金陵科技学院 高数模拟卷及练习题答案 (1)

合集下载

金陵科技学院试卷习题实用模板

金陵科技学院试卷习题实用模板

江苏省丹阳中等专业学校考试一试卷/学年第学期共 4 页第 1页课程所属部门:商贸部课程名称:眼科学基础课程编号:考试方式:( A、 B、开、闭)卷使用班级:学号:姓名:题号一二三四五六七八九十总分得分一、名词解说(每题 4 分,共 20 分)此题1.准分子激光角膜板层切削术得分2.眼压3.双眼单视4.睫状突:5.盲二、单项选择题(在每题的 4 个备选答案中,选出 1 个正确答案,并将正确答案的序号填在题干的括号内。

每题 2 分,共30 分)此题得分1.眼部感染最常用的药物是()。

A.抗真菌药 B .抗病毒药 C .散瞳药 D .抗生素 E .抗炎药2.治疗细菌惹起的眼部感染,以下药物中无效的是()。

A.氧氟沙星 B .多粘菌素 B C .磺胺药 D .利福平 E .两性霉素 B3. Leber 是精神病变是()。

A.性染色体遗传病 B .常染色体遗传病 C .多基因遗传病 D .线粒体遗传病4.以下基因型是杂合子的是()。

A. AA B.Aa C.aa D.以上都不是5.在某一凝视眼位,双眼拥有同样作用的一对肌肉称为()A.拮抗肌B.共同肌C.协助肌D.配偶肌E.协动肌6.世界卫生组织1999 年 2 月倡始全世界根治可防止盲的目标()A.“视觉 2010,享有看见的权益”行动B.“视觉 2020,享有看见的权益”行动C.“视觉 2025,享有看见的权益”行动D.“视觉 2030,享有看见的权益”行动E.“视觉 6 月 6 日享有看见的权益”行动7.以下描绘不属于结膜充血的是()。

A.颜色鲜红B.愈近角膜缘充血愈显然C.点肾上腺素后充血可消逝D.充血血管清楚E.充血血管可随球结膜的挪动而挪动8.用角膜映光(Hirschberg)法检查眼位,角膜映光点位于瞳孔缘时,其偏斜度大概是( ) A. 25°B.15°C.20°D.5°E.以上均不是9.以下备注答案中,哪- 个属于逆规散光()A. -1 . 00/ +1. 00DC× 135 B.-1.00DS/-1.75DC× 180C. -2 . 00DS/-2 . 25DC× 90 D.-4.00DS/+1.25DC× 45E. -3 . OODS/-1 . 50DC× 4510.屈光性要素所致的散光,多半因为()异样所致。

2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2020年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩∁U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.4.运行如图所示的伪代码,其结果为.【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,用裂项法即可求值得解.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,所以S=S=++…+=×(1﹣+﹣…+﹣)=(1﹣)=.故答案为:.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为﹣=1.【考点】双曲线的简单性质.【分析】求得已知双曲线的渐近线方程,设出所求双曲线的方程为﹣=1(a,b>0),求出渐近线方程和准线方程,由题意可得=,=,结合a,b,c的关系,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线的渐近线为y=±x,设所求双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,准线方程为y=±,由题意可得=,=,又a2+b2=c2,解得a=2,b=,即有所求双曲线的方程为﹣=1.故答案为:﹣=1.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为﹣2.【考点】函数恒成立问题.【分析】由题意可得a≤f(x)的最小值,运用单调性,可得f(0)取得最小值,即可得到a的范围,进而得到a的最大值.【解答】解:由,可得0≤x≤4,由f(x)=﹣,其中y=在[0,4]递增,y=﹣在[0,4]递增,可得f(x)在[0,4]递增,可得f(0)取得最小值﹣2,可得a≤﹣2,即a的最大值为﹣2.故答案为:﹣2.7.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.【考点】棱柱、棱锥、棱台的体积.【分析】求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.【解答】解:设正五棱锥高为h,底面正五边形的角为108°,底面正五边形中心到边距离为:tan54°,h=,则此正五棱锥体积为:×=20.故答案为:20.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,3).【考点】分段函数的应用.【分析】判断f(x)在R上递增,由f(x2﹣2x)<f(3x﹣4),可得或,解不等式即可得到所求解集.【解答】解:当x<3时,f(x)=﹣x2+6x=﹣(x﹣3)2+9,即有f(x)递增;故f(x)在R上单调递增.由f(x2﹣2x)<f(3x﹣4),可得或,解得或,即为1<x≤或<x<3,即1<x<3.即有解集为(1,3).故答案为:(1,3).10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[,1).【考点】余弦定理.【分析】设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.由于⊥,可得•=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).利用函数的单调性即可得出.【解答】解:设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.∴•=(t﹣)•(﹣)=﹣t2+(+1)•﹣2.∵⊥,∴•=﹣t2+(+1)•﹣2=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).由于f(t)是[0,1]是的单调递增函数,∴f(0)≤f(t)≤f(1),即:≤f(t)≤,即:≤cosA≤,∵A∈(0,π),∴cosA<1,∴cosA的取值范围是:[,1).故答案为:[,1).11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是(0,1)∪[3,+∞).【考点】简单线性规划的应用.【分析】由题意作平面区域,从而结合图象可知y=a x的图象过点(3,1)时为临界值a=3,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,y=a x的图象过点(3,1)时为临界值a=3,且当0<a<1时,一定成立;故答案为:(0,1)∪[3,+∞).12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是{a|a≤﹣4或a≥0} .【考点】利用导数研究函数的极值.【分析】函数f(x)=x2+2x+alnx在区间(0,1)内无极值点⇔函数f(x)在(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(01,)内恒成立.再利用导数的运算法则、分离参数法、函数的单调性即可得出.【解答】解:函数f(x)=x2+2x+alnx在区间(0,1)内无极值⇔函数f(x)=x2+2x+alnx 在区间(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(0,1)内恒成立.由f′(x)=2x+2≥0在(0,1)内恒成立⇔a≥(﹣2x﹣2x2)max,x∈(0,1).即a≥0,由f′(x)=2x+2≤0在(0,1)内恒成立⇔a≤(﹣2x﹣2x2)min,x∈(0,1).即a≤﹣4,故答案为:a≤﹣4或a≥0.故答案为:{a|a≤﹣4或a≥0}.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为(2,4).【考点】全称命题;特称命题.【分析】由①可得当x≤﹣1时,g(x)<0,根据②可得g(1)=a(1﹣a+3)>0,由此解得实数a的取值范围.【解答】解:∵已知函数,根据①∀x∈R,f(x)<0,或g(x)<0,即函数f(x)和函数g(x)不能同时取非负值.由f(x)≥0,求得x≤﹣1,即当x≤﹣1时,g(x)<0恒成立,故,解得:a>2;根据②∃x∈(﹣1,1),使f(x)•g(x)<0成立,∴g(1)=a(1﹣a+3)>0,解得:0<a<4,综上可得:a∈(2,4),故答案为:(2,4)14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为64或65.【考点】数列递推式.【分析】由题意可得:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,则2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论后求得满足条件的正整数A的值.【解答】解:依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,∴2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:2t≤A<2t+1,2t+d﹣3≤A<2t+d﹣2,,故max{}≤A<min{},由以下关系:2t+d﹣3<2t+1,,得d<4,∵d为正整数,∴d=1,2,3.当d=1时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=2时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=3时,max{}=max{}=2t,min{}=min{}=>2t,适合题意.此时2t≤A<,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴≤A<.当t=4时,24≤A<,∴无解.当t=5时,25≤A<,∴无解.当t=6时,26≤A<,∴64≤A<.当t=7时,27≤A<,∴无解.则26≤A<.∵A∈N*,∴A=64或A=65.综上:A=64或65.故答案为:64或65.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)利用已知条件求出sin()与cos(),然后利用二倍角公式以及两角和的正弦函数化简求解即可.(2)求出正切函数的二倍角的值,利用两角和的正切函数化简求解即可.【解答】解:(1)角α终边逆时针旋转与单位圆交于点,可得sin()=,cos()=,sin(2)=2sin()cos()==,cos(2)=2×=.=sin(2﹣)=sin(2)cos﹣sin cos(2)==.(2)∵,∴tan(2α+2β)===.sin(2)=,cos(2)=.tan(2)=.tan(2α+2β)=tan[()+(2)]==,解得=.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC ⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.【解答】证明:(1)∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,∴PA⊥AB,PA⊥AD,又AB∩AD=A,∴PA⊥平面ABCD,∵BD⊥PA,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∩PA=A,∴BD⊥平面PAC.解:(2)直线l不能与平面ABCD平行.理由如下:∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,∴CD与AB有交点P,∴P∈l,∴直线l∩平面ABCD=P,∴直线l不能与平面ABCD平行.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.【考点】椭圆的简单性质.【分析】(1)设P(x,y),由题意可得k PD•k PE=﹣,运用直线的斜率公式,化简即可得到所求轨迹方程;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,设A(x1,y1),B(x2,y2),运用韦达定理,点满足直线方程,再由过O的直线x=﹣my交椭圆C于M,N两点,求得M,N的坐标,运用直线的斜率公式,化简整理,即可得到直线AM与直线BN斜率之和为定值0.【解答】解:(1)设P(x,y),由题意可得k PD•k PE=﹣,即有•=﹣,化为+=1;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,可得(2+m2)y2+2my﹣2=0,设A(x1,y1),B(x2,y2),即有y1+y2=﹣,y1y2=﹣,x1=my1+,x2=my2+,由题意可得,过O的直线x=﹣my交椭圆C于M,N两点,解得M(﹣,),N(,﹣),可得k AM+k BN=+,通分后的分子=x2y1﹣x2﹣y1+x1y2+x1+y2+=2my1y2+(y1+y2)+(x1﹣x2)+(y2﹣y1)+=﹣﹣+(y1﹣y2)+(y2﹣y1)+=0.即有直线AM与直线BN斜率之和为定值0.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.【考点】旋转体(圆柱、圆锥、圆台);基本不等式在最值问题中的应用.【分析】(1)根据面积得出圆锥的底面半径,利用勾股定理求出圆锥的高,代入体积公式即可;(2)利用基本不等式得出体积的最值及取得最值得条件;(3)求出圆锥内切球的半径,与0.5比较大小.【解答】解:(1)由题意知圆锥的母线l=3,设圆锥的底面半径为r,则2πr=3α,∴r=,∴圆锥的高h===.∴V==.(2)V==≤=2.当且仅当4π2﹣α2=即α=时,取等号.∴当α=时,体积V取得最大值.(3)当圆锥体积最大时,圆锥的底面半径r=.设圆锥轴截面△ABC的内切圆⊙O半径为R,如图所示,则OD=R,CD=CE=,AC=3,∴AE=,AD=3﹣.由△AOD∽△ACE得,∴,解得R=3≈0.8.∵0.8>0.5,∴容积最大的圆锥形容器能完全盖住桌面上一个半径为0.5分米的球.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.【考点】数列的求和;等比关系的确定.=1作差可知a n+1=3a n(n≥2),进而可知数列{a n}【分析】(1)通过S n+1﹣3S n=1与S n﹣3S n﹣1是首项为1、公比为3的等比数列;(2)通过(1)可知a n=3n﹣1、S n=(3n﹣1),假设存在满足题意的项a k,则3k﹣1=S r+t﹣S t,进而化简可知不存在r满足3r﹣x﹣=2,进而可得结论;(3)通过(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,通过化简可知q=3q﹣p(2p﹣3p﹣1),利用当p≥3时2p﹣3p﹣1<0可知当p≥3时不满足题意,进而验证当p=2时是否满足题意即可.【解答】(1)证明:∵S n+1﹣3S n=1,=1,∴当n≥2时,S n﹣3S n﹣1两式相减得:a n+1=3a n,又∵S n+1﹣3S n=1,a1=1,∴a2=S2﹣S1=2a1+1=3满足上式,∴数列{a n}是首项为1、公比为3的等比数列;(2)解:结论:不存在满足题意的项a k;理由如下:由(1)可知a n=3n﹣1,S n==(3n﹣1),假设数列{a n}中存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和,则3k﹣1=S r+t﹣S t=(3r+t﹣1)﹣(3t﹣1)=(3r+t﹣3t)=•3t(3r﹣1),于是(3r﹣1)=3x(其中x为大于1的自然数),整理得:3r﹣x﹣=2,显然r无解,故假设不成立,于是不存在满足题意的项a k;(3)解:结论:存在唯一的数组(p,q)=(2,3)满足题意;理由如下:由(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,则2b p=b1+b q,即2=+,整理得:2p•3q﹣p=3q﹣1+q,∴q=2p•3q﹣p﹣3q﹣1=3q﹣p(2p﹣3p﹣1),∵当p≥3时2p﹣3p﹣1<0,∴当p≥3时不满足题意,当p=2时,2=+即为:=+,整理得:=,解得:q=3,综上所述,存在唯一的数组(p,q)=(2,3)满足题意.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.【考点】函数恒成立问题.【分析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.【解答】解:(1)若ax>lnx恒成立,则a>,在x>0时恒成立,设h(x)=,则h′(x)==,由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,即当x=e时,函数h(x)取得极大值同时也是最大值h(e)==.即a>.(2)设f(x)=lnx,g(x)=ax,(x>0),则f′(x)=,当g(x)与f(x)相切时,设切点为(m,lnm),则切线斜率k=,则过原点且与f(x)相切的切线方程为y﹣lnm=(x﹣m)=x﹣1,即y=x﹣1+lnm,∵g(x)=ax,∴,得m=e,a=.即当a>时,ax>lnx恒成立.当a=时,当x0≥时,要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.当0<a<时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,当x>x0时,ax>lnx恒成立.∴∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.【考点】与圆有关的比例线段.【分析】连结OD、AD,证出△ADB≌△ODC,得到AB=CO,从而证出结论.【解答】证明:如图示:,连结OD、AD,∵AB是圆O的直径,∴∠ADB=90°,AB=2AO,∵DC是⊙O的切线,∴∠CDO=90°,∵DB=DC,∴∠B=∠C,∴△ADB≌△ODC,∴AB=CO,即2OA=OA+CA,∴CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.【考点】几种特殊的矩阵变换.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.【考点】简单曲线的极坐标方程.【分析】求出点A,B的直角坐标,利用点斜式方程得出直线l的直角坐标方程,再求出曲线C的普通方程,求出圆心和半径,利用d=r构建出a的方程,解出a的值.【解答】解:由直线l过点,可得A,B的直角坐标为A(,),B(0,3),直线AB的斜率k==,即有直线l的方程为:y﹣3=x,即y=x+3,由曲线C:ρ=asinθ(a>0),可得曲线C的普通方程为x2+y2﹣ay=0,即有圆心C(0,),r==,直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点即直线和圆相切,可得,解得a=2或﹣6,由a>0,可得a=2.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.【考点】函数的最值及其几何意义.【分析】根据条件利用平方关系结合一元二次函数的性质进行求解即可.【解答】解:由得,即5≤x≤7,由平方得y2=x﹣5+7﹣x+2=2+2,∵5≤x≤7,∴当x=6时,函数y2=2+2取得最大值为y2=2+2=4,当x=5或7时,函数y2=2+2取得最小值为y2=2,即2≤y2≤4,则≤y≤2,即函数的最大值为2.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PC与BD所成角的余弦值.(2)求出平面PBC的法向量和平面PCD的法向量,利用向量法能求出钝二面角B﹣PC﹣D的大小.【解答】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设AP=AB=AD=2BC=2,则P(0,0,2),C(2,1,0),B(2,0,0),D(0,2,0),=(2,1,﹣2),=(﹣2,2,0),设异面直线PC与BD所成角为θ,则cosθ===.∴异面直线PC与BD所成角的余弦值为.(2)=(2,0,﹣2),=(2,1,﹣2),=(0,2,﹣2),设平面PBC的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(1,2,2),设钝二面角B﹣PC﹣D的平面角为θ,cosθ=﹣|cos<>|=﹣||=﹣,∴θ=135°,∴钝二面角B﹣PC﹣D的大小为135°.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?【考点】归纳推理.【分析】(1)若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得a7,a10中一个为1,一个为0,进而得到答案;(2)若第十一层十一个数为0或1,a1为5的倍数,则a56,a66中一个为1,一个为0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,进而得到答案.【解答】解:(1)若第二层的两个数为0或1,则a1=a2+a3,由a1为奇数,可得第二层的两个数有2种不同的取法;若第三层的三个数为0或1,则a1=a4+2a5+a6,由a1为奇数,可得第三层的三个数有4种不同的取法;若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得第四层的四个数有8种不同的取法;(2)根据(1)中结论,若第十一层十一个数为0或1,则a1=a56+2(a57+a58+…+a65)+a66,若a1为5的倍数,则a56,a66中一个为1,一个为0,a57+a58+…+a65=2,或a57+a58+…+a65=7,即a57,a58,…,a65中有2个1或2个0,则第十一层十一个数共有=144种不同取法.2020年8月12日。

