全等三角形证明题练习(提高题)
(完整)全等三角形证明之能力拔高(经典题目)

全等三角形能力拔高题姓名:一、角度转化问题1.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.2.已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.3.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.4.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l 的垂线AE、BF,E、F为垂足.当直线l不与底边AB相交时,求证:EF=AE+BF.5.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.二、二次全等问题1.已知:如图,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.2.已知:如图,AC与BD交于O点,AB∥DC,AB=DC.若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.3.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?4.已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.MF E CBA5、已知:如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,DB=DC , 求证:EB=FC【练习】1、已知∠B=∠E=90°,CE=CB ,AB ∥CD. 求证:△ADC 是等腰三角形。
2、如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
求证:MB=MCG FEDC BA3、已知,△ABC 和△ECD 都是等边三角形,且点B ,C ,D 在一条直线上求证:BE=AD4、如图:在△ABC 中,∠C =90°,AD 平分∠ BAC ,DE ⊥AB 交AB 于E ,BC=30, BD :CD=3:2,则DE= 。
5、如图,已知,EG ∥AF ,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
人教版初二数学上册:全等三角形判定一(SSS,SAS)(提高)巩固练习

【巩固练习】一、选择题1. 如图,已知AB =AC ,D 为BC 的中点,结论:①AD ⊥BC ;②AD 平分∠BAC ;③∠B =∠C ;④△ABC 是等边三角形.其中正确的是( ).A.①②B. ②③C. ①②③D. ③④2.如图,AD 是ABC ∆的中线,E 、F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF 、CE ,下列说法:①CE BF =;② ABD ∆和ACD ∆的面积相等;③//BF CE ;④ BDF ∆≌CDE ∆,其中正确的有( ).A.1个B.2个C.3个D.4个3. AD 为△ABC 中BC 边上的中线, 若AB =2, AC =4, 则AD 的范围是( )A .AD <6 B. AD >2 C. 2<AD <6 D. 1<AD <34.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图如下,则说明∠CAD=∠DAB的依据是( )A .SSSB . SASC . ASAD . AAS5. 根据下列条件能唯一画出△ABC 的是( )A.AB =3,BC =4,AC =8B.AB =4,BC =3,∠A =30°C.AB =5,AC =6,∠A =45°D. ∠A =30°,∠B =60°,∠C =90°6.(2016•洛阳模拟)已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A运动,设点P 的运动时间为t 秒,当t 的值为( )秒时,△ABP 和△DCE 全等.A.1 B.1或3 C.1或7 D.3或7二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,△ABC是三边均不等的三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画个.9. (2016•微山县二模)如图,四边形ABCD中,∠1=∠2,请你补充一个条件,使△ABC≌△CDA.10.(2014春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件____________时,就可得到△ABC≌△FED.(只需填写一个即可)11. 如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.AA BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),12. 把两根钢条','如图,若测得AB=5厘米,则槽宽为厘米.三、解答题13.(2014秋•天津期末)如图在△ABE中,已知AB=AE,AD=AC,∠1=∠2.求证:△ABC≌△AED.14. 如图, ∠B=∠C, BD=CE, CD=BF.求证: ∠EDF = 90︒-12∠A15. 已知:如图,BE、CF是△ABC的高,且BP=AC,CQ=AB,求证:AP⊥AQ.【答案与解析】一.选择题1. 【答案】C【解析】由SSS证全等可得①②③是正确的.2. 【答案】D;3. 【答案】D;【解析】用倍长中线法;4. 【答案】A;【解析】解:从角平分线的作法得出,△AFD 与△AED 的三边全部相等,则△AFD≌△AED.故选A .5. 【答案】C ;【解析】A 不能构成三角形,B 没有SSA 定理,D 没有AAA 定理.6. 【答案】C ;【解析】解:因为AB=CD ,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS 证得△ABP ≌△DCE ,由题意得:BP=2t=2,所以t=1,因为AB=CD ,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS 证得△BAP ≌△DCE ,由题意得:AP=16﹣2t=2,解得t=7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等. 