高等数学(专科)复习题及答案
专科高职数学试题及答案

专科高职数学试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^5D. f(x) = sin(x)答案:D2. 计算极限lim(x→0) (sin(x)/x) 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是二项式定理的展开式?A. (a+b)^n = Σ(n,k) a^(n-k)b^kB. (a+b)^n = Σ(n,k) a^k b^(n-k)C. (a+b)^n = Σ(n,k) a^(n-k)b^kD. (a+b)^n = Σ(n,k) a^k b^(n-k)答案:B4. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. 5D. 7答案:A5. 以下哪个选项是复数的代数形式?A. a + biB. a + bjC. a + ciD. a + di答案:A二、填空题(每题4分,共20分)1. 函数y = x^2 + 2x + 1的顶点坐标是________。
答案:(-1, 0)2. 等差数列的前n项和公式为________。
答案:S_n = n/2 * (a_1 + a_n)3. 圆的标准方程为________。
答案:(x - h)^2 + (y - k)^2 = r^24. 计算定积分∫(0 to 1) (3x^2 + 2x) dx的值为________。
答案:4/35. 已知矩阵A = [1, 2; 3, 4],求A的行列式值________。
答案:-2三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6在x = 1处的导数。
答案:f'(x) = 3x^2 - 12x + 11,所以f'(1) = 3*1^2 - 12*1 + 11 = 2。
2. 已知等比数列{a_n}的前三项分别为2, 6, 18,求该数列的通项公式。
高等数学(专科)复习题及答案.

中南大学现代远程教育课程考试(专科)复习题及参考答案《高等数学》一、填空题1.函数y=x2-4+1的定义域是. x-解. (-∞,-2] [2,+∞) 。
2.若函数f(x+1)=x2+2x-5,则f(x)=解. x-63.lim答案:1 正确解法:lim2. x-sinx=________________ x→∞xx-sinxsinxsinx=lim(1-)=lim1-lim=1-0=1 x→∞x→∞x→∞x→∞xxxx2+ax+b=2,则a=_____, b=_____。
4.已知lim2x→2x-x-2由所给极限存在知, 4+2a+b=0, 得b=-2a-4, 又由x2+ax+bx+a+2a+4li=li==2, 知a=2,b=-8 x→2x2-x-2x→2x+13ex-b5.已知lim=∞,则a=_____, b=_____。
x→0(x-a)(x-1)(x-a)(x-1)aex-b==0, ∴a=0,b≠1 lim=∞, 即limxx→0x→0(x-a)(x-1)1-be-b1⎧⎪xsin6.函数f(x)=⎨x⎪⎩x+1x<0x≥0的间断点是x=。
解:由f(x)是分段函数,x=0是f(x)的分段点,考虑函数在x=0处的连续性。
xsin因为 lim-x→01=0lim(x+1)=1f(0)=1 x→0+x所以函数f(x)在x=0处是间断的,又f(x)在(-∞,0)和(0,+∞)都是连续的,故函数f(x)的间断点是x=0。
7. 设y=x(x-1)(x-2)⋅⋅(x-n), 则y(n+1)=(n+1)!8.f(x)=x2,则f(f'(x)+1)=__________。
答案:(2x+1)2或4x+4x+1 24x-y29.函数z=的定义域为。
ln(1-x2-y2)解:函数z的定义域为满足下列不等式的点集。
⎧4x-y2≥0⎧y2≤4x⎧y2≤4x⎪⎪⎪⎪⎪2⎪222221-x-y>0⇒x+y<1⇒⎨⎨⎨0<x+y<1⎪⎪2⎪2221-x-y≠1x+y≠0⎪⎪⎪⎩⎩⎩⇒z 的定义域为:(x,y)|0<x2+y2<1且y2≤4x} {10.已知f(x+y,x-y)=x2y+xy2,则f(x,y)=. 解令x+y=u,x-y=v,则x=u+vu-v,f(x+y)(x-y)=xy(x+y) ,y=22f(u,v)=u+vu-vuu2x=(u-v2),f(x,y)=(x2-y2) 4222411.设f(x,y)=xy+x,则fx'(0,1)=。
高职数学试题试卷及答案

高职数学试题试卷及答案一、选择题(每题2分,共10分)1. 下列哪个数是自然数?A. -3B. 0C. 1.5D. π2. 函数f(x) = 2x^2 + 3x - 5的图像与x轴的交点个数是:A. 0B. 1C. 2D. 33. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^24. 已知集合A = {1, 2, 3},B = {2, 3, 4},A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 等差数列的第5项是15,第1项是5,求公差d:A. 2B. 3C. 4D. 5二、填空题(每题2分,共10分)6. 若a + b = 10,a - b = 4,则a = __________。
7. 将分数\(\frac{3}{4}\)化为最简分数是 __________。
8. 一个直角三角形的两条直角边分别为3和4,其斜边长为__________。
9. 函数y = log_2(x)的定义域是 __________。
10. 一个圆的半径为5,其周长为 __________。
