椭圆中四边形面积最值问题一例
椭圆中四边形面积最值问题一例刘向阳

椭圆中四边形面积最值问题一例-------教学设计扬中市第二高级中学刘向阳一、引入问题背景:生活中我们经常要研究最优解的问题。
在解析几何中,运动是曲线的灵魂,在形的运动中必然伴随着量的变化,而在变化中,往往重点变量的变化趋势,由此产生圆锥曲线中的中的最值问题等.本课重点是借助对常见的面积问题的研究提炼出解决此类问题的思想方法和基本策略,并能进行简单的应用.二、教学内容分析:解决椭圆最值问题,不仅要用到椭圆定义、方程、几何性质,还常用到函数、方程、不等式及三角函数等重要知识,综合性强,联系性广,策略性要求高.其基本的思想是函数方程思想、化归思想和数形结合思想,基本策略主要是代数和几何两个角度分析. 由于圆锥曲线是几何图形,研究的量也往往是几何量,因此借助几何性质,利用几何直观来分析是优先选择;但几何直观往往严谨性不强,难以细致入微,在解析几何中需要借助代数的工具来实现突破.几何方法主要结合图形的几何特征,借助椭圆的定义以及平面几何知识寻找存在“最值”的位置;代数方法主要是将几何量及几何关系用代数形式表示,建立目标函数,从而转化为函数的最值问题,再借助函数、方程、不等式等知识解决问题.三、学生学习情况分析:椭圆的最值问题的解决,涉及的知识面广,需要综合运用平面几何、代数、不等式等相关知识,还需要较强的运算技能和分析问题解决问题的能力.在本课的学习中,学生可能存在的问题有:知识的联系性和系统性较弱,难以调动众多的知识合理地解决问题;运算能力不强,算得慢,易算错,影响问题解决的执行力;问题解决的策略性不强,就题论题,对问题的数学本质认识模糊等现象.再加上学生对复习课的认识比较片面,对复习课缺乏新鲜感。
由于椭圆的最值问题涉及到图形运动和数量变化,学生往往缺乏对问题的直觉把握和深切的感受,教学中可通过几何画板直观的呈现数、式、形的联动变化,使学生逐步形成多元联系的观点。
四、教学目标:1、 在学生原有的认知基础上进一步理解椭圆定义、标准方程和几何性质。
椭圆题型总结较难

椭圆题型总结一、焦点三角形1. 设F 1、F 2是椭圆12322=+y x 的左、右焦点,弦AB 过F 2,求1ABF △的面积的最大值。
(法一)解:如图,设2(0)xF B ααπ∠=<<,22||||AF m BF n ==,,根据椭圆的定义,1||AF m =,1||BF n =,又12||2F F =,在ΔAF 2F 1和ΔBF 2F 1中应用余弦定理,得2222)44cos )44cos m m m n n n αα⎧=+-⎪⎨=++⎪⎩,∴m =n =∴11211||||2()sin 22F AB B A S F F y y m n α∆=⋅-=⋅⋅+α==令sin t α=,所以01t <≤,∴21()22t g t t t t==++在(01],上是增函数 ∴当1t =,即2πα=时,max 1()3g t =,故1ABF △(法二)解:设AB :x=my+1,与椭圆2x 2+3y 2=6联立,消x 得 (2m 2+3)y 2+4my-4=0 ∵ AB 过椭圆定点F 2,∴ Δ恒大于0.设A(x 1,y 1),B(x 2,y 2),则Δ=48(m 2+1)1ABF S ∆=|y 1-y 2|=223m +=令 t=m 2+1≥1,m 2=t-1, 则1ABF S ∆=t ∈[1,+∞) f(t)=144t t++在t ∈[1,+∞)上单调递增,且f(t)∈[9,+∞) ∴ t=1即m=0时,ΔABF 1。
注意:上述AB 的设法:x=my+1,方程中的m 相当于直线AB 的斜率的倒数,但又包含斜率不存在的情况,即m=0的时候。
在直线斜率不等于零时都可以这样设,往往可使消元过程简单化,而且避免了讨论。