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省专转本(数学)模拟试题及参考答案(一)

江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。

【KS5U解析】金科大联考2020届高三5月质量检测数学(文科)试题 Word版含解析

【KS5U解析】金科大联考2020届高三5月质量检测数学(文科)试题 Word版含解析

①若直线
PF1
的斜率不存在,则点
P

Q
的坐标分别为
1,
3 2

1,
3 2

有 PF1 QF2 3
②若直线 PF1的斜率存在,设直线 PF1的方程为 y k x 1k 0,
x2 y2
联立方程
4
3
1 ,消去 y 后整理为
4k 2 3
x2 8k 2 x 4k 2 12 0 ,
2019~2020 学年金科大联考高三 5 月质量检测
文科数学
一、选择题:在每小题给出的四个选项中,只有一项符合题目要求.
1. 已知集合 A x y ln x 1 , B x x2 4x 0 ,则 A B ( ).
A. 0, 4
B. 1, 4
C. 0,1
D. e, 4
【答案】B 【解析】 【分析】 先利用对数函数定义域的求法和一元二次不等式的解法,化简集合 A,B,再利用交集的运算 求解.
D. 2, 4
【详解】由题意有 m 0 , e m 3 1 3 ,
m
m
2 1 3 2 ,解得1 m 3. m
故选:B. 【点睛】本题考查由双曲线的离心率求参数范围,求得离心率表达式是解题关键,属于基础 题.
6.
函数
f
x
sin
x
π 6
cos
x
π 6
的最大值为(
).
A. 3 2
B. 1 2
3
3
3
所以
sin
2π 3
2C
sin
2
2π 3
C