三、简答题(每题10分,共20分)11. 证明:若a > b > 0,则a^3 > b^3。
12. 解不等式:2x - 5 > 3x + 1。
四、计算题(每题15分,共30分)13. 计算下列定积分:\(\int_{0}^{1} (2x + 1)dx\)。
14. 求函数f(x) = 3x^2 - 2x + 1的极值。
五、解答题(每题15分,共30分)15. 解方程组:\[\begin{cases}x + y = 4 \\2x - y = 2\end{cases}\]16. 已知数列{an}的通项公式为an = 2n - 1,求前n项和Sn。
六、论述题(每题15分,共15分)17. 论述函数的连续性与可导性之间的关系。
答案:一、选择题1. B2. C3. B4. B5. B二、填空题6. 77. \(\frac{3}{4}\)8. 59. \((0, +\infty)\)10. \(10\pi\)三、简答题11. 证明略。
专科高职数学试题及答案

专科高职数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = x^5 \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\) 的值是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 2答案:B3. 以下哪个选项是微分方程 \(y'' + y = 0\) 的解?A. \(y = e^x\)B. \(y = \cos x\)C. \(y = e^{-x}\)D. \(y = \sin x\)答案:B4. 矩阵 \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\) 的行列式是多少?A. 2B. 5C. 6D. 10答案:B5. 计算不定积分 \(\int x^2 dx\) 的结果是什么?A. \(\frac{1}{3}x^3 + C\)B. \(\frac{1}{2}x^2 + C\)C. \(x^3 + C\)D. \(x^2 + C\)答案:A6. 函数 \(y = \ln(x)\) 的导数是什么?A. \(\frac{1}{x}\)B. \(x\)C. \(\ln(x)\)D. \(e^x\)答案:A7. 以下哪个选项是二项式定理的展开式?A. \((a + b)^n = a^n + b^n\)B. \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\)C. \((a + b)^n = a^n - b^n\)D. \((a + b)^n = a^n \cdot b^n\)答案:B8. 计算定积分 \(\int_{0}^{1} x dx\) 的值是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 2答案:C9. 以下哪个函数是周期函数?A. \(y = x^2\)B. \(y = \sin x\)C. \(y = e^x\)D. \(y = \ln x\)答案:B10. 矩阵 \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) 是什么类型的矩阵?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 非奇异矩阵答案:B二、填空题(每题4分,共20分)1. 函数 \(y = x^3 - 3x + 1\) 的导数是 \_\_\_\_\_\_。
专科数学考试题及答案

专科数学考试题及答案一、选择题(每题2分,共20分)1. 函数y=f(x)在x=a处连续,那么下列说法正确的是:A. f(a)存在B. 左极限lim(x→a-) f(x)存在C. 右极限lim(x→a+) f(x)存在D. 所有选项都正确答案:D2. 以下哪个选项不是幂函数?A. y = x^2B. y = x^3C. y = x^(-1)D. y = x答案:D3. 已知函数f(x) = 2x - 3,求f(5)的值是:A. 1B. 7C. 9D. 11答案:B4. 极限lim(x→∞) (3x^2 + 2x - 5) / (x^2 + 4x)的值是:A. 3B. 2C. 0D. 无法确定答案:A5. 以下哪个级数是发散的?A. 1 + 1/2 + 1/4 + ...B. 1 - 1/2 + 1/4 - ...C. 1 + 1/2 + 1/3 + ...D. 1 - 1/2 + 1/3 - ...答案:C6. 函数f(x) = x^2 + 3x - 4的零点个数是:A. 0B. 1C. 2D. 3答案:C7. 以下哪个是复合函数?A. y = sin(x)B. y = x^2C. y = log(x)D. y = sin(x^2)答案:D8. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x)的值是:A. 3x^2 - 12x + 11B. x^3 - 6x^2 + 11C. 3x^2 - 12xD. 3x^2答案:A9. 以下哪个是二阶导数?A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B10. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. 4πD. 不是周期函数答案:B二、填空题(每题3分,共15分)11. 函数y = x^3的导数是 __________。
大专数学考试题及答案