2. 如图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1) 求点P 的轨迹方程;(2) 若2·1cos PM PN MPN-∠=,求点P 的坐标.解:(1) 由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b =225a c -=,所以椭圆的方程为221.95x y += (2) 由2,1cos PM PN MPN=-得cos 2.PM PN MPN PM PN =-①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形. 在△PMN 中,4,MN =由余弦定理有2222cos .MN PM PN PM PN MPN =+-②将①代入②,得22242(2).PM PN PM PN =+--故点P 在以M 、N 为焦点,实轴长为23的双曲线2213x y -=上. 由(Ⅰ)知,点P 的坐标又满足22195x y +=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得33,5.2x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为335335335335(,)-、(,-)、(-,)或(,-).二、点差法定理在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.3. 直线l 经过点A (1,2),交椭圆2213616x y +=于两点P 1、P 2,(1)若A 是线段P 1P 2的中点,求l 的方程;(2)求P 1P 2的中点的轨迹. 解:(1)设P 1(x 1,y 1)、P 2(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧=+=+116361163622222121y x y x ⇒016))((36))((21212121=+-++-y y y y x x x x …………*∵A (1,2)是线段P 1P 2的中点,∴x 1+x 2=2,y 1+y 2=4, ∴016)(436)(22121=-+-y y x x ,即922121-=--x x y y 。
椭圆中的常见最值问题

椭圆中的常见最值问题1、椭圆上的点P到二焦点的距离之积取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。
例1、椭圆上一点到它的二焦点的距离之积为,则取得的最大值时,P点的坐标是。
P(0,3)或(0,-3)例2、已知椭圆方程()p为椭圆上一点,是椭圆的二焦点,求的取值范围。
分析:,当时,=,当时,即2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线xx或反向xx与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。
例3、已知,、是椭圆的左右焦点,P为椭圆上一动点,则的最大值是,此时P点坐标为。
的最小值是,此时P点坐标为。
3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的xx或反向xx与椭圆的交点。
例4、已知,是椭圆的左焦点,P为椭圆上一动点,则的最小值是,此时P点坐标为。
的最大值是,此时P点坐标为。
分析:,当P是的xx与椭圆的交点时取等号。
,当P是的反向xx与椭圆的交点时取等号。
4、椭圆上的点P到定点A的距离与它到椭圆的一个焦点F的距离的倍的和的最小值(为椭圆的离心率),可通过转化为(为P到相应准线的距离)最小值,取得最小值的点是A到准线的垂线与椭圆的交点。
例5、已知定点,点F为椭圆的右焦点,点M在该椭圆上移动,求的最小值,并求此时M点的坐标。
例6、已知点椭圆及点,为椭圆上一个动点,则的最小值是。
5、以过椭圆中心的弦的端点及椭圆的某一焦点构成面积最大的三角形是短轴的端点与该焦点构成的三角形。
例7、过椭圆()的中心的直线交椭圆于两点,右焦点,则的最大面积是。
例8、已知F是椭圆的一个焦点,PQ是过原点的一条弦,求面积的最大值。
6、椭圆上的点与椭圆二焦点为顶点的面积最大的三角形是椭圆的短轴的一个端点与椭圆二焦点为顶点的三角形。
例9、P为椭圆()一点,左、右焦点为,则的最大面积是。
7、椭圆上的点与椭圆长轴的端点为顶点的面积最大的三角形是短轴的一个端点和长轴两个端点为顶点的三角形。
椭圆中面积的最值问题

椭圆中面积的最值问题
椭圆是一种广泛存在于自然界的平面图形,它不仅仅是一个平面图形,而且它具有极大的实用价值。