故选C .二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒,所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】在DE 的两侧可以各画2个.9.【答案】AD=BC ;【解析】由题意知,已知条件是△ABC 与△CDA 对应角∠1=∠2、公共边AC=CA ,所以根据全等三角形的判定定理SAS 来证△ABC ≌△CDA 时,需要添加的条件是AD=BC.10.【答案】BC=ED 或∠A=∠F .11.【答案】27;【解析】可证△ADB ≌△CDB ≌△CDE.12.【答案】5;三.解答题13.【解析】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC ,∴∠BAC=∠EAD ,在△ABC 和△AED 中,,∴△ABC ≌△AED (SAS ).14.【解析】证明:在△ABC 中,∠B =∠C ,∴∠B =90︒-12∠A 在△DBF 和△ECD 中BD CE B C BF CD =⎧⎪∠=∠⎨⎪=⎩∴△DBF ≌△ECD (SAS )∴∠BFD =∠CDE∴∠EDF =180°-∠BDF -∠CDE =180°-(∠BDF +∠BFD )=∠B =90︒-12∠A .15.【解析】证明:∵BE ⊥AC ,CF ⊥AB (已知)∴∠ACF +∠BAC =90°,∠ABE +∠BAC =90°,(三角形内角和定理)∠ACF =∠ABE (等式性质)在△ACQ 和△PBA 中 ∵⎪⎩⎪⎨⎧=∠=∠=BP AC ABP ACF AB CQ∴△ACQ ≌△PBA (SAS )∴∠Q =∠BAP (全等三角形对应角相等)∵CF ⊥AB (已知)∴∠Q +∠QAF =90°,(垂直定义)∴∠BAP +∠QAF =90°,(等量代换)∴AP ⊥AQ.(垂直定义)附录资料:【巩固练习】一、选择题1. (2016•长沙模拟) 如图所示,△ABC ≌△DEC ,则不能得到的结论是( )A. AB =DEB. ∠A =∠DC. BC =CDD. ∠ACD =∠BCE2. 如图,△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6cm ,AC =4cm ,BC =5cm ,则AD 的长为( )A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有( )①形状相同的两个图形是全等图形 ②对应角相等的两个三角形是全等三角形 ③全等三角形的面积相等 ④若△ABC ≌△DEF ,△DEF ≌△MNP ,△ABC ≌△MNP.A.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC ≌△A ′B ′C ,∠ACB=90°,∠A ′CB=20°,则∠BCB ′的度数为()A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4cm,则△DEF的边中必有一条边等于______.10. 如图,如果将△ABC向右平移CF的长度,则与△DEF重合,那么图中相等的线段有__________;若∠A=46°,则∠D=________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A 和D 、B 和E 是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C ;【解析】因为△ABC ≌△DEC ,可得:AB=DE ,∠A=∠D ,BC=EC ,∠ACD=∠BCE ,故选C .2. 【答案】B ;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。
全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB证明:延长CD 与P ,使D 为CP 中点。
连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2ABADBCBACDF21E3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BEA7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD8. 已知:D 是AB 中点,∠ACB=90°,求证:1CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
全等三角形判定二(SSS,AAS)(提高)巩固练习

【巩固练习】一、选择题1.如图,∠A=∠D,∠B=∠E,BF=CE,下列结论错误的是()A.△ABC≌△DEFB. BF=ECC.AC∥DED.AC=DF2.如图,AB∥EF,DE∥AC,BD=CF,则图中不是全等三角形的是()A.△BAC≌FEDB. △BDA≌FCEC. △DEC≌CADD. △BAC≌FCE3.如图,AB=BD,∠1=∠2,要用AAS判定△ABC≌△DBE,则添加的条件是() A.AE=EC B.∠D=∠A C.BE=BC D.∠DEB=∠C4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.(•滕州市校级模拟)如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC6.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC二、填空题7.(春•鹤岗校级期末)如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件________________时,就可得到△ABC≌△FED.(只需填写一个即可)8.