大专数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是函数f(x)=x^2+3x+2的零点?A. -1B. -2C. 0D. 1答案:B2. 计算极限lim(x→0) (sin x/x)的值。
A. 0B. 1C. 2D. 无定义答案:B3. 已知集合A={1,2,3},B={2,3,4},则A∩B等于:A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 求不定积分∫(3x^2-5x+2)dx。
A. x^3-5/2x^2+2x+CB. x^3-5x^2+2x+CC. 3x^3-5/2x^2+2x+CD. 3x^3-5x^2+2x+C答案:C5. 已知函数f(x)=x^3-6x^2+9x-4,求f'(x)。
A. 3x^2-12x+9B. 3x^2-12x+9xC. 3x^2-12x+9D. 3x^2-12x+9x-4答案:A6. 计算定积分∫(0到1) (x^2-2x+1)dx。
A. 0B. 1/3C. 1D. 2答案:C7. 已知数列{an}满足a1=1,an+1=2an+1,求a3。
A. 5B. 7C. 9D. 11答案:C8. 求函数y=x^3-3x^2+2在x=1处的切线斜率。
A. 0B. 1C. 2D. -2答案:B9. 计算行列式|3 2 1||1 0 2||2 1 3|的值。
A. 2B. 0C. -2D. 4答案:C10. 已知矩阵A=|1 2||3 4|,求A^2。
A. |7 10||15 22|B. |5 6||11 14|C. |2 4||6 8|D. |4 3||6 9|答案:A二、填空题(每题3分,共30分)1. 已知函数f(x)=x^3-6x^2+9x-4,求f''(x)。
答案:6x-122. 计算定积分∫(1到2) (2x-1)dx。
答案:33. 已知数列{an}满足a1=2,an+1=an+n,求a5。
高等数学(专科)复习题及答案

高等数学期末试卷一、填空题(每题2分,共30分)1.函数1142-+-=x x y 的定义域是 . 解. ),2[]2,(∞+--∞ 。
2.若函数52)1(2-+=+x x x f ,则=)(x f.解.2x 3.x 答案:4.2=, 知2=a 5.已知x →lim 0x 6.函数因为1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是间断的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x。
7. 设()()()n x x x x y -⋅⋅--= 21, 则()=+1n y(1)!n +8.2)(x x f =,则__________)1)((=+'x f f 。
答案:2)12(+x 或1442++x x9.函数)1ln(4222y x y x z ---=的定义域为 。
解:函数z 的定义域为满足下列不等式的点集。
z ⇒ 的定义域为:{10|),(22<+<y x y x 且x y 42≤}10.已知22),(xy y x y x y x f +=-+,则=),(y x f .解 令,,则,u v u vx y +-==, (f 11.设f f 12. 解 dzdt13.⎰dxd14.设(f 15.若⎰∴2=k二、单项选择题(每题2分,共30分)1.函数)1,0(11)(≠>+-=a a a a x x f xx ( ) A.是奇函数; B. 是偶函数;C.既奇函数又是偶函数;D.是非奇非偶函数。
解:利用奇偶函数的定义进行验证。
所以B 正确。
2.若函数2211(xx x x f +=+,则=)(x f ( )A.2x ; B. 22-x ; C.2)1(-x ; D. 12-x 。
解:因为2)1(212122222-+=-++=+x x xx x x,所以2)1()1(2-+=+x x x x f 则2)(2-=x x f ,故选项B 正确。
高等数学(专科)复习题及标准答案

高等数学期末试卷一、填空题(每题2分,共30分)1.函数1142-+-=x x y 的定义域是. 解. ),2[]2,(∞+--∞ 。
2.若函数52)1(2-+=+x x x f ,则=)(x f . 解. 62-x 3.________________sin lim =-∞→xxx x答案:1正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.已知22lim 222=--++→x x bax x x ,则=a _____,=b _____。
由所给极限存在知, 024=++b a , 得42--=a b , 又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a5.已知∞=---→)1)((lim 0x a x be x x ,则=a _____,=b _____。
∞=---→)1)((lim 0x a x be x x , 即01)1)((lim 0=-=---→b a be x a x x x , 1,0≠=∴b a 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的间断点是x =。
解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。
因为 1)0(1)1(lim 01sin lim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是间断的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。