椭圆是多种物理科学,化学,天文,生物等领域中常见的图形。
椭圆的面积有很多变化,这些变化会产生最大值和最小值,椭圆的最大和最小面积的求解称为椭圆中面积的最值问题。
椭圆的面积可以通过下面的公式来计算:A = πab, 其中a 和b分别是椭圆的两个半轴长。
通过研究发现,椭圆的最大面积是在两个半轴长相等的情况下,即a=b时实现的,最大面积可以表示为:A_max = πa^2 同样,当两个半轴长不等时,椭圆的最小面积是在a和b的乘积最小的情况下实现的,最小面积可以表示为:A_min = πab 因此,当椭圆的两个半轴长a和b不等时,最大面积A_max 就会大于最小面积A_min,而当两个半轴长a和b相等时,最大面积A_max就等于最小面积A_min。
椭圆中面积的最值问题是一个经典的数学问题,是对几何学中椭圆的有关知识的深入研究。
椭圆最大最小面积的求解,不仅仅可以帮助我们理解椭圆的特性,而且还有助于更好地应用椭圆。
椭圆中面积的最值问题,是一个有趣而又有实际意义的数学研究课题,由于椭圆的特性,可以将其应用于多种领域,因
此,对椭圆中面积的最值问题的研究,也有助于更好地应用椭圆。
椭圆最值问题分类微专题(一)

椭圆最值问题分类微专题1.椭圆:,已知,,若过的直线与椭圆交于两点.(1)求证:;(2)求面积的最大值.解:(1)即证:设直线方程为,代入椭圆方程得:,(*)设,则(2)(,)因(*)中,所以所以时,的最大值为3.已知椭圆的上顶点为,过的焦点且垂直长轴的弦长为。
若有一个菱形的顶点,在椭圆上,该菱形对角线所在直线的斜率为。
(1)求椭圆的方程;(2)当直线过点时,求直线的方程;(3)当时,求菱形面积的最大值。
解:(1)依题意,解,得所以,于是椭圆的的方程为(2)由已知得直线:设直线:,,由方程组得 当时,的中点坐标为, 因为是菱形,所以的中点在上,所以,解得,满足 所以的方程为(3)因为四边形为菱形,且,所以,所以菱形的面积由(2)可得又因为,所以当且仅当时,菱形的面积取得最大值,最大值为。
4.如图所示,椭圆C : ,左右焦点分别记作 ,过 分别作直线 交椭圆于 ,且 ⫽ .(1)当直线 的斜率与直线 的斜率 都存在时,求证: 为定值;(2)求四边形面积的最大值.证明:(1)设 ,根据对称性,有 ;因为 都在椭圆C 上,所以 ,二式相减得 ;所以为定值(2)(Ⅰ)当 的倾角为时, 与 重合,舍去.(Ⅱ)当 的倾角不为 时,由对称性得四边形 为平行四边形;而 过 ,设直线 的方程为 ;代入 ,得 ;显然;所以设 ,所以;所以,当且仅当即时等号成立.所以;所以平行四边形面积的最大值为解法二5.已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为.(1)求椭圆的离心率的取值范围;(2)设椭圆的短半轴长为,圆与轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.解:(1)依题意设切线长∴当且仅当取得最小值时取得最小值,而,,从而解得,故离心率的取值范围是;(2)依题意点的坐标为,则直线的方程为,联立方程组得,设,则有,,代入直线方程得,,又,,,直线的方程为,圆心到直线的距离,由图象可知,,,,所以.。
椭圆中最值问题

椭圆中最值问题第一类、椭圆的参数方程题型1、求椭圆的内接多边形的周长及面积例1 、求椭圆)0b a (1by a x 2222>>=+的内接矩形的面积及周长的最大值。
题型2、求轨迹例2、已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且21MB AM =,试求动点M 的轨迹方程。
题型3、求函数的最值例3 、设点P (x ,y )在椭圆19y 16x 22=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。
题型4、求解有关离心率等入手比较困难的问题例4 、椭圆)0b a (1by a x 2222>>=+与x 轴的正向相交于点A ,O 为坐标原点,若这个椭圆上存在点P ,使得OP ⊥AP 。
求该椭圆的离心率e 的取值范围。
