(完整版)全等三角形基础练习证明题
全等三角形证明经典40题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
AD B C已知:∠1=∠2,CD=DE,EF如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
求证:BC=AB+DC。
在BC上截取BF=AB,连接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段AB,CD所在的直线交于E,则:△AED是等腰三角形。
∴AE=DE而AB=CD∴BE=CE∴△BEC是等腰三角形∴∠B=∠C.是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB在AC上取点E,使AE=AB。
∵AE=ABBACDF21EAAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB。
PC<EC+PE∴PC<(AC-AE)+PB∴PC-PB<AC-AB。
完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。
2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。
3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。
4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。
5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。
6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。
7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。
8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。
9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。
10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。
11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。
12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。
13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。
14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。
15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。
16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。
18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。
19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。
20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。
(完整版)全等三角形基础练习及答案

全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。
全等三角形证明题及答案(15道)

全等三角形的判定与性质.
7.如图,D、E分别是AB、AC上的点,且 AB=AC,AD=AE.求证:∠B=∠C.
在△ABE和△ACD中, ∵ AB=AC ∠A=∠A AE=AD , ∴△ABE≌△ACD〔SAS〕, ∴∠B=∠C.
证明:∵AB∥DE, ∴∠B=∠DEF. ∵BE=CF, ∴BC=EF. ∵∠ACB=∠F, ∴ ∠B=∠DEF BC=EF∠ACB=∠F , ∴△ABC≌△DEF.
全等三角形的判定;平行线的性质.
10.:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B. 求证:AE=CF.
证明:∵AD∥CB, ∴∠A=∠C, 在△ADF和△CBE中, ∠A=∠C AD=CB ∠D=∠B , ∴△ADF≌△CBE〔ASA〕, ∴AF=CE, ∴AF+EF=CE+EF,即AE=CF.
∴△BCF≌△CBD〔ASA〕. 全等三角形的判定.
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,BE=CF. 求证:AD是△ABC的角平分线.
证明:∵DE⊥AB,DF⊥AC, ∴Rt△BDE=Rt△DCF=90°. BD=DC BE=CF , ∴Rt△BDE≌Rt△DCF〔HL〕, ∴DE=DF, 又∵DE⊥AB,DF⊥AC, ∴AD是角平分线.
系和位置关系?并加以证明.
• 证明:∵AB∥CD, • ∴∠A=∠D, • ∵在△ABF和△DCE中 • AB=CD ∠A=∠D
AF=DE , • ∴△ABF≌△DCE, • ∴CE=BF,
全等三角形练习(基础证明题)

全等三角形的判定训练1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。
2.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?3.已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?4.已知在四边形ABCD中,AB=CD,AD=CB,问AB∥CD吗?说明理由。
5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?6.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。
AB CDFEA C DE FDCFEA BAB CADEB C1 2AD CEFB7.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?8.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。
9.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。
10.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。
11.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。
12.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。
13.已知ED⊥AB,EF⊥BC,BD=EF,问BM=ME吗?说明理由。
ACDB1234A B C DE F1 2ACDB E FBA DFECMA BC D1 2DCFEA B14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。
16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。
18.已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。
A B C EH DACME F B D A B C E FD AB C ED F ADE AD E B C 1 23 419.已知AD⊥BC,BD=CD,问AB=AC吗?20.已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?21.已知AB=AC,∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。
全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
BC ADBC又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中, AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠CCDB BA CDF2 1 EA6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
(完整版)全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形证明100题(经典).docx

