)全等三角形提高练习精选27题及答案

全等三角形提高练习精选27题及答案1•如图所示,△ ABC ^A ADE , BC 的延长线过点 E,/ ACB= / AED=105 / CAD=10 ° ,Z B=50。
,求/DEF 的度数。
2•如图,△ AOB 中,/ B=30。
,将A AOB 绕点O 顺时针旋转52。
,得到厶A'OB ', 边A 'B '与边OB 交于点C (A '不在OB 上),则/ A 'CO 的度数为多少?3•如图所示,在△ ABC 中,/ A=90 ° ,D 、E 分别是 AC 、 若厶ADB ◎△ EDB ^A EDC ,则/ C 的度数是多少?4•如图所示,把△ ABC 绕点C 顺时针旋转35°,得到△ A'B'C , A '' 交 AC 于点 D ,若/ A 'DC=90 °,^U/A= ____________6•如图,Rt A ABC 中,/ BAC=90 ° ,AB=AC ,分别过点 B C 作过点A 的垂线BC 、CE,垂足分另【J 为 D 、E , 若 BD=3 , CE=2,贝U DE= ____________7•如图,AD 是厶ABC 的角平分线,DE 丄AB , DF 丄AC ,垂足分别是 E 、F ,连接EF, 交AD 于G , AD 与EF 垂直吗?证明你的结论。
AE G5•已知,如图所示, 则AD 是多AB=AC , AD 丄 BC 于 D ,且 AB+AC+BC=50cm,ABA'B'AO14. 如图所示,已知△ ABC 和厶BDE 都是等边三角形,下列结论:① AE=CD ;②BF=BG ; ③BH 平分/ AHD ; ④/ AHC=60 ° ;⑤厶BFG 是等边三角形; ⑥FG// AD , E其中正确的有()A . 3 个 B. 4 个 C. 5 个 D. 6 个C H8•如图所示,在△ ABC 中,AD 为/ BAC 的角平分线,2积是 28cm ,AB=20cm , AC=8cm ,求 DE 的长。
(完整版)全等三角形练习题及答案

全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
全等三角形拔高题目附带标准答案

全等三角形提高练习1. 如图所示,△AB C ≌△AD E,BC 的延长线过点E ,∠ACB =∠AE D=105°,∠CA D=10°,∠B=50°,求∠D EF的度数。
2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A′OB′,边A ′B ′与边O B交于点C(A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△AB C中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是多少?4. 如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A′B ′C ,A ′B′交AC 于点D,若∠A ′DC=90°,则∠A=5. 已知,如图所示,A B=AC ,A D⊥BC 于D ,且AB +AC+B C=50cm ,而AB+BD +AD=40cm ,则AD 是多少?6. 如图,R t△A BC中,∠BAC=90°,AB=AC ,分别过点B 、C作过点A 的垂线BC 、CE ,垂足分别为D 、E,若BD=3,CE=2,则DE=AB'CA7. 如图,AD 是△A BC 的角平分线,D E⊥AB ,D F⊥AC,垂足分别是E、F,连接EF,交AD于G,AD 与EF 垂直吗?证明你的结论。
8. 如图所示,在△AB C中,AD 为∠BAC 的角平分线,D E ⊥AB 于E,DF ⊥AC 于F ,△ABC 的面积是28cm2,AB=20cm ,AC=8cm ,求DE 的长。
9. 已知,如图:AB =AE ,∠B=∠E ,∠BAC=∠EAD ,∠CAF =∠DAF,求证:AF ⊥CD10. 如图,A D=BD ,A D ⊥BC 于D,BE ⊥AC 于E ,AD 与BE相交于点H ,则BH 与A C相等吗?为什么?11. 如图所示,已知,AD 为△AB C的高,E 为A C上一点,BE 交AD 于F ,且有BF=AC ,FD=CD,求证:BE⊥AC12. △DAC 、△E BC均是等边三角形,A F、BD 分别与CD 、CE 交于点M、N,求证:(1)A E=BD (2)CM=CN (3)△CMN 为等边三角形 (4)M N∥BCBCBBA B。
全等三角形练习题(含答案)

全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。
(完整)八年级上《全等三角形》单元检测卷(提高版)

O EA B D C八年级上《全等三角形》单元检测卷(提高)一、选择题1. 在下列条件中,能判断两个直角三角形全等的是 ( )A.一个锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等 2.如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店 去配一块完全一样的玻璃,那么最省事的办法是( ) A. 带①去 B. 带②去 C. 带③去 D. 带①和②去3.如图2,将两根钢条AA ′、BB ′的中点 O 连在一起,使AA ′、BB ′ 能绕着点 O 自由转动,就做成了一个测量工具,则A ′B ′的长等于内槽 宽 AB ,那么判定△OAB ≌△OA ′B ′的理由是 ( ) A .SAS B .ASA C .SSS D .HL4.如图3,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠AEC 等于 ( ) A .60° B .50° C .45° D .30°5.