第二类、求离心率的最值问题方法1、建立c b a ,,的不等式或方程例1、若B A ,为椭圆)0(12222>>=+b a by a x 的长轴两端点,Q 为椭圆上一点,使0120=∠AQB ,求此椭圆离心率的最小值。
方法2、利用三角函数的有界性求范围例2、已知椭圆C :22221(0)x y a b a b+=>>两个焦点为12,F F ,如果曲线C 上存在一点Q ,使12FQ F Q ⊥,求椭圆离心率的最小值。
第三类、求点点(点线)的最值问题方法1、建立相关函数并求函数的最值例1、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。
设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。
方法四、利用椭圆定义合理转化例2、定长为d d b a ≥⎛⎝⎫⎭⎪22的线段AB 的两个端点分别在椭圆x a y b a b 222210+=>>()上移动,求AB 的中点M 到椭圆右准线l 的最短距离。
与椭圆有关的四边形面积计算的三种方法

与椭圆有关的四边形面积计算的三种方法作者:俞新来源:《广东教育·高中》2009年第10期在多年的高考中出现了与椭圆有关的四边形的面积问题.这类问题具有一定的难度,许多同学都感到无从下手,从而影响了水平的发挥和总体成绩,甚感可惜!其实,与椭圆有关的四边形的面积的计算还是有规律可找的.本文通过最近两年高考中的与椭圆有关的四边形面积问题的解法分析来指导同学们掌握该类问题的三种方法,仅供参考.解法一、对角线互相垂直的四边形的面积等于两对角线乘积的一半例1 已知椭圆+=1的左、右焦点分别为F1,F2 . 过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,垂足为P.(Ⅰ)设P点的坐标为(x0,y0),证明:+解析 (Ⅰ)椭圆的半焦距c==1,由AC⊥BD可知点P在以线段F1F2为直径的圆上,故x20+y20=1,所以+≤+=(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程+=1,并化简得(3k2+2)x2+6k2x+3k2-6=0.设B(x1,y1),D(x2,y2)则x1+x2=-,x1x2=,|BD|=|x1-x2|==.因为AC与BC相交于点P,且AC的斜率为-,所以|AC|==.四边形ABCD的面积S=|BD||AC|=≥=,当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上所述,四边形ABCD的面积的最小值为.评注本题中因为四边形ABCD的对角线AC与BD互相垂直,所以四边形的面积就是AC 与BD乘积的一半.而AC与BD的长可以通过相交弦长公式求得.解法二、平行四边形的面积等于两条邻边与其夹角正弦值的乘积例2 已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.解析 (Ⅰ)由题意得直线BD的方程为y=x+1.因为四边形ABCD为菱形,所以AC⊥BD. 于是可设直线AC的方程为y=-x+n.由x2+3y2=4,y=-x+n得4x2-6nx+3n2-4=0.因为A,C在椭圆上,所以△=-12n2+64>0,解得-设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=,x1x2=,y1=-x1+n,y2=-x2+n,所以y1+y2=.所以AC的中点坐标为(,).由四边形ABCD为菱形可知,点(,)在直线y=x+1上,所以=+1,解得n=-2, 所以直线AC的方程为y=-x-2,即x+y+2=0.(Ⅱ)因为四边形ABCD为菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|, 所以菱形ABCD的面积S=|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1+y2)2=,所以S=(-3n2+16)(-评注因为菱形是特殊的平行四边形,所以可以用平行四边形的面积计算方法求解,当然注意到菱形的对角线互相垂直,所以也可以用解法1的方法求解,但本题中对角线|BD|的长并不是直线y=x+1与椭圆的相交弦长,所以要注意避免下面的错误解法:把y=x+1代入椭圆方程x2+3y2=4并整理得4x2+6x-1=0,所以|BD|=•=,因此菱形ABCD的面积S=••,所以当n=0时,菱形ABCD的面积取得最大值.