如图,点D在AB上,点E在AC上,且∠B=∠C,在条件①A B=AC,②AD=AE,③BE=CD,④∠AEB=∠ADC中,不能使△ABE≌△ACD的是_______.(填序号)9.已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________. 10.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则EF 的长是___________.12.在△ABC 和△DEF 中(1)AB =DE ;(2)BC =EF ;(3)AC =DF ;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F 从这六个条件中选取三个条件可判定△ABC 与△DEF 全等的方法共有________种.三、解答题13.(2014秋•景洪市校级期中)如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船离开码头,计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 和灯塔B 的距离相等,试问轮船航行时是否偏离预定航线,请说明理由.14.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =.15. 如图,DC∥AB,∠BAD 和∠ADC 的角平分线相交于E ,过E 的直线分别交DC 、AB 于C 、B 两点.求证:AD =AB +DC.【答案与解析】一、选择题1.【答案】C ;2.【答案】D ;3.【答案】D ;【解析】满足判定定理AAS 的只有D 选项.4.【答案】B ;【解析】C 选项和D 选项都可以由SSS 定理证全等.5.【答案】D ;【解析】解:A、∵在△ABD和△ACD中,∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中,∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.6.【答案】C;【解析】可证∠BAC=∠E,∠BCA=∠DCE,所以△ABC≌△EDC,DE=AB.二、填空题7.【答案】BC=ED.8.【答案】④【解析】三个角对应相等不能判定三角形全等.9.【答案】6;【解析】△ABF≌△CDE,BE=CF=2,EF=10-2-2=6.10.【答案】6;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB,△ABC≌△CDA.11.【答案】3;【解析】由AAS证△ABF≌△CBE,EF=FB+BE=CE+AF=2+1=3.12.【答案】13;【解析】ASA类型3种,AAS类型6种,SAS类型3种,SSS类型一种,共13种.三、解答题13.【解析】解:此时轮船没有偏离航线.理由:由题意知:假设轮船在D处,则DA=DB,AO=BO,在△ADC和△BDC中,,∴△ADO≌△BDO(SSS),∴∠AOD=∠BOD,即DO为∠AOB的角平分线,∴此时轮船没有偏离航线.14.【解析】证明: ∵ CD AB ⊥∴ 90BDC CDA ∠=∠=︒∵ 45ABC ∠=︒∴ 45DCB ABC ∠=∠=︒∴ DB DC =∵ BE AC ⊥∴ 90AEB ∠=︒∴ 90A ABE ∠+∠=︒∵ 90CDA ∠=︒∴ 90A ACD ∠+∠=︒∴ ABE ACD ∠=∠在BDF ∆和CDA ∆中BDC CDA DB DCABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆(AAS )∴BF AC =.15.【解析】证明:延长DE 交AB 的延长线于F∴∠CDE=∠F, ∠CDA+∠BAD=180º∵DE 平分∠CDA,AE 平分∠DAB ∴∠CDE=∠ADE=21∠CDA, ∠DAE=∠EAF=21∠BAD ∴∠ADE=∠F,∠E DA +∠DAE=90º∴∠AED=∠AEF=90º在△ADE 与△AFE 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠AE AE FEA DEA F ADE∴△ADE≌△AFE (AAS )∴DE=EF,AD =AF在△DCE 与△FBE 中, FE D CB A⎪⎩⎪⎨⎧∠=∠=∠=∠FEB DEC FEDE F CDE ∴△DCE≌△FBE(ASA )∴DC=BF ,∴AD=AB +DC.。
全等三角形提高32题(含答案)

全等三角形提高32题(含答案)(一)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
C D B AB C D EF 21 AD B CAB ACDF2E7. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .9.如图,OM 平分∠POQ ,MA ⊥OP ,MB⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP于D .求证:AD +BC =AB .11.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. D C B A F E PED C B AD C B A13.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):14.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE . 15、如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DCAD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGBACDF21 E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF 和EF 。
全等三角形证明题及答案(15道)

全等三角形的判定与性质.
7.如图,D、E分别是AB、AC上的点,且 AB=AC,AD=AE.求证:∠B=∠C.
在△ABE和△ACD中, ∵ AB=AC ∠A=∠A AE=AD , ∴△ABE≌△ACD〔SAS〕, ∴∠B=∠C.