如图4,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是 ( ) A. 线段CD 的中点 B. OA 与OB 的中垂线的交点 C. OA 与CD 的中垂线的交点 D. CD 与∠AOB 的平分线的交点6.已知,如图5,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个( )(1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD=CD ;(4)AD ⊥BC .(A )1个 (B )2个 (C )3个 (D )4个7.已知:如图6,AD 是ABC △的角平分线,且AB :AC=3:2,则ABD △与ACD △的面积之比为( )A.3:2 B.6:4C.2:3 D.不能确定图2 _ B _ D_ O _ C _ A 图4 图1 图3图58.直线L1、L2、L3表示三条相互交叉的公路,现要建立一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 一处B 二处C 三处D 四处9.如图7,用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A O B AOB '''∠=∠的依据是 .A 、SSSB 、SASC 、ASAD 、AAS 10.如图8,已知ABC △中,45ABC ∠=o,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .2B .4C .5D .不能确定二、填空题11. 如图9,若 △ABC ≌△DEF ,则∠E= °12.杜师傅在做完门框后,为防止门框变形常常需钉两根 斜拉的木条,这样做的数学原理是 13.如图10,如果△ABC ≌△DEF ,△DEF 周长是32cm ,DE=9cm, EF=13cm.∠E=∠B ,则AC=____ cm.14.如图11,AD ⊥BC ,D 为BC 的中点,则△ABD ≌_________.15.如图12,若AB =DE ,BE =CF ,要证△ABF ≌△DEC ,需补充条 件________或 。
(必考题)初中八年级数学上册第十二章《全等三角形》提高练习(答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3D解析:D【分析】 设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°A 解析:A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用. 3.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.4.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .4B解析:B【分析】 根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A.3cm B.6cm C.9cm D.12cm B解析:B【分析】过点O作MN,MN⊥AB于M,证明MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度,再把它们求和即可.【详解】如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=3cm,∴OM=OE=3cm,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=3cm,∴MN=OM+ON=6cm,即AB与CD之间的距离是6cm,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.6.如图所示,下面甲、乙、丙三个三角形和ABC全等的图形是()A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA A解析:A【分析】 利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD C解析:C【分析】 在△ACD 和△ABD 中,AD=AD ,AB=AC ,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A 选项中条件可用HL 判定两个三角形全等,故选项A 不符合题意;添加B 选项中的条件可用SSS 判定两个三角形全等,故选项B 不符合题意;添加C 选项中的条件∠1=∠2可得∠CDA=∠BDA ,结合已知条件不SS 判定两个三角形全等,故选项C 符合题意;添加D 选项中的条件可用SAS 判定两个三角形全等,故选项D 不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS 、SAS 、ASA 、AAS ,判断直角三角形全等的方法:“HL”.10.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP=⎧⎨=⎩ , ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;二、填空题11.