解法三、四边形的面积等于两个三角形的面积之和例3 设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.(Ⅰ)若=6,求k的值;(Ⅱ)求四边形AEBF面积的最大值.(Ⅰ)解:依题设得椭圆的方程为+y2=1,直线AB,EF的方程分别为x+2y=2,y=kx(k>0). 如图1,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1(Ⅱ)法一:根据点到直线的距离公式和①式知,点E,F到AB的距离分别为h1==,h2==.又|AB|==,所以四边形AEBF的面积为S=|AB|(h1+h2)=••==2=2=2≤2,所以当=4k,即当k=(∵k>0)时,上式取等号,所以S的最大值为2.法二:由题设,|BO|=1,|AO|=2.设y1=kx1,y2=kx2,由①得x2>0,y2=-y1>0,故四边形AEBF的面积为S=S△BEF+S△AEF=x2+2y2==≤=2,所以当x2=2y2时,上式取等号,所以S的最大值为2.评注本题中法一是将四边形AEBF的面积看成是三角形ABE与三角形ABF的面积之和,而法二是将四边形AEBF的面积看成是三角形BEF与三角形AEF的面积之和.我们知道,椭圆、双曲线和抛物线三种圆锥曲线的问题通常应该类比学习,即双曲线和抛物线的四边形面积的计算也可仿与椭圆中有关的四边形面积的计算方法进行,限于篇幅本文不再一一展开,在文末仅举抛物线中一例供同学们练习.例4 设F是抛物线y2=4x的焦点,A、B为抛物线上异于原点O的两点,且满足•=0.延长AF、BF分别交抛物线于点C、D(如图2).求四边形ABCD面积的最小值.解析设A(x1,y1)、C(x2,y2),由题设知,直线AC的斜率存在,设为k.因直线AC过焦点F(1,0),所以直线AC的方程为y=k(x-1).联立方程组y=k(x-1),y2=4x,消去y得k2x2-2(k2+2)x+k2=0,由根与系数的关系知:x1+x2=,x1x2=1,于是|AC|====,又因为AC⊥BD,所以直线BD的斜率为-,从而直线BD的方程为y=-(x-1),同理可得|BD|=4(1+k2),故S ABCD=|AC|•|BD|==8(k2++2)≥8×(2+2)=32,所以当k=±1时等号成立.所以,四边形ABCD的最小面积为32.另解:设B(x3,y3)、D(x4,y4),联立方程组y=(x-1),y2=4x,得x2-(2+4k2)x+1=0,所以x3+x4=4k2+2,x3x4=1,又|FA|=x1+1,|FC|=x2+1,|FB|=x3+1,|FD|=x4+1,所以四边形ABCD的面积为SABCD=|AC|•|BD|=(x1+x2+2)(x3+x4+2)=(+2).(4k2+2+2)==8(k2++2)≥8×(2+2)=32,所以当k=±1时等号成立.所以,四边形ABCD的最小面积为32.责任编校徐国坚。
椭圆中的参数范围及最值问题(学生版)

椭圆中的参数范围及最值1.点N x 0,y 0 是曲线Γ:ax 2+by 2=1上任一点,已知曲线Γ在点N x 0,y 0处的切线方程为ax 0x +by 0y =1.如图,点P 是椭圆C :x 22+y 2=1上的动点,过点P 作椭圆C 的切线l 交圆O :x 2+y 2=4于点A 、B ,过A 、B 作圆O 的切线交于点M .(1)求点M 的轨迹方程;(2)求△OPM 面积的最大值.2.已知椭圆C:x2a2+y2b2=1a>b>0的离心率为223,且经过点6,33.(1)求C的方程;(2)动直线l与圆O:x2+y2=1相切,与C交于M,N两点,求O到线段MN的中垂线的最大距离.3.在平面直角坐标系xOy中,动点P到直线x=2的距离和点P到点C1,0 Array的距离的比为2,记点P的轨迹为Γ.(1)求Γ的方程;(2)若不经过点C的直线l与Γ交于M,N两点,且∠OCM=∠xCN,求△CMN面积的最大值.4.