证明:∵AB∥DE, ∴∠B=∠DEF. ∵BE=CF, ∴BC=EF. ∵∠ACB=∠F, ∴ ∠B=∠DEF BC=EF∠ACB=∠F , ∴△ABC≌△DEF.
全等三角形的判定;平行线的性质.
10.:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B. 求证:AE=CF.
证明:∵AD∥CB, ∴∠A=∠C, 在△ADF和△CBE中, ∠A=∠C AD=CB ∠D=∠B , ∴△ADF≌△CBE〔ASA〕, ∴AF=CE, ∴AF+EF=CE+EF,即AE=CF.
∴△BCF≌△CBD〔ASA〕. 全等三角形的判定.
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,BE=CF. 求证:AD是△ABC的角平分线.
证明:∵DE⊥AB,DF⊥AC, ∴Rt△BDE=Rt△DCF=90°. BD=DC BE=CF , ∴Rt△BDE≌Rt△DCF〔HL〕, ∴DE=DF, 又∵DE⊥AB,DF⊥AC, ∴AD是角平分线.
系和位置关系?并加以证明.
• 证明:∵AB∥CD, • ∴∠A=∠D, • ∵在△ABF和△DCE中 • AB=CD ∠A=∠D
AF=DE , • ∴△ABF≌△DCE, • ∴CE=BF,
直角三角形全等的证明及三角形全等提高题

7.如图,在△ABC中,已知D是BC中点,DE⊥AB,DF⊥AC,垂足分别是E、F,DE=DF. 求证:AB=AC8.已知:如图,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=DC.你能说明BE与DF相等吗?9.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A=30°.求证:BD=14ABCDF12AB10.如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E . (1)若BC 在DE 的同侧(如图①)且AD =CE ,说明:BA ⊥A C .(2)若BC 在DE 的两侧(如图②)其他条件不变,问AB 与AC 仍垂直吗?若是请予证明,若不是请说明理由.1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且角B+角D=180度,求证:AE=AD+BEAB DCE122已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。
求证:AF=CE 。
3已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
F EA C D BA ED C B4如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。
① AB=AC ② BD=CD ③ BE=CF7、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。
求证:EB=ED 。
DA E CB8、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。
求证:∠ACE=∠BDF 。
9. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。
求证:BF ⊥AC 。
10. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC、∠B 'A 'C '的平分线,且AD=A 'D '。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形提高练习
1.如图所示,△ABC9Z\ADE, BC 的延长线过点E, ZACB=ZAED=105° , ZCAD二10° , ZB二50°,求ZDEF 的度数o 2•如图,AA0B中,ZB二30°,将AAOB绕点0顺时针旋转52°得到ZkA' OB'边A' B r与边0B交于点C (A‘不在OB上),则CO的度数为________________________ o
3.如图所示,在厶血。
中,ZA=90° , D,E分别是AC, BC上的点,若厶ADB^ AEDB^ AEDC,则ZC的度数是o 4•如图所示,把ZkABC绕点C顺时针旋转35°,得到M B x C,A r B x交AC于点D,若ZA‘ DC二90。
, 则ZA 二o
5.已知,如图所示,AB=AC, AD丄BC 于D,且AB+AC+BC二50c叫而AB+BD+AD=40cin,则AD二 ___
C
D
B
R
6.如图,RtAABC中,ZBAC=90° , AB二AC,分别过点B, C,作过点A的直线的垂线BD, CE,垂足为D, E, 若BD二3, CE=2,则DE二 ___________________ .
7.如图,AD是AABC的角平分线,DE丄AB,DF丄AC,垂足分别是E,F,连接EF,交AD于G, AD与EF垂直吗?证明你的结论。
8 •如图所示,在AABC中,AD为ZBAC的角平分线,DE丄AB于E, DF丄AC于F, A ABC的面积是28cm:,
AB=20c叫AC=8cm,求DE 的长。
9•已知,如图,AB二AE, ZB二ZE, ZBAC二ZEAD, ZCAF=ZDAF.求证:AF±CD
10•如图,AD二BD,AD丄BC于D, BE丄AC于E, AD于BE相交于点H,则BH与AC相等吗?为什么?