1 :已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD长。
A2:已知:D 是AB 中点,∠ ACB=90 °,求证:CD=I AB2:3 :已知:BC=DE , ∠ B= ∠ E,∠ C= ∠ D , F 是CD 中点,求证:∠ 1 = ∠ 2:4 :已知:∠ 1 = ∠ 2, CD=DE , EF//AB ,求证:EF=ACB5:已知:AC 平分∠ BAD , CE 丄AB , ∠ B+ ∠ D=180 °,求证:AE=AD+BE6:.:如图,四边形ABCD中,AB // DC , BE、CE分别平分∠ ABC、/ BCD ,且点E在AD 上。
求证:BC=AB+DC。
7:P 是∠ BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB8 :已知∠ ABC=3 ∠ C ,∠ 1= ∠ 2,B E 丄AE ,求证:AC-AB=2BEC9:已知,E 是AB 中点,AF=BD , BD=5 , AC=7 ,求DC10:如图,在△ ABC 中,BD=DC , ∠ 1 = ∠ 2,求证:AD丄BC .11:如图,OM平分∠ PoQ , MA丄OP,MB丄OQ , A、B为垂足,AB交OM于点N. 求证:∠ OAB= ∠ OBAO12:如图①,E、F分别为线段AC上的两个动点,且DE丄AC于E,BF丄AC于F,若AB=CD ,AF=CE, BD 交AC 于点M .(1)求证:MB = MD , ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13:已知:如图,DC // AB,且DC =AE, E为AB的中点,(1) 求证:△ AED ◎△ EBC .(2) 观看图前,在不添辅助线的情况下,除△EBC夕卜,请再写出两个与△ AED的面积相等的三角形.(直接写出结果,不要求证明):14:如图:DF=CE AD=BC ∠ D=∠ CO 求证:△ AED^△ BFGR15:如图:AE、BC交于点M, F 点在AMk, BE// CF, BE=CF求证:AM>△ ABC的中线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定 班级: 姓名:
1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证BE =CF 。
2.已知AC =BD ,AE =CF ,BE =DF ,求证AE ∥CF
3.已知AB =CD ,BE =DF ,AE =CF ,求证AB ∥CD
4.已知在四边形ABCD 中,AB =CD ,AD =CB ,求证AB ∥CD
5.已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证⊿ABD ≌⊿ACE .
6.已知CD ∥AB ,DF ∥EB ,DF =EB ,求证AF =CE
7.已知BE =CF ,AB =CD , ∠B =∠C ,求证AF =DE 8.已知AD =CB , ∠A =∠C ,AE =CF ,求证EB ∥DF
9.已知M 是AB 的中点,∠1=∠2,MC =MD ,求证∠C =∠D 。
10.已知,AE =DF ,BF =CE ,AE ∥DF ,求证AB =CD 。
11.已知∠1=∠2,∠3=∠4,求证AC =AD
12.已知∠E =∠F ,∠1=∠2,AB =CD ,求证AE =DF
13.已知ED ⊥AB ,EF ⊥BC ,BD =EF ,求证BM =ME 。
14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,求证⊿BHD ≌⊿ACD 。
A
C
D
B 1
2 3 4
A B C
D
E
F
1 2
A
B
C
E H
A
C M E F B
D
A B
C
D
F
E A C
B
D
E
F D
C
F E A
B A
D
E
B C
1 2
A
D
C E
F B
A D
B
A
D
F
E
C
M
A
B
C D 1 2
D
C
F E A B
15.已知∠A =∠D ,AC ∥FD ,AC =FD ,求证AB ∥DE 。
16.已知AC =AB ,AE =AD , ∠1=∠2,求证∠3=∠4。
17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,求证⊿ABC ≌⊿DEF 。
18.已知AD =AE ,∠B =∠C ,求证AC =AB 。
19.已知AD ⊥BC ,BD =CD ,求证AB =AC
20.已知∠1=∠2,BC =AD ,求证⊿ABC ≌⊿BAD 。
21.已知AB =AC , ∠1=∠2,AD =AE ,求证⊿ABD ≌⊿ACE .
22.已知BE ∥DF ,AD ∥BC ,AE =CF ,求证⊿AFD ≌⊿CEB
23.已知AD =AE ,BD =CE ,∠1=∠2,求证⊿ABD ≌⊿ACE
24.已知AB =AC ,AD =AE ,∠1=∠2,求证CE =BD 。
25.已知CE ⊥AB ,DF ⊥AB ,AC ∥DB ,AC =BD ,求证CE =DF
26.如图,AD =BC ,AE =BE ,求证∠C =∠D 。
A B
C
E
F
D
C
A
E
B
F
D
A B
C
E D
F A D E B
C
A
B
C
D
A B
A D
F
E C
A
B C
D E
1 2 A C
D
B
E F
G 1 2 A
D E B
C
1 2
3
4
A
C D
E
B
A D
B
E
C
1
2
27.已知∠1=∠2,AC =BD ,E ,F ,A ,B 在同一直线上,求证∠3=∠4
28.已知D O ⊥BC ,O C =O A ,O B =O D ,求证CD =AB
29.已知CE=DF ,AE =BF ,AE ⊥AD ,FD ⊥AD ,求证⊿EAB ≌⊿FDC
30.已知AB 与CD 相交于点E ,EA =EC ,ED =EB ,求证⊿AED ≌⊿CEB
31.已知AB =AC ,D ,E 分别是AB ,AC 的中点。
求证BE =CD 。
32.已知DE =FE ,FC ∥AB ,求证AE =CE 。
33.已知CE ⊥AB ,DF ⊥AB ,CE =DF ,AE =BF ,求证⊿CEB ≌⊿DF A 。
34.如图,D ,E ,F ,B 在一条直线上,AB =CD ,∠B =∠D ,BF =DE ,求证(1)AE =CF (2)AE ∥CF 。
35.已知,点C 是AB 的中点,CD ∥BE ,且CD =BE ,求证∠D =∠E 。
36.已知,E 、F 是AB 上的两点,AE =BF ,又AC ∥DB ,AC =DB ,求证CF =DE 。
A E D C
B
O
C D
A
E F
B 2
1 3
4 B
A
C D E
F
C
D
E
F A B
D
A E C
B 1 2
B
A
D
F
E
C A
C
B
D
E
C
A
E
B
F
D
A D B
E F C
A C
B
E D
37.已知,AC⊥CE,AC=CE,∠ABC=∠DEC=900,求证BD=AB+ED。
38.⊿ABC≌⊿A′B′C′,AD与A′D′分别是中线,求证AD=A′D′。
39.已知:如图, E, B, F, C四点在同一直线上, ∠A=∠D=90° , BE=FC, AB=DF.求证:∠E=∠C
40.已知:如图, DN=EM , 且DN AB于D , EM AC于E , BM=CN.求证:∠B=∠C.
41.已知:如图, AE , FC都垂直于BD , 垂足为E、F , AD=BC , BE=DF.求证:OA=OC. 42.已知:如图, AB=CD , D、B到AC的距离DE=BF.求证:AB∥CD.
43.已知:如图, OC=OD , AD OB于D , BC OA于C,求证:EA=EB.
44.如图, 已知:∠ACB和∠ADB都是直角, BC=BD , E
是AB上任一点,求证:CE=DE.
45.已知:如图,∠A=∠D=90°,AC,BD交于O,AC=BD,求证:OB=OC.
A
B C D
E
A
B C
D
A′B′C′
D′。