7. 设()()()n x x x x y -⋅⋅--= 21, 则()=+1n y(1)!n +8.2)(x x f =,则__________)1)((=+'x f f 。
答案:2)12(+x 或1442++x x9.函数)1ln(4222y x y x z ---=的定义域为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学期末试卷一、填空题(每题2分,共30分)1.函数1142-+-=x x y 的定义域是 . 解. ),2[]2,(∞+--∞ 。
2.若函数52)1(2-+=+x x x f ,则=)(x f .解. 62-x 3.________________sin lim =-∞→xxx x答案:1正确解法:101sin lim 1lim )sin 1(lim sin lim=-=-=-=-∞→∞→∞→∞→xxx x x x x x x x x4.已知22lim 222=--++→x x bax x x ,则=a _____, =b _____。
由所给极限存在知, 024=++b a , 得42--=a b , 又由23412lim 2lim 2222=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a5.已知∞=---→)1)((lim0x a x be x x ,则=a _____, =b _____。
∞=---→)1)((lim 0x a x b e x x , 即01)1)((lim 0=-=---→b abe x a x x x , 1,0≠=∴b a 6.函数⎪⎩⎪⎨⎧≥+<=0101sin)(x x x xx x f 的间断点是x = 。
解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。
因为 1)0(1)1(lim 01sinlim 00==+=+-→→f x xx x x所以函数)(x f 在0=x 处是间断的,又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。
7. 设()()()n x x x x y -⋅⋅--= 21, 则()=+1n y(1)!n +8.2)(x x f =,则__________)1)((=+'x f f 。
答案:2)12(+x 或1442++x x9.函数)1ln(4222y x y x z ---=的定义域为 。
解:函数z 的定义域为满足下列不等式的点集。
⎪⎪⎩⎪⎪⎨⎧<+<≤⇒⎪⎪⎩⎪⎪⎨⎧≠+<+≤⇒⎪⎪⎩⎪⎪⎨⎧≠-->--≥-1040141101042222222222222y x x y y x y x x y y x y x y x z ⇒ 的定义域为:{10|),(22<+<y x y x 且x y 42≤}10.已知22),(xy y x y x y x f +=-+,则=),(y x f . 解 令x y u +=,x y v -=,则,22u v u vx y +-==,()()()f x y x y xy x y +-=+ )(4222),(22v u u u v u v u v u f -=-+=,22(,)()4xf x y x y =-11.设22),(yx xxy y x f ++=,则=')1,0(x f 。
=')1,0(y f ∵ (0,1)000f =+=2000(,1)(0,1)1(0,1)limlim 2x x x xx f x f x f xx∆→∆→∆∆+-∆-∆+'===∆∆ 00(0,1)(0,1)00(0,1)limlim 0y y y f y f f yy ∆→∆→∆+--'===∆∆。
12. 设,,cos ,sin 32t y t x y x z ==+=则tzd d = 。
解 22sin 3cos dzx t t y dt=-+ 13.=⎰⎰dx x f d d dx d)( . 解:由导数与积分互为逆运算得,)()(x f dx x f d d dxd=⎰⎰. 14.设)(x f 是连续函数,且x dt t f x =⎰-13)(,则=)7(f .解:两边对x 求导得1)1(332=-x f x ,令713=-x ,得2=x ,所以12131)7(22===x x f . 15.若21d e 0=⎰∞+-x kx ,则_________=k 。
答案:∵)d(e 1lim d e 2100kx k x b kx b kx--==⎰⎰-+∞→∞+-kk k k kb b b kx b 1e 1lim 1e 1lim 0=-=-=-+∞→-+∞→ ∴2=k二、单项选择题(每题2分,共30分)1.函数)1,0(11)(≠>+-=a a a a x x f xx ( ) A.是奇函数; B. 是偶函数;C.既奇函数又是偶函数;D.是非奇非偶函数。
解:利用奇偶函数的定义进行验证。
)(11)1()1(11)()(x f a a x a a a a x a a x x f x x xx x x x x =+-=+--=+--=----- 所以B 正确。
2.若函数221)1(xx x x f +=+,则=)(x f ( ) A.2x ; B. 22-x ; C.2)1(-x ; D. 12-x 。
解:因为2)1(212122222-+=-++=+x x xx x x ,所以2)1()1(2-+=+x x x x f 则2)(2-=x x f ,故选项B 正确。