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC ∠C=∠C 所以添加∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 可得△ADC 与△解析:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC ,∠C=∠C ,所以添加∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC ,可得△ADC 与△BEC 全等,利用全等三角形的性质得出AD=BE ,故答案为:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.12【分析】根据题意证明三角形全等即可得解;【详解】如图所示由题可知∴∴∴BCD 在一条直线上∵∴△ABD 是等边三角形∴△ABD 的周长;故答案是12【点睛】本题主要考查了全等三角形的判定与性质结合等边解析:12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD ==+=; 故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 13.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____1<AC <17【分析】作出图形延长AD 至E 使DE =AD 然后利用边角边证明△ABD 和△ECD 全等根据全等三角形对应边相等可得AB =CE 再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC <17【分析】作出图形,延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC 的取值范围.【详解】如图,延长AD 至E ,使DE =AD ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.14.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ∠C =∠D 然后根据全等三角形的判定方法添加条件即可【详解】解:添加的条件是OA =OB 理由如下:∵AD ∥BC ∴∠A =∠B ∠C =∠D 在△AOD 和 解析:OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ,∠C =∠D ,然后根据全等三角形的判定方法添加条件即可.【详解】解:添加的条件是OA =OB ,理由如下:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D在△AOD 和△BOC 中A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOD ≌△BOC (ASA ).故答案为:OA =OB (答案不唯一).【点睛】本题主要考查了全等三角形的判定定理和平行线的性质,掌握全等三角形的判定定理的内容是解答本题的关键.15.如图,ABC 的面积为215cm ,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD AP ⊥于点D ,连接DB ,则DAB 的面积是______2cm .【分析】如图延长CD 交AB 于E 由题意得AP平分∠CAB 证明△ADC ≌△ADE 得到CD=DE 由此得到推出即可得到答案【详解】如图延长CD 交AB 于E 由题意得AP 平分∠CAB ∴∠CAD=∠EAD ∵CD ⊥A 解析:152【分析】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,证明△ADC ≌△ADE ,得到CD=DE ,由此得到,ACD ADE BCD BED SS S S ==,推出ACD BCD ADE BED S S S S +=+,即可得到答案.【详解】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,∴∠CAD=∠EAD,∵CD ⊥AD ,∴∠ADC=∠ADE ,∵AD=AD ,∴△ADC ≌△ADE ,∴,ACD ADE BCD BED SS S S ==, ∴ACD BCD ADE BED SS S S +=+, ∴12ABD ADE BED ABC S S S S =+==152, 故答案为:152. .【点睛】此题考查三角形角平分线的作图方法,全等三角形的判定及性质,证出CD=DE 得到,ACD ADE BCD BED S S S S ==是解此题的关键.16.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______5【分析】根据角平分线的性质求出DE 根据三角形的面积公式计算即可;【详解】如图:作DE ⊥AB 于点E ∵AD 平分∠BAC ∠C=90°DE ⊥AB ∴DE=DC=2∵AB=5∴△ABD 的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE ,根据三角形的面积公式计算即可;【详解】如图:作DE ⊥AB 于点E ,∵AD 平分∠BAC ,∠C=90°,DE ⊥AB ,∵AB=5∴△ABD 的面积=12×AB×DE=5, 故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 17.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒.【详解】解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥ ∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.18.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.3【分析】过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意可以得到△BAD ≌△BED 从而得到DE 的长度【详解】解:如图过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意知在△BAD 和△BED 中∴△BA解析:3【分析】过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意可以得到△BAD ≌△BED ,从而得到DE 的长度.