sin
2π 3
2C
sin

江苏金陵中学2020届高考数学检测卷及答案及评分标准

江苏金陵中学2020届高考数学检测卷及答案及评分标准

江苏金陵中学2020届高考数学检测卷数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.已知全集U ={-1,0,2,3},集合A ={-1,2,3},则∁U A =▲________.2.若复数z =(1+3i)2,其中i 为虚数单位,则z 的模为▲________.3.执行如图所示的算法流程图,则输出的b 的值为▲________.4.如图,这是甲、乙两位同学在5次数学测试中得分的茎叶图, 则平均成绩较小的那一位同学的平均成绩为▲________.5.将黑、白两个小球随机放入编号分别为1,2,3的三个盒子 中,则黑、白两个小球在同一个盒子里的概率为▲________.6.关于x 的不等式lg(2x -4)<1的解集为▲________.7.在平面直角坐标系xOy 中,已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程为y =±3x ,则该双曲线的离心率为▲________.8.已知函数f (x )=sin(2x +φ)(0≤φ<π)图象的一条对称轴是直线x =π6,则f (2φ)的值为▲________.9.在公差d 不为零的等差数列{a n }中,a 1,a 3,a 9成等比数列,则a 1d的值为▲________. (第4题) (第3题)10.在△ABC 中,AB =AC =2,BC =23,点D 满足→DC =2→BD ,则→AD ·→DC 的值为▲_____.11.已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于▲________.12.已知x >0,y >0,且x +y =1,则x +2xy 的最小值为▲________.13.在平面直角坐标系xOy 中,直线l :kx -y +5k =0与圆C :x 2+y 2-10x =0交于点A ,B ,M 为弦AB 的中点,则点M 的横坐标的取值范围是▲________.14.已知函数f (x )=e x (e 为自然对数的底数),g (x )=a x .若对任意的x 1∈R ,存在x 2>x 1,使得f (x 1)=g (x 2),且x 2-x 1的最小值为ln22,则实数a 的值为▲________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 是矩形,且AF ⊥CD . (1)求证:平面ADF ⊥平面ABCD ; (2)求证:CD ∥EF .16.(本小题满分14分)在平面直角坐标系xOy 中,以Ox 轴为始边作两个钝角α,β,它们的终边分别与单位圆交于点A ,B .已知点A ,B 的横坐标分别为-31010,-210. (1)求cos(α-β)的值;(第15题)(2)求2α-β的值.17.(本小题满分14分)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a -3x500)万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?18.(本小题满分16分)如图,已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的离心率为12,右准线方程为x =4,A ,B 分别是椭圆C 的左,右顶点,过右焦点F 且斜率为k (k >0)的直线l 与椭圆C 相交于M ,N 两点(其中,M 在x 轴上方).(1)求椭圆C 的标准方程;(2)设线段MN 的中点为D ,若直线OD 的斜率为-12,求k 的值;(3)记△AFM ,△BFN 的面积分别为S 1,S 2,若S 1S =32,求M 的坐标.(第18题)19.(本小题满分16分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1-2S n =1 (n ∈N *). (1)求证:数列{a n }为等比数列;(2)若数列{b n }满足:b 1=1,b n +1=b n 2+1a n +1.①求证:数列{2n -1b n }为等差数列,并求出{b n }的通项公式;②是否存在正整数n ,使得i =1n∑b i =4-n 成立?若存在,求出所有n 的值;若不存在,请说明理由.20.(本小题满分16分)已知函数f (x )=e x -a (x +1),其中e 自然对数的底数,a ∈R . (1)讨论函数f (x )的单调性,并写出相应的单调区间;(2)已知a >0,b ∈R ,若f (x )≥b 对任意x ∈R 都成立,求ab 的最大值;(3)设g (x )=(a +e )x ,若存在x 0∈R ,使得f (x 0)=g (x 0)成立,求a 的取值范围.数学Ⅱ(附加题)21.本题包括A 、B 两小题,请在相应的答题区域内作答.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy 中,若点P (0,3)在矩阵M =⎣⎢⎡⎦⎥⎤1x3y对应的变换作用下得到点Q (6,12),求M -1.B .[选修4-4:坐标系与参数方程](本小题满分10分)已知椭圆C 的参数方程为⎩⎨⎧x =3cos θ,y =sin θ(θ为参数).若点P 在椭圆C 上,求点P 到直线l :x +y -8=0的距离d 的最大值.[必做题]第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)某高校的综合评价面试中,考生都要经过三个独立项目A ,B ,C 的测试,如果通过两个或三个项目的测试即可被录取.若甲、乙、丙三人通过A ,B ,C每个项目测试的概率都是12.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录取的人数为X ,求X 的概率分布和数学期望.23.(本小题满分10分)如图,在四棱锥P-ABCD中,PB⊥底面ABCD,AB⊥BC,AD∥BC,BC =2,BA=1,AD=3,PB=3.(1)求二面角P-CD-A的平面角的余弦值;(2)若点E在棱P A上,且BE⊥平面P AD,求直线BE和平面PCD所成角的正弦值.(第23题)阶段性检测 数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.{0} 2.10 3.16 4.90 5.13 6.(2,7) 7.2 8.12 9.1 10.-4311.3π12.解析:因为x +y =1,所以x +2xy =x +2(x +y )xy =3x +2y xy =2x +3y =(2x +3y )(x +y )=2y x +3xy+5≥5+26,当且仅当⎩⎨⎧2y x =3x y x +y =1,即⎩⎪⎨⎪⎧x =6-2y =3-6时取“=”.13.解析:因为直线l :kx -y +5k =0过定点P (-5,0),且CM ⊥MP ,所以点M 在以CP 为直径的圆上.设点M (x ,y ),则x 2+y 2=25.联立⎩⎨⎧x 2+y 2=25x 2+y 2-10x =0,解得x =52.又因为点M 在圆C 内,所以点M 的横坐标的取值范围为(52,5].14.解析:令f (x 1)=g (x 2)=t ,则e x 1=a x 2=t ,故x 1=ln t ,x 2=t2a2.令h (t )=x 2-x 1=t 2a 2-ln t ,则h’(t )=2t a 2-1t .令h’(t )=0得t =22a .当t >22a 时,h’(t )>0,h (t )单调递增;当0<t <22a 时,h’(t )<0,h (t )单调递减.因此,[h (t )]min =h (22a )=12-ln(22a )=ln22,解得a =e .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(1)因为四边形ABCD 为矩形,所以AD ⊥CD . ··············· 2分又AF ⊥CD ,AF ∩AD =A ,AF ,AD ⊂平面ADF ,所以CD ⊥平面ADF , ·············································· 5分 又CD ⊂平面ABCD ,所以平面ADF ⊥平面ABCD . ···································· 7分 (2)因为四边形ABCD 为矩形,所以AB ∥CD , ··············· 9分 又AB ⊂平面ABEF ,CD ⊄平面ABEF ,所以CD ∥平面ABEF , ·········································· 11分 又CD ⊂平面DCEF ,平面DCEF ∩平面ABEF =EF , ∴CD ∥EF . ························································· 14分16.(1)因为点A ,B 的横坐标分别为-31010,-210,结合三角函数的定义得cos α=-31010,cos β=-210. ···· 2分因为α,β均为钝角,所以sin α=1-cos 2α=1010,sin β=1-cos 2β=7102, ·· 4分所以cos(α-β)=cos αcos β+sin αsin β=(-31010)×(-210)+1010×7102=55.················································································· 6分(2)(方法一)sin2α=2sin αcos α=-35,cos2α=cos 2α-sin 2α=45,8分因为α∈(π2,π),2α∈(π,2π),且sin2α<0,cos2α>0,所以2α∈(32π,2π),又β∈(π2,π),所以2α-β∈(π2,32π).10分又sin(2α-β)=sin2αcos β-cos2αsin β=(-35)×(-210)-45×7102=-22, 12分所以2α-β=54π. ·················································· 14分(方法二)因为α,β∈(π2,π),cos α=-31010<cos β=-210,所以π2<β<α<π,所以0<α-β<π2.由(1)知sin(α-β)=1-cos 2(α-β)=255, ···················· 8分所以sin(2α-β)=sin[(α-β)+α]=sin(α-β)cos α+cos(α-β)sin α=255×(-31010)+55×1010=-22.10分因为0<α-β<π2,π2<α<π,所以2α-β∈(π2,32π), ····· 12分所以2α-β=54π. ·················································· 14分17.(1)由题意得,10(1000-x )(1+0.2x %)≥10×1000, ········ 2分即x 2-500x ≤0,又x >0,故0<x ≤500. ···················· 4分 即最多调整500名员工从事第三产业.························· 5分 (2)从事第三产业的员工创造的年总利润为10(a -3x500)x 万元,从事原来产业的员工的年总利润为10(1000-x )(1+1500x )万元,则10(a -3x 500)x ≤10(1000-x )(1+1500x ), ······················· 8分故ax -3x 2500≤1000+2x -x -1500x 2,故ax ≤2x 2500+1000+x ,即a ≤2x 500+1000x+1恒成立. ·································· 10分因2x 500+1000x ≥22x 500·1000x=4, 当且仅当2x 500=1000x ,即x =500时等号成立,故a ≤5, · 12分又a >0,故0<a ≤5.故a 的取值范围为(0,5]. ·········18.(1)设椭圆的焦距为2c (c >0). 依题意,c a =12,且a 2c=4,解得a =故b 2=a 2-c 2=3.所以椭圆C 的标准方程为x 24+y23=1(2)设点M (x 1,y 1),N (x 2,y 2),则x 124+y 123=1,x 224+y 223=1.6分两式相减,得(x 1-x 2)(x 1+x 2)4+(y 1-y 2)(y 1+y 2)3=0,14+13·y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=0,所以14+13·k ·(-12)=0,得k =32. ·································· 8分(3)由题意,S 1S 2=32,即12·|AF |·|y 1| 12·|BF |·|y 2|=32,整理可得|y 1||y 2|=12, 10分所以→NF =2→FM .代入坐标,可得⎩⎨⎧1-x 2=2(x 1-1)-y 2=2y 1,即⎩⎨⎧x 2=3-2x 1y 2=-2y 1. ······· 12分又点M ,N 在椭圆C 上,所以⎩⎪⎨⎪⎧x 124+y 123=1(3-2x 1)24+(-2y 1)23=1,解得⎩⎪⎨⎪⎧x 1=74y =385.所以M 的坐标为(74,358) . ··································· 16分19.(1)由S n +1-2S n =1,得S n -2S n -1=1 (n ≥2),两式相减,得a n +1-2a n =0,即a n +1a n =2 (n ≥2). ············ 2分因为a 1=1,由(a 1+a 2)-2a 1=1,得a 2=2,所以a2a 1=2,所以a n +1a n=2对任意n ∈N *都成立,所以数列{a n }为等比数列,首项为1,公比为2. ·········· 4分 (2)① 由(1)知,a n =2n -1,由b n +1=b n 2+1a n +1,得b n +1=b n 2+12n , ·························· 6分即2n b n +1=2n -1b n +1,即2n b n +1-2n -1b n =1, 因为b 1=1,所以数列{2n -1b n }是首项为1,公差为1的等差数列. 8分 所以2n -1b n =1+(n -1)×1=n ,所以b n =n2n -1. ···················································· 10分 ② 设T n =i =1n∑b i , 则 T n =1×(12)0+2×(12)1+3×(12)2+…+n ×(12)n -1,所以12T n = 1×(12)1+2×(12)2+…+(n -1)×(12)n -1+n ×(12)n ,两式相减,得12T n =(12)0+(12)1+(12)2+…+(12)n -1-n ×(12)n =1-(12)n1-12-n ×(12)n =2-(n +2)×(12)n,所以T n =4-(2n +4)×(12)n . ··································· 12分由i =1n∑b i=4-n ,得4-(2n +4)×(12)n =4-n ,即n +2n =2n -1. 显然当n =2时,上式成立,设f (n )=n +2n -2n -1 ( n ∈N *),即f (2)=0.因为f (n +1)-f (n )=(n +3n +1-2n )-(n +2n -2n -1)=[2n (n +1)+2n -1]<0,所以数列{f (n )}单调递减, 所以f (n )=0只有唯一解n =2,所以存在唯一正整数n =2,使得i =1n∑b i =4-n 成立. ······ 16分 20.(1)由f (x )=e x -a (x +1),知f’(x )=e x -a .若a ≤0,则f’(x )>0恒成立,所以f (x )在(-∞,+∞)上单调递增; 2分 若a >0,令f’(x )=0,得x =ln a ,当x <ln a 时,f’(x )<0,当x >ln a 时,f’(x )>0,所以f (x )在(-∞,ln a )上单调递减;在(ln a ,+∞)上单调递增. 4分 (2)由(1)知,当a >0时,f min (x )=f (ln a )=-a ln a .因为f (x )≥b 对任意x ∈R 都成立,所以b ≤-a ln a ,所以ab ≤-a 2ln a . 6分设t (a )=-a 2ln a ,(a >0),由t’(a )=-(2a ln a +a 2·1a)=-a (2ln a +1),令t’(a )=0,得a =e -12,当0<a <e -12时,t’(a )>0,所以t (a )在(0,e -12)上单调递增;当a >e -12时,t’(a )<0,所以t (a )在(e -12,+∞)上单调递减,所以t (a )在a =e -12处取最大值,且最大值为12e.所以ab ≤-a 2ln a ≤12e ,当且仅当a =e -12,b =12e -12时,ab 取得最大值为12e .··············································································· 10分(3)设F (x )=f (x )-g (x ),即F (x )=e x -ex -2ax -a , 题设等价于函数F (x )有零点时的a 的取值范围.① 当a ≥0时,由F (1)=-3a ≤0,F (-1)=e -1+e +a >0,所以F (x )有零点. ········································································· 12分② 当-e2≤a <0时,若x ≤0,由e +2a ≥0,得F (x )=e x -(e +2a )x -a >0;若x >0,由(1)知,F (x )=-a (2x +1)>0,所以F (x )无零点. 14分 ③ 当a <-e2时,F (0)=1-a >0,又存在x 0=1-ae +2a <0,F (x 0)<1-(e +2a )x 0-a =0,所以F (x )有零点.综上,a 的取值范围是a <-e2或a ≥0. ······················ 16分数学Ⅱ(附加题)21.A .[选修4-2:矩阵与变换](本小题满分10分)依题意得⎣⎢⎡⎦⎥⎤1x 3y ⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤612,解得⎩⎨⎧x =2y =4,即M =⎣⎢⎡⎦⎥⎤1234, ·· 5分 因为det(M )=1×4-2×3=-2≠0,所以M-1=⎣⎢⎢⎡⎦⎥⎥⎤4-2 -2-2-3-21-2=⎣⎢⎡⎦⎥⎤-2132-12. ················ 10分 B .[选修4-4:坐标系与参数方程]设P (3cos θ,sin θ), 则点P 到直线l 的距离d =|3cos θ+sin θ-8|2 ················································ 5分=|2cos(θ-π6)-8|2,所以当θ=7π6时,d 取到最大值102=52. ·················· 10分22.(1)设甲恰好通过两个项目测试的事件为A .P (A )=C 23(12)2(1-12)=38.答:甲恰好通过两个项目测试的概率为38. ···················· 2分(2)X 的所有可能取值为0,1,2,3.因为每人可被录取的概率为C 23(12)2(1-12)+(12)3=12, ········ 4分所以P (X =0)=(1-12)3=18,P (X =1)=C 13(12)(1-12)2=38,P (X =2)=C 23(12)2(1-12)=38,P (X =3)=(12)3=18.故X 的概率分布列为····················· 8分 所以X 的数学期望为E (X )=0×18+1×38+2×38+3×18=32.10分23.(1)以B 为原点,BA ,BC ,BP 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz .因为A (1,0,0),B (0,0,0),C (0,2,0),D (1,3,0),P (0,0,3), 所以→CD =(1,1,0),→PC =(0,2,-3).易知平面ACD 的一个法向量为n =(0,0,1). ·············· 1分 设平面PCD 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·→CD =0m ·→PC =0,即⎩⎨⎧x +y =02y =3z .取z =2,则m =(-3,3,2).设二面角P -CD -A 的平面角为α,可知α为锐角, ······· 3分 则cos α=|cos <n ,m >|=|n ·m ||n |·|m |=2 3+3+4=105,即二面角P -CD -A 的平面角的余弦值为105. ············· 5分 (2)因为点E 在棱P A 上,所以设→AE =λ→AP ,λ∈[0,1]. 因为→AP =(-1,0,3),所以→AE =(-λ,0,3λ), 故→BE =→BA +→AE =(1-λ,0,3λ).因为BE ⊥平面P AD ,AP ⊂平面P AD ,所以BE ⊥AP . 因为→AP =(-1,0,3),所以→BE ·→AP =0,即λ-1+3λ=0,解得λ=14, ·············· 7分所以→BE=(34,0,34),所以BE=|→BE|=32.设直线BE和平面PCD所成的角为β,可知β为锐角.因为m为平面PCD的一个法向量,则sinβ=|cos<→BE,m>|=343+3+4×32=1020,即直线BE与平面PCD所成角的正弦值为1020.··········· 10分。