3.设1)(+=x x f ,则)1)((+x f f =( ).A . xB .x + 1C .x + 2D .x + 3解 由于1)(+=x x f ,得 )1)((+x f f 1)1)((++=x f =2)(+x f 将1)(+=x x f 代入,得)1)((+x f f =32)1(+=++x x 正确答案:D4.已知0)1(lim 2=--+∞→b ax x x x ,其中a ,b 是常数,则( ) (A) 1,1==b a , (B) 1,1=-=b a (C) 1,1-==b a (D) 1,1-=-=b a解. ()()011lim )1(lim 22=+-+--=--+∞→∞→x bx b a x a b ax x x x x , 1,1,0,01-==∴=+=-∴b a b a a 答案:C5.下列函数在指定的变化过程中,( )是无穷小量。
A.e 1xx ,()→∞; B.sin ,()xxx →∞; C. ln(),()11+→x x ; D.x x x +-→110,()解:无穷小量乘以有界变量仍为无穷小量,所以0sin lim=∞→xxx而A, C, D 三个选项中的极限都不为0,故选项B 正确。
6.下列函数中,在给定趋势下是无界变量且为无穷大的函数是( )(A))(1sin∞→=x xx y ; (B)())(1∞→=-n n y n ; (C))0(ln +→=x x y ; (D))0(1cos 1→=x xx y解. 111sin lim 1sin lim ==∞→∞→xx x x x x , 故不选(A). 取12+=k m , 则()0121lim lim 1=+=∞→-∞→k n k n n, 故不选(B).取21ππ+=n x n , 则01cos 1lim=∞→nn n x x , 故不选(D). 答案:C 7.设⎪⎩⎪⎨⎧≤>=0,0,1sin )(x x x xx x f ,则)(x f 在0=x 处( )A .连续且可导B .连续但不可导C .不连续但可导D .既不连续又不可导解:(B )0lim )(lim 0==--→→x x f x x ,01sinlim )(lim 0==++→→xx x f x x ,0)0(=f 因此)(x f 在0=x 处连续xx x x x f x f f x x x 1sin lim 001sinlim 0)0()(lim )0(000+++→→→+=--=--=',此极限不存在从而)0(+'f 不存在,故)0(f '不存在8.曲线x x y -=3在点(1,0)处的切线是( ). A . 22-=x y B . 22+-=x y C . 22+=x yD . 22--=x y解 由导数的定义和它的几何意义可知, 13)()1(='-='x x x y 2)13(12=-==x x是曲线x x y -=3在点(1,0)处的切线斜率,故切线方程是 )1(20-=-x y ,即22-=x y正确答案:A 9.已知441x y =,则y ''=( ). A . 3x B . 23x C . x 6 D . 6 解 直接利用导数的公式计算:34)41(x x y ='=', 233)(x x y ='='' 正确答案:B10.若x xf =)1(,则=')(x f ( )。
A .x 1 B .21x C .x 1- D .21x- 答案:D 先求出)(x f ,再求其导数。
11.22ln y x z -=的定义域为( ).A .122≥-y x B .022≥-y x C .122>-y x D .022>-y x 解 z 的定义域为{0),(22>-y x y x }个,选D 。
12.设函数项级数∑∞=1)(n nx u,下列结论中正确的是( ).(A )若函数列{})(x u n 定义在区间I 上,则区间I 为此级数的收敛区间 (B )若)(x S 为此级数的和函数,则余项)()()(x S x S x r n n -=,0)(lim =∞→x r n n(C )若I x ∈0使∑∞=10)(n nx u收敛,则||||0x x <所有x 都使∑∞=1)(n n x u 收敛(D )若)(x S 为此级数的和函数,则∑∞=10)(n nx u必收敛于)(0x S解:选(B ).13.设0>a 为常数,则级数)cos 1()1(1n a n n--∑∞=( ). (A )绝对收敛(B )条件收敛(C )发散(D )敛散性与a 有关解:因为22222sin 2)cos 1()1(n a n a n a n≤=--,而∑∞=1222n na 收敛,因此原级数绝对收敛. 故选(A ). 14.若级数∑∞=--1)()1(n nnn a x 在0>x 时发散,在0=x 处收敛,则常数=a ( ).(A )1 (B )-1 (C )2 (D )2解:由于∑∞=--1)()1(n n nn a 收敛,由此知1≤a .当11≤<-a 时,由于∑∞=--1)()1(n n n n a x 的收敛半径为1,因此该幂级数在区间)1,1(+-a a 内收敛,特别地,在)1,0(+a 内收敛,此与幂级数在0>x 时发散矛盾,因此1-=a .故选(B ). 15.x e y y y x2cos 52-=+'+''的特解可设为( )(A );2cos *x A ey x-= (B );2cos *x A xe y x -=(C )();2sin 2cos *x B x A xey x+=- (D )().2sin 2cos *x B x A e y x +=-解:C三、解答题(任选4题完成,每题10分,共40分)1.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 001sin )(x x x x a x b x x x f问(1)b a ,为何值时,)(x f 在0=x 处有极限存在? (2)b a ,为何值时,)(x f 在0=x 处连续?解:(1)要)(x f 在0=x 处有极限存在,即要)(lim )(lim 0x f x f x x +-→→=成立。