【详解】解:如图,过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意知在△BAD 和△BED 中,A DEB ABD EBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△BED ,∴ED=AD=3,故答案为3.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定和性质是解题关键.19.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.20.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE ∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:(8)0,或(40), 【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOE AFD OEF AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8)0,或(40), 故答案为:(8)0,或(40), 【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.三、解答题21.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.解析:(1)证明见解析;(2)EF=17cm .【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB ,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF ,CE=BF ,再根据线段的和差求解即可.【详解】(1)证明:在Rt △ACB 中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE ⊥EF ,BF ⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE ≌△CBF(ASA)(2)由△ACE ≌△CBF 可得:AE=CF=12cm , EC=BF=5cm ,∴EF=EC+CF=12+5=17cm .【点睛】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.22.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.解析:(1)SAS ;(2)17AD <<;(3)见解析【分析】(1)根据AD=DE ,∠ADC=∠BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED ≌()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:∵在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME ,如图所示:∵点D 是BC 的中点,∴BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌()SAS CND △,∴BE CN =,∵DM DN ⊥,DE DN =,∴ME MN =,在BEM △中,由三角形的三边关系得:BM BE ME +>,∴BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.23.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.求证:CD 平分ACE ∠.解析:见解析【分析】根据题意,先证明//AB CD ,然后由平行线的性质以及等量代换,得到ACD DCE ∠=∠,即可得到结论成立.【详解】证明:D CBD ∠=∠,ABD CBD ∠=∠,D ABD ∴∠=∠,//AB CD ∴ABC DCE ∴∠=∠,A ACD ∠=∠又A ABC ∠=∠,CD ∴平分ACE ∠.【点睛】本题考查了平行线的判定和性质,角平分线的判定,解题的关键是掌握所学的知识,正确得到//AB CD .24.如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.解析:(1)证明见解析;(2)证明见解析【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.【详解】(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.25.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.解析:(1)证明见解析;(2)120︒.【分析】(1)先根据角平分线的定义可得ACB FCE ∠=∠,再根据三角形全等的判定定理与性质即可得证;(2)先根据平行线的性质可得B FCE ∠=∠,从而可得E FCE B ACB ∠∠=∠=∠=,再根据直角三角形的性质可得30ACB ∠=︒,然后根据三角形的内角和定理即可得.【详解】(1)CB 为ACE ∠的角平分线,ACB FCE ∴∠=∠, 在ABC 和FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC FEC AAS ∴≅,AB FE ∴=;(2)//AB CE ,F E B C ∴∠=∠,E FCE B B AC ∠=∴∠=∠∠=,ED AC ⊥,即90CDE ∠=︒,90E FCE ACB ∠∠+∠∴+=︒,即390ACB ∠=︒,解得30ACB ∠=︒,30B ∴∠=︒,180120B A ACB ∠=︒-∠=∴∠-︒.