江苏省2021年高考模拟考试数学试题与答案

江苏省2021年高考模拟考试数学试题与答案

江苏省2021年高考模拟考试数学试题一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|60}A x x x =--≤,{|10}B x x =-<,则A B =( )A. (,3]-∞B. (,2]-∞C. (,1)-∞D. [2,1)-2.复数2(1i)1+i-=( )A .1i -B .1i +C .1i --D .1i -+3.如图是一个装有水的倒圆锥形杯子,杯子口径6cm ,高8cm (不含杯脚),已知水的高度是4cm ,现往杯子中放入一种直径为1cm 的珍珠,该珍珠放入水中后直接沉入杯底,且体积不变.如果放完珍珠后水不溢出,则最多可以放入珍珠( )A .98颗B .106颗C .120颗D .126颗4.2020年11月,中国国际进口博览会在上海举行,本次进博会设置了“云采访”区域,通过视频连线,帮助中外记者采访因疫情影响无法来沪参加进博会的跨国企业CEO 或海外负责人.某新闻机构安排4名记者和3名摄影师对本次进博会进行采访,其中2名记者和1名摄影师负责“云采访”区域的采访,另外2名记者和2名摄影师分两组(每组记者和摄影师各1人),分别负责“汽车展区”和“技术装备展区”的现场采访.如果所有记者、摄影师都能承担三个采访区域的相应工作,则所有不同的安排方案有( )A .36种B .48种C .72种D .144种5.平行四边形ABCD 中,M 为CD 的中点,点N 满足2BN NC =,若AB AM AN λμ=+,则λμ+的值是( )A .4B .2C .14D .126.如图为我空军战机在海面上空绕台巡航,已知海面上的大气压强是760mmHg ,大气压强p (单位:mmHg )和高度h (单位:m )之间的关系为760ehkp -=(e 是自然对数的底数,k 是常数),根据实验知500m 高空处的大气压强是700mmHg ,则我战机在1000m 高空处的大气压强约是(结果保留整数)( )A. 645 mmHg B . 646 mmHg C.647 mmHg D . 648 mmHg7.已知双曲线()2222:10,0x y C a b a b -=>>的右焦点为F ,两渐近线分别为1:b l y x a =,2:bl y x a=-,过F 作1l 的垂线,垂足为M ,该垂线交2l 于点N ,O 为坐标原点,若OF FN =,则双曲线C 的离心率是( )A .2B .32C .3D .238.已知()f x x x =,对任意的x ∈R ,()()2430f ax f x +-≥恒成立,则实数a 的最小值是( )A .12 B .13 C .16 D .18二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的选项中,有多项是符合题目要求.全选对的得5分,部分选对的得3分,有选错的得0分)9..某企业2019年12个月的收入与支出数据的折线图如下:已知:利润=收入-支出,根据该折线图,下列说法正确的是( )A . 该企业2019年1月至6月的总利润低于2019年7月至12月的总利润B . 该企业2019年第一季度的利润约是60万元C . 该企业2019年4月至7月的月利润持续增长D . 该企业2019年11月份的月利润最大 10.下列命题为真命题的是( )A .若22ac bc >,则a b >B .若a b >,则122a b -> C .若00a b >>,,则2abab a b+≥D .若0a b >>,则lg 1lg a b > 11.设等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,并满足条件1202020211,1,a a a >⋅>20202021(1)(1)0a a -⋅-<.则下列结论中正确的是( )A .1q >B .20212020S S >C .202020221a a ⋅<D .2020T 是数列{}n T 中的最大值12.如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =1,则下列说法中正确的是( )A .存在点E ,F 使得AE ∥BFB .异面直线EF 与C 1D 所成的角为60° C .三棱锥B —AEF 2 D .A 1到平面AEF 3三、填空题(本大题共4个小题,每小题5分,共20分)13.已知抛物线()2:20C y px p =>的交点为F ,过F 3l 交抛物线C 与A 、B 两点,若线段AB 3C 的方程是________.14.已知sin 3cos 36ππαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,则tan2α的值是________. 15.经纬度是经度与纬度的合称,它们组成一个坐标系统,称为地理坐标系统,它是一种利用三度空间的球面来定义地球上的空间的球面坐标系统,能够标示地球上的任何一个位置,经度是个二面角,是两个经线平面(经线与地轴所成的半平面)的夹角,某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角.纬度是个线面角,某一点的纬度是指该点与地球球心的连线和地球赤道面所成的线面角.城市A 位置东经120°,北纬48°,城市B 位置为东经120°,北纬18°,若地球的半径为R ,则过A ,B 两点和地心的平面截球所得的截面圆的劣弧AB 的长是________.16.已知0a >,若ln ln a x x a ≤恒成立,则a 的值是________.四、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在①222b a c =+,②cos sin a B b A =,③sin cos B B +=,补充在下面的问题中,并解决该问题.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ______________,3A π=,b =求ABC ∆的面积.注:如果选择多个条件分别作答,按第一个解答计分.18.(本小题满分12分)已知数列{}n a 满足()112323122n n a a a na n ++++⋅⋅⋅+=-⋅+(n *∈N ).(1)求数列{}n a 的通项公式;(2)若log 2n n a b =,则在数列{}n b 中是否存在连续的两项,使得它们与后面的某一项依原来顺序构成等差数列?若存在,请将这样的两项都探究出来;若不存在,请说明理由.19.(本小题满分12分)截止到2018年末,我国公路总里程达到484.65万公里,其中高速公路达到14.26万公里,规模居世界第一.与此同时,行车安全问题也成为管理部门关注的重点.如图是某部门公布的一年内道路交通事故成因分析,由图可知,超速驾驶已经成为交通事故的一个主要因素.研究表明,急刹车时的停车距离等于反应距离与制动距离的和,下表是根据某部门的调查结果整理所得的数据(v 表示行车速度,单位:/km h ;1d ,2d 分别表示反应距离和制动距离,单位:m )道路交通事故成因分析v64 72808997 105113 121128 1351d13.415.2 16.718.620.1 21.9 23.525.326.8 28.5(1)从一年内发生的道路交通事故中随机抽出3起进行分析研究,求其中恰好有1起属于超速驾驶的概率(用频率代替概率);(2)已知2d 与v 的平方成正比,且当行车速度为100/km h 时,制动距离为65m .(i )由表中数据可知,1d 与v 之间具有线性相关关系,请建立1d 与v 之间的回归方程,并估计车速为110/km h 时的停车距离;(ii )我国《道路交通安全法》规定:车速超过100/km h 时,应该与同车道前车保持100m 以上的距离,请解释一下上述规定的合理性.参考数据:1011004ii v==∑,()1011210i i d ==∑,()101122187.3i i i v d ==∑,1021106054i i v ==∑,110330.2152524≈;参考公式:()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.20.(本小题满分12分)如图,已知四棱锥S -ABCD 的底面为直角梯形,且满足AB ∥CD ,BC ⊥AB ,AB =9,BC =CD =SD =6,SB =12,平面SCD ⊥平面SBC . M 为线段SC 的中点,N为线段AB 上的动点.(1)求证:平面SCD ⊥平面ABCD ;(2)设AN =λNB (λ>0),当二面角C -DM -N 的大小为60°时,求λ的值.21.(本小题满分12分) 已知函数()ln 1f x x ax =++. (1)讨论()f x 的单调性; (2)对任意0x >,2e ()xx f x 恒成立,求实数a 的最大值.22.(本小题满分12分)已知椭圆()2222:10x y C a b a b +=>>,点在椭圆C 上.A 、B 分别为椭圆C 的上、下顶点,动直线l 交椭圆C 于P 、Q 两点,满足AP AQ ⊥,AH PQ ⊥,垂足为H .(1)求椭圆C 的标准方程; (2)求ABH △面积的最大值.数学模拟试题参考答案1.A 2.C 3.D 4.A 5.D 6.A 7.D 8.C 9.AC 10.BC 11.BCD 12.BCD13.26y x = 14.- 15.6πR16.e 解析: ()ln ln ,0f x a x x a a =->,17.解:选择①:2222b ac a c =+,由余弦定理22222cos 222a cb ac B ac ac +-===, 因为(0,)B π∈,所以4B π=;由正弦定理sin sin a b A B=,得2sin sin 33sin 22b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=, 所以562sin sinsin sin cos cos sin 12464646C πππππππ+⎛⎫==+=+=⎪⎝⎭, 所以116233sin 322244ABC S ab C ∆===. 若选择②:cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =,因为(0,)B π∈,所以4B π=;由正弦定理sin sin a b A B=,得2sin sin 33sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ∆===.若选择③:sin cos B B +=4B π⎛⎫+= ⎪⎝⎭所以sin 14B π⎛⎫+= ⎪⎝⎭,因为(0,)B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭,所以42B ππ+=,所以4B π=; 由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin 2244ABC S ab C ∆===. 18.解:(1)由题意,得()112323122n n a a a na n ++++⋅⋅⋅+=-⋅+,当2n ≥时,()()1231231222nn a a a n a n -+++⋅⋅⋅+-=-⋅+, 两式相减,得()()11222n n n na n n +=-⋅--⋅,即2n n a =.当1n =时,12a =,也满足上式,所以数列{}n a 的通项公式2nn a =.(2)22111log 2log log 2n n a n n b a n====,法一:11b =,212b =,显然不适合;212b =,313b =适合,即212b =,313b =,616b =构成公差为16-的等差数列; 313b =,414b =适合,即313b =,414b =,616b =构成公差为112-的等差数列;当4n ≥时,假设n b ,1n b +,n k b +(2k ≥)成等差数列,则12n n n k b b b ++=+, 即12211122121n k n n n b b b n n n n n n ++-=-=-==++++-,而当4n ≥时,21n *∉-N ,所以n k b +不是数列{}n b 中的项,所以当4n ≥时,不存在连续两项,使之与数列后面某一项依原顺序成等差数列. 综上,2b ,3b 和3b ,4b 适合条件. 法二:11b =,212b =显然不适合; 当2n ≥时,设n b ,1n b +,n k b +(2k ≥)成等差数列,则12n n n k b b b ++=+,即2111n n n k =+++,解得221k n =+-. 当2n =时,4k =,则212b =,313b =,616b =构成公差为16-的等差数列;当3n =时,3k =,则313b =,414b =,616b =构成公差为112-的等差数列;当4n ≥时,21n *∉-N ,则k *∉N ,所以n k b +不是数列{}n b 中的项,所以当4n ≥时,不存在连续两项,使之与数列后面某一项依原顺序成等差数列. 综上,2b ,3b 和3b ,4b 适合条件.19.解:(1)由题意可知从一年内发生的交通事故中随机抽出一起事故,则该起事故是恰好是超速驾驶的概率为0.2,设“恰好有一起事故属于超速驾驶”为事件A ,则21311()155P A C ⎛⎫=⨯⨯- ⎪⎝⎭48125= (2)由题意,设22d k v =⋅,因为当行车速度为100/km h 时,制动距离为65m , 所以0.0065k =,即220.0065d v =,(i )因为1d 与v 之间具有线性相关关系,故设1ˆˆˆd bv a =+,因为()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx ====---==--∑∑∑∑所以()1011110222122187.310100.4211103.3ˆ0.2110605410100.45252.4i ii ii v d nvd bvnv ==--⨯⨯===≈-⨯-∑∑故1ˆˆ0.21d v a =+,把(100.4,21)代入上式,解得ˆ0.084a =-, 则1d 与v 之间的回归方程为:1ˆ0.210.084d v =-: 设停车距离为d ,则12d d d =+,则20.00650.210.084d v v =+-,当110/v km h =时,101.666d =,即车速为110/km h 时的停车距离为101.666m(ii )易知当车速为100/km h 时,停车距离为85.916m ,该距离小于100m , 又因为当车速为110/km h 时的停车距离为101.666m ,该距离大于100m ,由以上两个数据可知,当车速超过100/km h 时,必须与同车道前车保持100米以上的距离才能保证行驶安全.21.解:(1)11()(0)ax f x a x x x +'=+=> 当0a 时,(0,)x ∈+∞,1()0ax f x x+'=>,所以()f x 在(0,)+∞上单调递增;当0a <时,1(0,)x a ∈-,1()0ax f x x+'=>,所以()f x 在1(0,)a -上单调递增; 1(+)x a ∈-∞,,1()0ax f x x +'=<,所以()f x 在1(+)a-∞,上单调递减; 综上:当0a 时,()f x 在(0,)+∞上单调递增;当0a <时,()f x 在1(0,)a -上单调递增,在1(+)a-∞,上单调递减. (2)任意0x >,2e ()xx f x ,即2e ln 10x x x ax ---恒成立, 即ln 2e ln 10x x x ax +---恒成立;令ln 2g()=e ln 1x x x x ax +---,则任意0x >,ln 2g()=e ln 10x x x x ax +---,因为,存在正实数0x ,满足:00ln 20x x +=,且00ln 2000g()=e ln 10x x x x ax +---,所以0020x ax -,所以2a .下证:当2a =时成立:即证:ln 2e ln 210x x x x +---, 因为R e 1x x x ∀∈+,,所以:ln 2e ln 21ln 21ln 210x x x x x x x x +---++---=显然成立;所以实数a 的最大值为2. 22.解:(1)由题意知22222321c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解2a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22164x y +=. (2)由题意知PQ 的斜率存在,设直线PQ 方程为y kx m =+,其中2m ≠ 由22164y kx m x y =+⎧⎪⎨+=⎪⎩得()2223263120k x kmx m +++-=, ()()()22222236123242464k m k m k m =-+-=+-△,设()11,P x y ,()22,Q x y ,则122632km x x k -+=+,212231232m x x k -=+,因为AP AQ ⊥, 所以()()()()121212122222AP AQ x x y y x x kx m kx m ⋅=+--=++-+-()()()2212121(2)20k x x k m x x m =++-++-=, 所以()()()22222312612203232m km k k m m k k --++-+-=++, 即()()()()()222221312622320k m k m m m k +---+-+= 因为2m ≠,所以()()()2221(36)62320k m k m m k ++-+-+= 所以222223636632640k m k m k m k m m k +++-++--=,所以25m =-,满足0>△.所以直线PQ 的方程为25y kx =-,即直线PQ 的定点20,5⎛⎫- ⎪⎝⎭. (解法一)因为ABH △存在,所以0k ≠,所以AH 的斜率为1k -,方程为12y x k=-+, 联立2512y kx y x k ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得1215H x k k =⎛⎫+ ⎪⎝⎭,(H x 为H 点的横坐标), 所以1112241242251155ABH H SAB x k k k k =⨯=⨯⨯=≤⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 当且仅当1k k =即1k =±时等号取得,即ABH △面积的最大值为125. (解法二)设PQ 所过定点为D ,因为AH PQ ⊥,所以点H 在以AD 为直径的圆上, 所以() max 2211125422225МВH AD S AB ⎛⎫-- ⎪⎝⎭=⨯=⨯⨯=△,即ABH △面积的最大值为125.。