已知椭圆C:x2a2+y2b2=1(a>b>0)的焦距为2,点P1,32在椭圆C上.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两个动点,O为坐标原点,且直线PM,PN的倾斜角互补,求△OMN面积的最大值.5.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为32,且经过点A(-2,0),B(2,0),过点M-23,0作直线l与椭圆交于点P,Q(点P,Q异于点A,B),连接直线AQ,PB交于点N.(1)求椭圆的方程;(2)当点P位于第二象限时,求tan∠PNQ的取值范围.6.已知椭圆Γ:x2a2+y2b2=1(a>b>0)的离心率为63,左、右焦点分别为F1,F2,过F2作不平行于坐标轴的直线交Γ于A,B两点,且△ABF1的周长为4 6.(1)求Γ的方程;(2)若AM⊥x轴于点M,BN⊥x轴于点N,直线AN与BM交于点C,求△ABC面积的最大值.7.已知点F 为椭圆E :x 2a 2+y 2b2=1a >b >0 的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x4+y 2=1与椭圆E 有且仅有一个公共点M .(1)求椭圆E 的方程;(2)设直线x4+y 2=1与y 轴交于点P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若PM 2⋅PF 2=λPA ⋅PB ,求实数λ的取值范围.8.定义:若点(x 0,y 0),(x 0,y 0)在椭圆M :x 2a 2+y 2b2=1(a >b >0)上,并且满足x 0x 0a 2+y 0y 0 b2=0,则称这两点是关于M 的一对共轭点,或称点(x 0,y 0)关于M 的一个共轭点为(x 0 ,y 0).已知点A (3,1)在椭圆M :x 212+y 24=1,O 坐标原点.(1)求点A 关于M 的所有共轭点的坐标;(2)设点P ,Q 在M 上,且PQ ∥OA,求点A 关于M 的所有共轭点和点P ,Q 所围成封闭图形面积的最大值.9.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点为F 2,0 ,离心率为63,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设点P 3,m m >0 ,过F 作PF 的垂线交椭圆于A ,B 两点.求△OAB 面积的最大值.10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,点A -1,32 在椭圆C 上,点P 是y 轴正半轴上的一点,过椭圆C 的右焦点F 和点P 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程;(2)求PM +PNPF的取值范围.11.已知O 坐标原点,椭圆C :x 2a 2+y 2b 2=1a >b >0 的上顶点为A ,右顶点为B ,△AOB 的面积为22,原点O 到直线AB 的距离为63.(1)求椭圆C 的方程;(2)过C 的左焦点F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若DE ⋅MN=0,求△FPQ 面积的最大值.12.已知椭圆C:x2a2+y2b2=1a>b>0经过点M(0,3),离心率为22.(1)求椭圆C的方程;(2)直线l:y=kx-1与椭圆C相交于A、B两点,求MA⋅MB的最大值.13.在平面直角坐标系xOy中,已知F(1,0),动点P到直线x=6的距离等于2PF+2.动点P的轨迹记为曲线C.(1)求曲线C的方程;(2)已知A(2,0),过点F的动直线l与曲线C交于B,D两点,记△AOB和△AOD的面积分别为S1和S2,求S1+S2的最大值.14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.15.如图,椭圆的中心为原点O,长轴在x轴上,离心率e=22,过左焦点F1作x轴的垂线交椭圆于A、A 两点,AA=4.