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.26.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .解析:见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.27.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B . 求证:△ABC ≌△CDE .解析:见解析.【分析】首先根据AC ∥DE ,利用平行线的性质可得:∠ACB=∠E ,∠ACD=∠D ,再根据∠ACD=∠B 证出∠D=∠B ,再由∠ACB=∠E ,AC=CE 可根据三角形全等的判定定理AAS 证出△ABC ≌△CDE .【详解】证明:∵AC ∥DE ,∴ACD D ∠=∠,BCA E ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠,又∵AC CE =,∴()ABC CDE AAS ≌.【点睛】此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS ,选用哪一种方法,取决于题目中的已知条件.28.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度解析:(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形提高练习精选27题及答案1•如图所示,△ ABC ^A ADE , BC 的延长线过点 E,/ ACB= / AED=105 / CAD=10 ° ,Z B=50。
,求/DEF 的度数。
2•如图,△ AOB 中,/ B=30。
,将A AOB 绕点O 顺时针旋转52。
,得到厶A'OB ', 边A 'B '与边OB 交于点C (A '不在OB 上),则/ A 'CO 的度数为多少?3•如图所示,在△ ABC 中,/ A=90 ° ,D 、E 分别是 AC 、 若厶ADB ◎△ EDB ^A EDC ,则/ C 的度数是多少?4•如图所示,把△ ABC 绕点C 顺时针旋转35°,得到△ A'B'C , A '' 交 AC 于点 D ,若/ A 'DC=90 °,^U/A= ____________6•如图,Rt A ABC 中,/ BAC=90 ° ,AB=AC ,分别过点 B C 作过点A 的垂线BC 、CE,垂足分另【J 为 D 、E , 若 BD=3 , CE=2,贝U DE= ____________7•如图,AD 是厶ABC 的角平分线,DE 丄AB , DF 丄AC ,垂足分别是 E 、F ,连接EF, 交AD 于G , AD 与EF 垂直吗?证明你的结论。
AE G5•已知,如图所示, 则AD 是多AB=AC , AD 丄 BC 于 D ,且 AB+AC+BC=50cm,ABA'B'AO14. 如图所示,已知△ ABC 和厶BDE 都是等边三角形,下列结论:① AE=CD ;②BF=BG ; ③BH 平分/ AHD ; ④/ AHC=60 ° ;⑤厶BFG 是等边三角形; ⑥FG// AD , E其中正确的有()A . 3 个 B. 4 个 C. 5 个 D. 6 个C H8•如图所示,在△ ABC 中,AD 为/ BAC 的角平分线,2积是 28cm ,AB=20cm , AC=8cm ,求 DE 的长。
DE 丄AB 于E, DF 丄AC 于F ,A ABC 的面9•已知,如图: AB=AE ,/ B= / E , 10.如图,AD=BD , AD 丄BC 于 D , BE 丄AC 于E , AD 与BE 相交于点 为什么?11. 如图所示,已知, AD ABC 的高, 且有 BF=AC , FD=CD ,求证:BE 丄 AC12. △ DAC 、△ EBC 均是等边三角形, 求证:(1) AE=BD (2) CM=CN13. 已知:如图1,点C 为线段AB 上一点,BM 交CN 于点F (1)求证:AN=BM(2)求证:△ CEF 为等边三角形/ BAC= / EAD ,/ CAF= / DAF ,BH 与AC 相等吗?H ,则 CAF、 (3)△ ACM 、△ CBN 都是等边三角形,AN 交MC 于点E ,G A15. 已知:BD 、CE 是厶ABC 的高,点 F 在BD 上,BF=AC ,点G 在CE 的 延长线上,CG=AB ,求证:AG 丄AF16. 如图:在厶ABC 中,BE 、CF 分别是 AC 、AB 两边上的高,在 在CF 的延长线上截取 CG=AB ,连结 AD 、AG求证:(1)AD=AG( 2)AD 与AG 的位置关系如何17 .如图,已知 E 是正方形 ABCD 的边CD 的中点,点求证:AF=AD-CF18 .如图所示,已知△ ABC 中,AB=AC , D 是CB 延长线上一点, / ADB=60 ° ,E 是 AD 上一点,且 DE=DB ,求证:AC=BE+BC20 .已知如图:AB=DE ,直线 AE 、BD 相交于 C ,Z B+ / D=180 求证:CF=CD19 .如图所示,已知在厶 求证:BE=CF AEC 中,/ E=90 ° ,AD 平分/ EAC , DF 丄 AC ,垂足为 F , DB=DC ,21 .如图,0C 是/ AOB 的平分线,P 是0C 上一点, F 是0C 上一点,连接 DF 和EF,求证:DF=EF PD 丄0A 于D , PE 丄0B 于E ,F 在BC 上,CA22 .已知:如图, BF 丄AC 于点F , CE 丄AB 于点E ,且BD=CD 求证:(1 )△ BDE ^A CDF (2) 点D 在/ A 的平分线上23 .