金陵科技学院2013-2014高数下期末考试试卷

金陵科技学院2013-2014高数下期末考试试卷
(A) 必发散(B) 必发散
(C) 必发散(D) 必发散
三、计算题(本题共6小题,每小题6分,共36分)
1、设 ,其中 , ,求 .
2、设 ,求 .
3、设 ,其中 具有二阶连续偏导数,求 .
4、计算二重积分 ,其中 是由 与 所围成.
5、计算曲线积分 ,其中 是抛物线 上从点 到点 的一段弧.
6、计算曲面积分 ,其中 为平面 在第一卦限的部分.
四、判别下列级数的敛散性(本题共2小题,每小题6分,共12分)
1、判断级数 的敛散性.
2、判断级数 是否收敛?若收敛,是绝对收敛还是条件收敛?
五、解答题(本题共4小题,每小题6分,共24分)
1、求曲线 在 处的切线和法平面方程.
2、将函数 展开成关于 的幂级数并写出收敛域.
3、求微分方程 满足初始条件 的特解.
4、求函数 的极值.
金陵科技学院试卷
2013/2014学年 第2学期
课程所属部门:公共基础课部课程名称:高等数学A2课程编号:0701120102
考试方式:(A、闭)卷使用班级:全校学院公办统招班
命 题 人:教研室(系)主任审核:主管领导批准:
班级:学号:姓名:
题号







八九Biblioteka 十总分得分
一、填空题(本题共9空,每空2分,共18分)
(C) (D)
2、函数 在点 可微分是该函数在点 的偏导数 、 连续的( ).
(A)充分但不必要条件(B)必要但不充分条件
(C)充分必要条件(D)既不充分也不必要条件
3、微分方程 的通解为( ).
(A) (B)
(C) (D)
4、函数 在点 处的梯度为( ).