(1)求该椭圆的标准方程;(2)取平行于y轴的直线与椭圆相交于不同的两点P、P',过P、P'作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP Q的面积S的最大值,并写出对应的圆Q的标准方程.16.在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1a>b>0,椭圆C的离心率为12,B0,3在椭圆C上.(1)求椭圆C的方程;(2)过椭圆C的左顶点A作两条互相垂直的直线分别与椭圆C交于M、N两点(不同于点A),且AD⊥MN,D为垂足,求三角形ABD面积的最大值.17.已知椭圆C:y2a2+x2b2=1a>b>0的离心率为63,且经过点P1,3.(1)求椭圆C的方程;(2)A、B为椭圆C上两点,直线PA与PB的倾斜角互补,求△PAB面积的最大值.,M是圆O:x2+y2=4内一动点,圆O与18.已知O为坐标原点,定点F1,0以线段FM为直径的圆内切.(1)求动点M的轨迹方程;(2)若直线l与动点M的轨迹交于P,Q两点,以坐标原点O为圆心,1为半径的圆与直线l相切,求△POQ面积的最大值.19.如图,已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为32,直线l 1:y =12x +b 与圆O :x 2+y 2=b 2交于M ,N 两点,MN =455.(1)求椭圆E 的方程;(2)A ,B 为椭圆E 的上、下顶点,过点A 作直线l 2:y =kx +b k <0 交圆O 于点P ,交椭圆E 于点Q (P ,Q 位于y 轴的右侧),直线BP ,BQ 的斜率分别记为k 1,k 2,试用k 表示k 1+14k 2,并求当k 1+14k 2∈2,52时,△BPQ 面积的取值范围.20.已知椭圆Γ:x2a2+y2b2=1(a>b>0)的左焦点为F,其离心率e=22,过点F垂直于x轴的直线交椭圆Γ于P,Q两点,PQ=2.(1)求椭圆Γ的方程;(2)若椭圆的下顶点为B,过点D(2,0)的直线l与椭圆Γ相交于两个不同的点M,N,直线BM,BN的斜率分别为k1,k2,求k1+k2的取值范围.21.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,32 ,P 2(0,1),P 31,22 ,P 41,-22 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点Q 2,0 的直线l 与椭圆C 相交于M ,N 两点,求△OMN 面积的取值范围.22.已知椭圆E:x22+y2=1的右焦点为F,椭圆Γ:x22+y2=λλ>1.(1)求Γ的离心率;(2)如图:直线l:x=my-1交椭圆Γ于A,D两点,交椭圆E于B,C两点.①求证:AB=CD;②若λ=5,求△ABF面积的最大值.23.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点恰好为圆A :x 2+y 2-4x+3=0的圆心,且圆A 上的点到直线l 1:bx -ay =0的距离的最大值为255+1.(1)求C 的方程;(2)过点(3,0)的直线l 2与C 相交于P ,Q 两点,点M 在C 上,且OM =λ(OP+OQ ),弦PQ 的长度不超过3,求实数λ的取值范围.24.已知椭圆C :x 24+y 2=1,点P 为椭圆C 上非顶点的动点,点A 1,A 2分别为椭圆C 的左、右顶点,过点A 1,A 2分别作l 1⊥PA 1,l 2⊥PA 2,直线l 1,l 2相交于点G ,连接OG (O 为坐标原点),线段OG 与椭圆C 交于点Q ,若直线OP ,OQ 的斜率分别为k 1,k 2.(1)求k1k 2的值;(2)求△POQ 面积的最大值.25.已知椭圆C:x2a2+y2b2=1a>b>0的离心率为32,过C的右顶点A的直线l与C的另一交点为P.当P为C的上顶点时,原点到l的距离为25 5.(1)求C的标准方程;(2)过A与l垂直的直线交抛物线y2=8x于M,N两点,求△PMN面积的最小值.26.