11 •如图所示,已知,AD为AABC的高,E为AC上一点,BE交AD于F,且有BF二AC, FD二CD. 求证:BE
丄AC
12. ZiDAC, ZiEBC均是等边三角形,AE, BD分别与CD, CE交于点斗N, 求证:(1) AE二BD (2)CM=CN (3) Z\CMN
为等边三角形(4) MN〃BC
13.已知:如图1,点C为线段AB上一点,A ACM, Z\CBN都是等边三角形,AN交HC于点E, BM交CN 于点F.
⑴求证:AN二BM:
(2)求证:ACEF为等边三角形;
(3)将△ACH绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第
(1)、(2)两小题的结论是否仍然成立(不要求证明).
14•如图所示,已知AABC和ABDE都是等边三角形。
下列结论:①AE二CD;②BF二BG;③BH平分ZAHD;
④ZAHC=60°,⑤Z\BFG是等边三角形;⑥FG〃AD°其中正确的有( )
15•已知:BD, CE 是AABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延长线上,CG 二AB. 求证:AG 丄AF
如图所示,已知AABC 中,AB 二AC,D 是CB 延长线上一点,ZADB 二60° , E 是AD 上一点,且DE 二DB,求 证:AC 二BE+BC
16
•如图:在AABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD 二AC,在CF 的延长线上截取
CG 二AB,连结 AD 、AGo
求证:(1) AD 二AG,
(2) AD 与AG 的位置关系如
17•如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上,且ZDAE=ZFAE. 求
证:AF 二AD+CF B C
A
19•如图所示,已知在ZiAEC中,ZE二90° , AD平分ZEAC, DF丄AC,垂足为F, DB二DC. 求证:BE二CF・
20•已知:如图3-50, AB=DE,直线AE, BD 相交于C, ZB+ZD=180° , AF〃DE,交BD 于F・求证:CF=CD.
21 •如图,0C是ZA0B的平分线, P是0C上一点,PD丄0A于D,
PE丄0B于E, F是0C上一点,连接DF和EF,求证:DF=EFo
22•已知:如图,BF丄AC于点F, CE丄AB于点E,且BD二
CD
求证:(l)ABDE^ACDF (2)点D在ZA的平分线上
23如图,已矢0 AB/7CD, O是ZACD与ZBAC的平分线的交点,OE丄AC于E,且OE=2,贝lj AB 与CD之间的距离为____________________
24•如图,过线段AB的两个端点作射线AM、BN,使AM/7BN,按下列要求画图并回答:
画ZMAB、ZNBA的平分线交于E。
(1) ZAEB是什么角?
(2)过点E作一直线交AM于D,交BN于C,观察线段DE、CE,你有何发现?
(3)无论DC的两端点在AM、B\如何移动,只要DC经过点E,①AD+BC二AB;②AD+BC二CD谁成立?并说明理由。
26 •如图,△ABC的三边43、BC、C4长分别是20、30、40,其三条角平
分线将△ ABC分为三个三角形,则耳加。
:S'BCO : S ACO等于(
A. 1 : 1 : 1 B・ 1 : 2 : 3 C・ 2 : 3 : 4 D・ 3 : 4 : 5
27・正方形ABCD 中,AC. BD 交于0, ZE0F=90°,已知AE = 3,CF=4, 贝lj S ABEF
为_____________ ■
29・如图,在R/AABC 中,ZACB=45°, ZBAC=90°, AB二AC,点D 是AB 的中点,AF丄
CD 于H 交
BC于F, BE〃AC交AF的延长线于E,求证:BC垂直且平分DE.
D
30.在ZiABC 中,ZACB = 90°, AC=BC,直线MN 经过点C,且AD丄MN 于D, BE丄MN 于E.
⑴当直线MN绕点C旋转到图⑴的位置时,求证:DE=AD+BE
⑵当直线MN绕点C旋转到图⑵的位置时,求证:DE=AD—BE;
⑶当直线MN绕点C旋转到图⑶的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.
N B。