江苏省南京市高考数学考前模拟卷解析版

江苏省南京市高考数学考前模拟卷解析版

高考数学考前模拟试卷一、填空题(本大题共14小题,共70.0分)1.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=______.2.复数(i是虚数单位)是纯虚数,则实数a的值为______.3.已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为______.4.如图是给出的一种算法,则该算法输出的结果是______5.设双曲线的一条渐近线的倾斜角为30°,则该双曲线的离心率为______.6.已知m∈{-1,0,1},n∈{-2,2},若随机选取m,n,则直线mx+ny+1=0上存在第二象限的点的概率是______.7.若a>0,b>2,且a+b=3,则使得+取得最小值的实数a=______.8.已知奇函数f(x)在(-∞,+∞)上为单调减函数,则不等式f(lg x)+f(1)>0的解集为______.9.设函数f(x)=2a(sin x-1)-cos2x的最小值为-,则实数a=______10.在棱长为2的正四面体P-ABC中,M,N分别为PA,BC的中点,点D是线段PN上一点,且PD=2DN,则三棱锥P-MBD的体积为______.11.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为______.12.若函数f(x)=-ln(x+1)不存在零点,则实数k的取值范围是______.13.在平行四边形ABCD中,,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足,则的最大值为______.14.已知函数f(x)=|x-a|-+a-2有且仅有三个零点,且它们成等差数列,则实数a的取值集合为______.二、解答题(本大题共11小题,共142.0分)15.已知函数,x∈R.(1)求函数f(x)的单调增区间;(2)求方程f(x)=0在(0,π]内的所有解.16.如图,在四棱锥O-ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中点.求证:(Ⅰ)直线MC∥平面OAB;(Ⅱ)直线BD⊥直线OA.17.如图,一楼房高AB为19米,某广告公司在楼顶安装一块宽BC为4米的广告牌,CD为拉杆,广告牌的倾角为60°,安装过程中,一身高为米的监理人员EF站在楼前观察该广传牌的安装效果:为保证安全,该监理人员不得站在广告牌的正下方:设AE=x米,该监理人员观察广告牌的视角∠BFC=θ.(1)试将tanθ表示为x的函数;(2)求点E的位置,使θ取得最大值.18.如图,椭圆C:=1(a>b>0)的离心率是,左右焦点分别为F1,F2,过点P(0,)的动直线l与椭圆相交于A,B两点,当直线l过F1时,△F2AB的周长为8.(1)求椭圆C的方程;(2)当=2时,求直线l方程;(3)已知点Q(0,2),直线QA,QB的斜率分别为k1,k2.问是否存在实数λ,使得k1+λk2=0恒成立?19.已知函数f(x)=(x-a)2e x在x=2时取得极小值.(1)求实数a的值;(2)是否存在区间[m,n],使得f(x)在该区间上的值域为[e4m,e4n]?若存在,求出m,n的值;若不存在,说明理由.20.对于数列{a n},定义数列{a n+1-a n}为{a n}的“差数列”.(I)若{a n}的“差数列”是一个公差不为零的等差数列,试写出{a n}的一个通项公式;(II)若a1=2,{a n}的“差数列”的通项为2n,求数列{a n}的前n项和S n;(III)对于(II)中的数列{a n},若数列{b n}满足a n b n b n+1=-21•28(n∈N*),且b4=-7.求:①数列{b n}的通项公式;②当数列{b n}前n项的积最大时n的值.21.(选修4-2:矩阵与变换)设M=,N=,试求曲线y=sin x在矩阵MN变换下的曲线方程.22.已知直线l的极坐标方程是ρsin(θ+)=3,以极点为平面直角坐标系的原点,极轴为x轴的非负半轴,建立平面直角坐标系,曲线C的参数方程是,(θ为参数),若l与C相交于A,B两点,求AB的长.23.已知:a≥2,x∈R.求证:|x-1+a|+|x-a|≥3.24.某射手每次射击击中目标的概率是,且各次射击的结果互不影响,假设这名射手射击3次.(1)求恰有2次击中目标的概率;(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记X为射手射击3次后的总得分,求X的概率分布列与数学期望E(X).25.已知抛物线C:x2=2py(p>0)过点(2,1),直线l过点P(0,-1)与抛物线C交于A,B两点.点A关于y轴的对称点为A′,连接A′B.(1)求抛物线线C的标准方程;(2)问直线A′B是否过定点?若是,求出定点坐标;若不是,请说明理由.答案和解析1.【答案】4【解析】解:A={x|log2x≤2}={x|0<x≤4}而B=(-∞,a),∵A⊆B∴a>4即实数a的取值范围是(4,+∞),故答案为:4先化简集合A,然后根据子集的定义求出集合B的取值范围,总而求出所求.本题属于以对数不等式为依托,考查集合子集的基础题,也是高考常会考的题型.2.【答案】4【解析】解:=.∵复数是纯虚数∴,解得:a=4.故答案为:4.化简复数为a+bi(a,b∈R),然后由复数的实部等于零且虚部不等于0求出实数a的值.本题考查了复数的除法运算,考查了复数的基本概念,是基础题.3.【答案】2【解析】解:一组样本数据5,4,x,3,6的平均数为5,∴(5+4+x+3+6)=5,解得x=7,∴该组数据的方差为:S2=[(5-5)2+(4-5)2+(7-5)2+(3-5)2+(6-5)2]=2.故答案为:2.由一组样本数据5,4,x,3,6的平均数为5,求出x=7,由此能求出该组数据的方差.本题考查方差的求法,考查平均数、方差的性质等基础知识,考查运算求解能力,是基础题.4.【答案】24【解析】【分析】本题考查了循环语句的应用问题,模拟程序的运行过程,是解答此类问题的常用方法,属于基础题目.模拟程序代码的运行过程,可知程序的功能是利用循环结构计算并输出变量t的值,由于循环变量的初值为2,终值为4,步长为1,故循环体运行只有3次,由此得到答案.【解答】解:当i=2时,满足循环条件,执行循环t=1×2=2,i=3;当i=3时,满足循环条件,执行循环t=2×3=6,i=4;当i=4时,满足循环条件,执行循环t=6×4=24,i=5;当i=5时,不满足循环条件,退出循环,输出t=24.故答案为:24.5.【答案】【解析】解:双曲线的渐近线方程为y=±x,则tan30°=即为a=,则c==2,即有e=.故答案为.求出双曲线的渐近线方程,可得a=,则c==2,再由离心率公式,即可得到双曲线的离心率.本题考查双曲线的方程和性质,考查离心率的求法,考查运算能力,属于基础题.6.【答案】【解析】解:∵m∈{-1,0,1},n∈{-2,2},随机选取m,n,∴基本事件总数n=3×2=6,∵直线mx+ny+1=0上存在第二象限的点,∴(m,n可能取值为(0,-2),(-1,-2),(1,2),(1,-2),∴直线mx+ny+1=0上存在第二象限的点的概率是:P==.故答案为:.先求出基本事件总数,再利用列举法求出满足条件的m,n的可能取值,由此能求出直线mx+ny+1=0上存在第二象限的点的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.7.【答案】【解析】解:∵a>0,b>2,且a+b=3,∴a+b-2=1,那么:(+)[a+(b-2)]=4+1+(+)≥5+2=9,当且仅当2(b-2)=a时即取等号.联立,解得:a=.故答案为:.构造基本不等式的性质即可求解.利用“乘1法”与基本不等式的性质即可得出.本题考查了构造不等式的思想,利用“乘1法”与基本不等式的性质,属于中档题.8.【答案】(0,)【解析】解:根据题意,奇函数f(x)在(-∞,+∞)上为单调减函数,则f(lg x)+f(1)>0⇒f(lg x)>-f(1)⇒f(lg x)>f(-1)⇒lg x<-1,解可得:0<x<,即x的取值范围为(0,);故答案为(0,)根据题意,由函数的奇偶性与单调性分析可得f(lg x)+f(1)>0⇒f(lg x)>-f(1)⇒f(lg x)>f(-1)⇒lg x<-1,解可得x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,关键是得到关于x的不等式,属于基础题.9.【答案】-2【解析】解:f(x)=2a(sin x-1)-cos2x=2a(sin x-1)-(1-2sin2x)=,令t=sin x,则t∈[-1,1],∴f(t)=,t∈[-1,1],∴当,即a≥2时,,∴a=,不符合条件;当,即-2<x<2时,,∴或(舍),当,即a≤-2时,f(t)min=1,不符合条件.综上,a的值为:-2.故答案为:-2.由条件得f(x)=,根据二次函数的图象与性质可得f(x)的最小值,然后求出a的值即可.本题考查了三角函数的图象与性质和二次函数的图象与性质,考查了转化思想,属中档题.10.【答案】【解析】解:如图:∵P-ABC为正四面体,且棱长为2,∴C在底面PAB的射影为底面三角形PAB的外心O,也是重心,则BM=,BO=,∴,又N为BC的中点,PD=2DN,D到面PAB的距离为,而,∴.故答案为:.由题意画出图形,由已知条件求出D到平面PAB的距离,把三棱锥P-MBD的体积转化为三棱锥D-PBM的体积求解.本题考查棱柱、棱锥及棱台的体积,考查学生的空间想象能力和思维能力,训练了等积法在求多面体体积中的应用,是中档题.11.【答案】【解析】【分析】本题考查等差数列的性质、等比数列的通项公式.属基础题.先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,∴a n=a1q n-1,∵S1,2S2,3S3成等差数列,∴4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解得.故答案为.12.【答案】(0,4)【解析】解:由题意可知,解得x>-1且x≠0,由对数的性质可得ln kx=2ln(x+1)=ln(x+1)2,可得kx=(x+1)2,变形可得k==x++2,(x>-1且x≠0)由“对号函数”的性质可知x+<-2,或x+≥2,∴x++2<0,或x++2≥4,要使函数f(x)=-ln(x+1)不存在零点,只需k取x++2取值集合的补集,即{k|0≤k<4},当k=0时,函数无意义,故k的取值范围应为:(0,4)故答案为:(0,4)由题意可知可得x>-1且x≠0,k=x++2,(x>-1且x≠0),由“对号函数”的性质和集合的运算可得.本题考查函数的零点,涉及“对号函数”的性质和集合的运算,属基础题.13.【答案】5【解析】解:设==k≥0,建立如图所示的坐标系,则A(0,0),B(2,0),D(,),C(,),由=k,=k,可得=+k=(2+k,k),同理可得=(-2k,),∴•=(2+k)(-2k)+k=-k2-2k+5=-(k+1)2+6,∵k≥0,∴-(k+1)2+6≥-1+6=5,•的最大值是5,当且仅当M、N与点C重合时取得最大值.故答案为:D.设==k≥0,建立平面直角坐标系,利用坐标表示向量,求出、的坐标表示,再求数量积,利用数量积运算性质和二次函数的单调性即可得出结果.本题考查了数量积运算性质和二次函数的单调性,也考查了推理与计算能力,是中档题.14.【答案】{a|a=或-}【解析】解:设f(x)=0,可得|x-a|-+a=2,设g(x)=|x-a|-+a,h(x)=2,函数g(x)=,不妨设f(x)=0的3个根为x1,x2,x3,且x1<x2<x3,当x>a时,f(x)=0,解得x=-1,x=3;①a≤-1,∵x2=-1,x3=3,由等差数列的性质可得x1=-5,由f(-5)=0,解得a=-,满足f(x)=0在(-∞,a]上有一解.