已知曲线C由C1:x2a2+y2b2=1(a>b>0,x≥0)和C2:x2+y2=b2(x<0)两部分组成,C1所在椭圆的离心率为32,上、下顶点分别为B1,B2,右焦点为F,C2与x轴相交于点D,四边形B1FB2D的面积为3+1.(1)求a,b的值;(2)若直线l与C1相交于A,B两点,AB=2,点P在C2上,求△PAB面积的最大值.27.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1a >b >0 的上顶点B ,左、右焦点分别为F 1-c ,0 、F 2c ,0 ,△F 1BF 2是周长为4+42的等腰直角三角形.(1)求椭圆C 的标准方程;(2)过点P -1,-1 ,且互相垂直的直线l 1、l 2分别交椭圆C 于M 、N 两点及S 、T 两点.①若直线l 1过左焦点F 1,求四边形MSNT 的面积;②求PM ⋅PN PS ⋅PT的最大值.28.已知椭圆E:x2a2+y2b2=1a>b>0的左右焦点分别为F、F2,F1F2=4,点P3,1在椭圆E上.(1)求椭圆E的标准方程;(2)设过点F2且倾斜角不为0的直线l与椭圆E的交点为A、B,求△F1AB面积最大时直线l的方程.29.如图,A 为椭圆C :x 28+y 24=1的左顶点,过原点且异于x 轴的直线与椭圆C 交于M ,N 两点,直线AM ,AN 与圆O :x 2+y 2=8的另一交点分别为P ,Q .(1)设直线AM ,AN 的斜率分别为k 1,k 2,证明:k 1⋅k 2为定值;(2)设△AMN 与△APQ 的面积分别为S 1,S 2,求S1S 2的最大值.30.已知椭圆C :x 23+y 2=1,经过圆O :x 2+y 2=4上一动点P 作椭圆C 的两条切线.切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(1)求证:M ,O ,N 三点共线;(2)求△OAB 面积的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的内接四边形面积最值问题一例
一、教学目标:
1、 在学生原有的认知基础上进一步理解椭圆定义、标准方程和几何性质。
2、 椭圆中最值问题产生原因( “动因”)如何分析
3、 能从代数和几何两个角度分析和解决椭圆最值问题,掌握解决最值问题的基本策
略。
4、 掌握求椭圆最值问题的一般方法,在问题的提出、建模、解模的过程中形成方法体
系。
重点:会求椭圆的最值问题
难点:参数的引入、建模过程、解模的方法
二、例题:椭圆方程为 ,其上顶点为A ,右顶点为B ,现过原点作直线EF 分
别交椭圆于E,F (其中E 在第一象限),求四边形AEBF 面积的最大值。
(一)问题分析:
问题(1):我们能从题目中得到哪些信息?(顶点坐标、焦点位置、E 位置,目标求四边形面积的最大值)
问题(2):哪些是定量、哪些是变量?
问题(3):求不规则四边形面积有哪些常见方法?
22
134x y +=
问题(4):怎样分割这个四边形,这样分割的好处是什么?
问题(5):怎样表示出要求的目标函数AEBF的面积?选取什么变量来表示?问题(6):提出问题,怎样想到用这些变元来建立目标函数?
问题(7):由E、F的对称性,当直线EF转动过程中,你能发现什么?
(二)解决问题:
分小组尝试不同分割方法、设元方法解决问题
(三)归纳总结、思维拓展:
(四)探究
的几何意义?
(五)退化与推广
请同学们思考下面两个问题:
退化:一半径为R 的圆222x y R +=上两点(0,),(,0)A R B R ,直线EF 过原点与圆交于E,F 两点,其中E 在第一象限,求四边形面积最大值。
(六)推广:已知椭圆C : 上两点(0,),(,0)A a B b 过椭圆中心O 的直线与椭圆C 交于E 、F 两点,其中点E 在第一象限,求四边形AEBF 面积的最大值。
o o S=2x 22
221(0)b
y x a b a +=>>
变式探究: A,B 分别是右顶点上顶点,过原点O 的直线与椭圆交与
E,F 两点(E 在第一象限)设三角形AEB 面积1S ,三角形AFB 面积为2S ,求12S S 的最大值?思考:(12S S 是否也有最大值)
(七)课堂小结、能力升华 22
221(0)b x y a b a +=>>。