如图 且 0E=224 .如图 已知 AB // CD , 0是/ ACD 与/ BAC 的平分线的交点 则AB 与CD 之间的距离是多少?OE 丄 AC 于 E, AE 匚△ ABC 的三边AB 、BC 、CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO : S ACAO 等于?25 .正方形 ABCD 中,AC 、BD 交于 0,/ EOF=90 °,已知AE=3 , CF=4 则S A BEF 为多少?26 .如图,在 Rt A ABC 中,/ ACB=45 ° ,. 于H ,交BC 于F , BE / AC 交AF 的延长线于 E 求证:BC 垂直且平分 DEZBAC=90 ° ,AB=AC ,点 D 是 AB 的中点,AF 丄 CD A27 .在△ ABC 中,(1 )当直线MN (2) 当直线MN (3) 当直线MN 绕点 绕点 绕点 接写出这个等量关系。
ACB=90 ° ,AC=BC ,直线 MN C 旋转到图①的位置时,求证: C 旋转到图②的位置时,求证:C 旋转到图③的位置时,试问E经过点C ,且AD 丄MN 于D , BE 丄MN 于E DE=AD+BE DE=AD-BEDE 、AD 、BE 具有怎样的等量关系?请直M全等三角形提高练习答案1 解:•••△ ABC^A AED•••/ D= / B=50 °•••/ ACB=105 °•••/ ACE=75 °•••/ CAD=10 °/ ACE=75 °•••/ EFA=Z CAD+ / ACE=85 ° (三角形的一个外角等于和它不相邻的两个内角的和)同理可得/ DEF= / EFA- / D=85 °-50 °35 °2根据旋转变换的性质可得/ B= / B,因为△ AOB绕点0顺时针旋转52 °所以/ BOB =52 ° 而/ A'CO是厶BOC的外角,所以/ A C0= / B + / BOB ',然后代入数据进行计算即可得解.解答:解:•••△ A 0B是由△ AOB绕点0顺时针旋转得到,/ B=30 °•••/ B = / B=30 °•••△ AOB绕点0顺时针旋转52°,•••/ BOB =52 °•••/ A 'CO是厶B OC的外角,•••/ A 'CO= / B '+ / BOB =30 °52 °=82 °故选D.3全等三角形的性质;对顶角、邻补角;三角形内角和定理.分析:根据全等三角形的性质得出/ A= / DEB= / DEC, / ADB= / BDE=Z EDC,根据邻补角定义求出/ DEC、/ EDC的度数,根据三角形的内角和定理求出即可.解答:解:ADB◎△ EDBBA EDC,•/ A= / DEB= / DEC, / ADB= / BDE= / EDC,•••/ DEB+ / DEC=180 ° / ADB+ / BDE+EDC=180 °,•/ DEC=90 ° / EDC=60 °•/ C=180 ° / DEC- / EDC,=180。
-90 °-60 °=30 °4分析:根据旋转的性质,可得知/ ACA =35 °从而求得/ A的度数,又因为/ A的对应角是/ A即可求出/ A的度数.解答:解:•••三角形厶ABC绕着点C时针旋转35°得到△ AB'C'•/ ACA =35 ° / A'DC=90 °•/ A'=55 °•••/A的对应角是/ A',即/ A= / A',•/ A=55 °故答案为:55°点评:此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变. 解题的关键是正确确定对应角.5因为AB=AC三角形ABC是等腰三角形所以AB+AC+BC=2AB+BC=50BC=50-2AB=2(25-AB)又因为AD垂直于BC于D,所以BC=2BDBD=25-ABAB+BD+AD=AB+25-AB+AD=AD+25=40AD=40-25=15cm6 解:T BD丄DE, CE丄DE:丄 D= / E•••/ BAD+ / BAC+ / CAE=180 °又•••/ BAC=90 °,•••/ BAD+ / CAE=90 °•••在Rt A ABD 中,/ ABD+ / BAD=90 °•••/ ABD= / CAE•••在△ ABD与厶CAE中{/ ABD= / CAE/ D= / EAB=AC•△ ABD◎△ CAE (AAS)• BD=AE, AD=CE•/ DE=AD+AE• DE=BD+CE•/ BD=3 , CE=2• DE=57证明:T AD是/ BAC的平分线•/ EAD=Z FAD又••• DE丄AB, DF丄AC•/ AED=Z AFD= 90°边AD公共• Rt△AED B Rt A AFD (AAS)• AE= AF即厶AEF为等腰三角形而AD是等腰三角形AEF顶角的平分线• AD丄底边EF三线合一”) (等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成8 AD 平分/ BAC,则/ EAD= / FAD, / EDA= / DFA=90 度,AD=AD 所以△AED^A AFDDE=DFS A ABC=S △AED+S △AFD28=1/2(AB*DE+AC*DF)=1/2(20*DE+8*DE)DE=29AB=AE,/ B= / E,/ BAC= / EAD则厶ABC^A AEDAC=AD△ ACD是等腰三角形/ CAF= / DAFAF平分/ CAD贝U AF丄CD10 解:T AD 丄BC•/ ADB =/ ADC = 90•/ CAD+ / C= 90T BE丄AC•/ BEC=/ ADB = 90•/ CBE+/ C= 90•/ CAD =/ CBE•/ AD = BD•••△BDH ◎△ ADC (ASA)••• BH = AC11 解:(1)证明:T AD丄BC (已知),•/ BDA= / ADC=90。