②-1<a≤3,f(x)=0在(-∞,a]上有两个不同的解,不妨设x1,x2,其中x3=3,所以有x1,x2是2a-x-=2的两个解,即x1,x2是x2-(2a-2)x+3=0的两个解.得到x1+x2=2a-2,x1x2=3,又由设f(x)=0的3个根为x1,x2,x3成差数列,且x1<x2<x3,得到2x2=x1+3,解得:a=或(舍去);③a>3,f(x)=0最多只有两个解,不满足题意;综上所述,a=或-.故答案为:{a|a=或-}.令g(x)=0,化简函数g(x)=,从而不妨设f(x)=0的3个根为x1,x2,x3,且x1<x2<x3,讨论当x>a时,求得两根,x≤a时,①a≤-1,②-1<a≤3,③a>3,运用等差数列的中项的性质,进而确定a的值.本题考查了分段函数的应用及分类讨论的思想应用,同时考查了等差数列的中项的性质,属于中档题.15.【答案】解:=sin2x+cos2x=2sin(2x+),因为2kπ-≤2x+≤2kπ+,k∈Z.所以kπ-≤x≤kπ+,k∈Z.所以函数的单调增区间为[kπ-,kπ+],k∈Z.(2)由f(x)=0得2sin(2x+)=0,解得:2x+=kπ,k∈Z,即x=-+,k∈Z.∵x∈(0,π],∴当k=1时,x=,当k=2时,x=.【解析】(1)利用三角函数的倍角公式以及辅助角公式进行化简,结合三角函数单调递增的性质进行求解;(2)解方程f(x)=0,求出x的解,即可.本题主要考查三角函数的图象和性质,利用辅助角公式进行化简是解决本题的关键.16.【答案】证明:(1)设N是OA的中点,连接MN,NB,因为M是OD的中点,所以MN∥AD,且2MN=AD,又AD∥BC,AD=2BC,所以MNBC是平行四边形,所以MC∥NB,又MC不在平面OAB上,NB⊂平面OAB,所以直线MC∥平面OAB;(7分)(2)设H是BD的中点,连接AH,因为AB=AD,所以AH⊥BD,又因为OB=OD,所以OH⊥BD所以BD⊥面OAH所以BD⊥OA、(14分)【解析】(1)设N是OA的中点,连接MN,NB,依据题设条件证明四边形MNBC是平行四边形,以得到直线MC∥平面OAB的条件,用线面平行的判定定理证之;(2)设H是BD的中点,连接AH,OH,在这个等腰三角形中证明BD与AH,OH垂直,下用线面垂直的判定定理证明.考查线面平行的判定定理与线面垂直的判定定理,知识性较强,在每一小题中,亦可用面面平行来证明线面平行,请读者看看如何构造这个平面.17.【答案】解:(1)作CG⊥AE于G,则FH⊥AB于H,交CG于M,作BN⊥CG于N,则θ=∠CFM-∠BFH,在Rt△BCN中,BC=4,∠CBN=60°,则BN=2,CN=2,在Rt△CFM中,有tan∠CFM===;在Rt△BFH中,有tan∠BFH==;∴tanθ=tan(∠CFM-BFH)===,依题意,监理人员只能在G点右侧,即x∈(2,+∞);(2)由(1)可知,tanθ==•,令t=x+18,则t∈(20,+∞),故tanθ=•=≤,当且仅当t=即t=时取等号,此时,x=-18,又∵θ为锐角,y=tanθ在区间(0,)上单调递增,∴当x=-18时,θ取得最大值.【解析】(1)通过作CG⊥AE于G,则FH⊥AB于H,交CG于M,作BN⊥CG于N,则θ=∠CFM-∠BFH,利用锐角的正切的定义可知在Rt△CFM中tan∠CFM=、在Rt△BFH中tan∠BFH=,利用差角的正切公式计算即得结论;(2)通过(1)可知,tanθ=•,通过令t=x+18,换元计算可知tanθ=,进而利用基本不等式计算即得结论.本题考查是一道关于函数的综合应用题,考查分析问题、解决问题的能力,考查运算求解能力,注意解题方法的积累,属于难题.18.【答案】解:(1)由椭圆定义知,△F2AB的周长为4a,所以4a=8,所以a=2.又离心率,所以c=,所以b=1.所以椭圆C的方程为.(2)当l⊥x轴,≠2,所以可设l:y=kx+,A(x1,y1),B(x2,y2),则,消去y得(1+4k2)x2+4kx-3=0.所以…①.因为=2,所以x2-0=-2x1,即x2=-2x1代入①化简得所以=()2,解得k=.所以直线l方程为:y=.(3)当AB∥x轴时,可知k1+k2=0,此时存在λ=1使得k1+λk2=0成立.下面证明当λ=1时k1+λk2=0恒成立k1+k2=+=+=,因为=2k=-6k-4k(-)=0.所以k1+k2=0恒成立即存在λ=1使得k1+λk2=0恒成立.【解析】(1)由椭圆定义知a=2.又离心率,求得c=,b=1.即可.(2)可设l:y=kx+,A(x1,y1),B(x2,y2),联立方程得(1+4k2)x2+4kx-3=0,利用=2,得解得k=即可.(3)当AB∥x轴时,可知k1+k2=0,此时存在λ=1使得k1+λk2=0成立.再证明当λ=1时k1+λk2=0恒成立.本题考查抛物线方程的求法,考查直线方程的求法,考查实数值是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.19.【答案】解:(1)f'(x)=e x(x-a)(x-a+2),由题意知f'(2)=0,解得a=2或a=4.当a=2时,f'(x)=e x x(x-2),易知f(x)在(0,2)上为减函数,在(2,+∞)上为增函数,符合题意;当a=4时,f'(x)=e x(x-2)(x-4),易知f(x)在(0,2)上为增函数,在(2,4)递减,在(4,+∞)上递增,不符合题意.所以,满足条件的a=2.(2)因为f(x)≥0,所以m≥0.①若m=0,则n≥2,因为f(0)=4<e4n,所以(n-2)2e n=e4n.设,则,所以g(x)在[2,+∞)上为增函数.由于g(4)=e4,即方程(n-2)2e n=e4n有唯一解为n=4.②若m>0,则2∉[m,n],即n>m>2或0<m<n<2.(Ⅰ)n>m>2时,,由①可知不存在满足条件的m,n.(Ⅱ)0<m<n<2时,,两式相除得m(m-2)2e m=n(n-2)2e n.设h(x)=x(x-2)2e x(0<x<2),则h'(x)=(x3-x2-4x+4)e x=(x+2)(x-1)(x-2)e x,h(x)在(0,1)递增,在(1,2)递减,由h(m)=h(n)得0<m<1,1<n<2,此时(m-2)2e m<4e<e4n,矛盾.综上所述,满足条件的m,n值只有一组,且m=0,n=4.【解析】(1)通过求导直接得出,(2)构造出新函数通过求导得出方程组,解得即可.本题考察了求导函数,函数的单调性,解题中用到了分类讨论思想,是一道较难的问题.20.【答案】解:(Ⅰ)如a n=n2.(答案不惟一,结果应为a n=An2+Bn+C的形式,其中A≠0)(3分)(Ⅱ)依题意a n+1-a n=2n,n=1,2,3,所以a n=(a n-a n-1)+(a n-1-a n-2)+(a n-2-a n-3)++(a2-a1)+a1=2n-1+2n-2+2n-3++2=2n.(5分)从面{a n}是公比数为2的等比数列,所以.(7分)(Ⅲ)由a n b n b n+1=-21•2n及a n-1b n-1b n=-21•2n,两式相除得,所以数列{b2n-1},{b2n}分别是公比为的等比数列由b4=-7得b2=-14.令n=1,由a1b1b2=-21•2n得b1=3•26.所以数列{b n}的通项为(10分)②记数列{b n}前n项的积为T n.令,即.所以当n是奇数时,|b1b2|>1,|b3b4|>1,|b11b12|>1,|b13b14|<1,|b15b16|<1,从而|T2|<|T4|<|T12|,|T12|>|T14|>.当n是偶数时,|b2b3|>1,|b4b5|>1,|b12b13|>1,|b14b15|<1,|b16b17|<1,从而|T1|<|T3|<|T13|,|T13|>|T15|.注意到T12>0,T13>0,且T13=b13T12=3T12>T12,所以当数列{b n}前n项的积T n最大时n=13.(14分)【解析】(1)根据题意写出符合题意的式子.(2)依题意得{a n}是公比数为2的等比数列,计算出数列{a n}的前n项和S n(3)根据题意计算出数列{b n}的通项公式,计算出数列{b n}前n项的积为T n,当数列{b n}前n项的积最大时n的值.此题主要考查数列通项公式的求解及前n项积的求解.21.【答案】解:∵M=,N=,MN==,(2分)设p(x,y)是所求曲线C上的任意一点,它是曲线y=sin x上点p0(x0,y0)在矩阵MN变换下的对应点,则=,∴,即,(4分)又点p0(x0,y0)在曲线y=sin x上,故y0=sin x0,从而y=sin2x,所求曲线的方程为y=2sin2x.…(7分)【解析】根据矩阵的乘法法则求出MN,设p(x,y)是所求曲线上的任意一点,它是曲线y=sin x上点p0(x0,y0)在矩阵MN变换下的对应点,然后根据变换的性质求出曲线方程.本小题主要考查矩阵与变换等基础知识,考查运算求解能力,考查学生掌握二阶矩阵的乘法法则,以及求出直线方程利用矩阵的变换所对应的方程.22.【答案】解:曲线C的圆心为极点,半径为5.因为由ρsin(θ+)=3,得ρ≥3,所以极点到直线l的距离为3,故AB的长为2=8.【解析】因为由ρsin(θ+)=3,得ρ=≥3,所以极点到直线l的距离为3,再根据勾股定理可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】证明:∵|m|+|n|≥|m-n|,∴|x-1+a|+|x-a|≥|x-1+a-(x-a)|=|2a-1|.又a≥2,故|2a-1|≥3.∴|x-1+a|+|x-a|≥3(证毕).【解析】利用|m|+|n|≥|m-n|,将所证不等式转化为:|x-1+a|+|x-a|≥|2a-1|,再结合题意a≥2即可证得.本题考查绝对值不等式,着重考查|m|+|n|≥|m-n|的应用,考查推理证明能力,属于中档题.24.【答案】解:(1)设X为射手在3次射击中击中目标的次数,则X~B.在3次射击中,恰有2次击中目标的概率P(X=2)==.(2)由题意可知,X的所有可能取值为0,1,2,3,6.P(X=0)==;P(X=1)=;P(X=2)=××=;P(X=3)=×+×=;P(X=6)==.∴X的数学期望.【解析】(1)根据n次独立重复实验中恰好发生k次的概率,可得这名射手射击3次,求恰有两次击中目标的概率,运算求得结果;(2)由题意可得,得分X=0,1,2,3,6,再分别求得X取每一个值的概率,即可求得恰有两次击中目标的概率,再根据得分X的数学期望的定义,求得X的数学期望.题主要考查n次独立重复实验中恰好发生k次的概率,离散型随机变量的数学期望的求法,属中档题.25.【答案】解:(1)将点(2,1)代入抛物线x2=2py的方程得,p=2,所以,抛物线C的标准方程为x2=4y.…(4分)(2)设直线l的方程为y=kx-1,又设A(x1,y1),B(x2,y2),则A'(-x1,y1),由得x2-4kx+4=0,则△=16k2-16>0,x1•x2=4,x1+x2=4k,所以,于是直线A'B的方程为,…(8分)所以,,当x=0时,y=1,所以直线A'B过定点(0,1).…(10分)【解析】(1)利用点的坐标在曲线上,代入求解即可.(2)设直线l的方程为y=kx-1,又设A(x1,y1),B(x2,y2),则A'(-x1,y1),联立直线与抛物线方程,利用韦达定理以及判别式,求出直线的斜率,推出直线方程,利用直线系求解即可.本题考查抛物线方程的求法,直线与抛物线的位置关系,直线系方程的应用,考查转化思想以及计算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
..
4l
曲线 x - s i n 2 t
s in 2t ,
z-
在 点 c o s 2 1
t=
三 处切线的方 向向量是
1
赶一三二 切线方程
生- B
. 面 平
日= o
彐 曲面 z - 砂 上 的点 9 1
满足该点的法线垂 直于平面 x + 3y + z + 2 = 0
丘e
Z-
·
e'
在点 P (0月
处沿 点 P (0月
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
'

它罗 · 矽 尸妇
n J p 9 . . 4. 4 ,
2团
e即
化直角坐标系累பைடு நூலகம்积分5dQ 6
f (p c o s o p s in o w d p
) ·
2× 及
x 制成
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
t=
处切线 的方 向向量是
切线方程为 曲面 z - 砂 上 的点
法平面是 满足该点的法线垂直于平面 x + 3y + z + 2 = 0
!中 二 元函数f
( )y x
=
,
.
0)处 (
)
(A )连续 偏导数存在(B )不连续 偏导数不存在 (C )不连续 偏导数存在(D )连续 偏导数不存在
考虑二 元 函数 ( x , ) 的四条性质
) 条件 C 充要
D 既非充分又非必 要
Scanned by CamScanner
n
= 3 交换积分次序
1)
J 肉 '
( y )dv ,
内刎 · 八石 y
0d J鲨是 ) 相
! j 厅 / 1 枳分域 D (x n ' ·
[I 则
,

(
障 心 化为极坐标累次杉分
化 极 坐 标 H 分 · r·
虚 五俭 · · y )心


Q(
1 ,
2)

向的方
向导数是
f 设 ( ) 2
y x

,
则在 点
P.
(
1 ,
1)
处 方 向导数的最大值
f (x
(J) )z =
则梯度 g r ·
( ) 1 1 1 = .,
y
l ) 竺 , 0
'
设材 一 x y 则
(3 1)
曲线 x - s i n 2 1
在 点 s in 21
z-
co
2
s
t
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
Scanned by CamScanner
- ln (
1 . g)
X)+
定义域
\
2 x
2
y
0 . ) 伙 且归
(b )@= @= > ® (D )® 力 ® 一 园
Scanned by CamScanner
则 设函 数 z - f (x , y ) 在 点 (x o , y o ) 具 有 偏 导 数
人( ) O } x o .
=
o
,
( ) 7 x o , o = O 是该 函数
f (x , y ) 在 点 (x o , y o ) 有极值 的 ( A 必要非充分 B 充分非必 要
f (x
) 在点 (x o , 7 o ) 处可微
@ f (x
) 在点(x o . / o ) 处 的 阶偏导数连续
@ f (x
) 在点(x o . / o ) 处连续
® f (x
) 在点(x o , J' o ) 处 的 阶偏导数存在
心 则有 ( r l
二 (A @ = ® 园
(C )固力 固 昀
相关文档
最新文档