电动机点动、连续复习+4种保护
电气控制技术实验指导三相异步电动机点动与连续运行控制

实验一三相异步电动机点动与连续运行控制一、实验目的1、熟悉常用低压电器元件(接触器、热继电器和按钮等)的功能及使用方法。
2、掌握自锁作用。
3、培养学生电气控制系统的识图能力和安装调试电气线路的动手能力。
4、培养学生分析实际问题和解决实际问题的能力。
二、实验仪器设备三相异步电动机、接触器、热继电器、一组按钮。
电源、导线若干、万用表等。
三、实验内容三相异步电动机点动与连续运行控制四、实验步骤1、点动控制图1 点动控制主电路和控制电路(1)按图1连接点动控制的主电路和控制电路。
先连接主电路,然后连接控制电路。
(2)运行、调试:合上电源开关QS;起动:按下按钮SB →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行;停车:松开按钮SB →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;停止使用时:断开电源开关QS 。
2 、连续运行控制线路图2 连续运行主电路和控制电路(1)按图2连接连续运行控制电路的主电路和控制电路。
先连接主电路,然后连接控制电路。
(2)运行、调试:合上电源开关QS;起动:按下按钮SB2 →接触器KM 线圈得电→KM 主触头闭合→电动机M 起动运行,接触器KM 的辅助常开触头闭合-自锁,使接触器KM线圈保持得电→电动机M 连续运行;停车:按下按钮SB1 →接触器KM 线圈失电→KM 主触头断开→电动机M 停转;保护环节:短路保护、过载保护、失压和欠压保护当电气控制系统中出现短路、过载或失压和欠压等故障现象,保护环节的电器动作,电动机M 停转。
停止使用时:断开电源开关QS 。
五、实验分析1.分析点动控制、连续运行控制电路的特点,比较二者区别。
2.分析电路中常见的故障现象,采取哪些保护措施?3.在实验过程中出现的异常现象,及解决措施。
实验二 三相异步电动机正反转控制一、实验目的1、熟悉常用低压电器元件(按钮、接触器及热继电器)的功能及使用方法。
2、掌握自锁、互锁的作用。
3、培养学生电气控制系统的识图能力和安装调试电气线路的动手能力。
电气控制与PLC应用_第2章习题与思考题参考解答

第2章 电气控制线路的基本原则和基本环节习题与思考题1. 自锁环节怎样组成?它起什么作用?并具有什么功能?答:在连续控制中,将接触器的常开辅助触头QA 与自复位启动按钮SF 并联,即可形成自锁环节。
当启动按钮SF 松开后,接触器QA 的线圈通过其辅助常开触头的闭合仍继续保持通电,从而保证电动机的连续运行。
这种依靠接触器自身辅助常开触头而使线圈保持通电的控制方式,称自锁或自保。
起到自锁作用的辅助常开触头称自锁触头。
所以自锁环节的功能就是在启动按钮松开后,能够保持接触器线圈一直通电,使电动机连续运行。
2. 什么是互锁环节?它起到什么作用?答:控制线路要求QA1与QA2不能同时通电时,为此要求线路设置必要的联锁环节。
将其中一个接触器的常闭触头串入另一个接触器线圈电路中,则任何一个接触器先通电后,即使按下相反方向的启动按钮,另一个接触器也无法通电,这种利用两个接触器的辅助常闭触头互相控制的方式,叫电气互锁,或叫电气联锁。
起互锁作用的常闭触头叫互锁触头。
复合按钮的常闭触头同样也可起到互锁的作用,这样的互锁叫机械互锁。
利用成对使用的机械联锁接触器,加上电气互锁,可形成机械、电气双重互锁。
互锁环节的作用就是防止QA1与QA2同时通电造成电源短路等危险。
3. 分析如图2-50所示线路中,哪种线路能实现电动机正常连续运行和停止?哪种不能?为什么?答:(c )和(f )能实现电动机正常连续运行和停止,因为按下SB1,接触器KM 线圈通电并自锁,电动机连续运行;按下SB ,KM 线圈断电,电动机停止。
图2-50 习题3图(a )(b )(c ) (d )(e )(f )其他则不能,因为图(a)接触器KM线圈不能得电,故不能启动;图(b)能启动连续运行,但不能切断接触器线圈供电,即不能停止;图(d)会引起电源短路;图(e)线圈不能保持连续通电。
(图中,SB1为启动按钮开关,SB为停止按钮开关。
)4.试采用按钮、刀开关、接触器和中间继电器,画出异步电动机点动、连续运行的混合控制电路。
点动、连续运行控制

点动控制
机 械设 备手 动控 制间 断工 作, 即按 下启 动按
图2-4 点动控制电路原理图
1 点动控制电路
主电路 由刀开关 QS、熔断 器FU1、交 流接触器 KM的主触 点和笼型电 动机M组成 ;控制电路 由熔断器
图2-4 点动控制电路原理图
1 点动控制电路
电路的工作原理如下: 起动过程:先合上刀开关QS→按下起 动按钮SB→接触器KM线圈通电→KM主 触点闭合→电动机M通电直接起动。
图2-6 连续运行控制电路
1 连续运行控制电路结构与工作原理
工作原理如下: 起动:合上刀开关QS→按下起动按钮 SB2→接触器KM线圈通电→KM主触点 闭合和常开辅助触点闭合→电动机M接 通电源运转;(松开SB2)利用接通的KM 常开辅助触点自锁,电动机M连续运转 。
停机:按下停止按钮SB1→KM线圈断 电→KM主触点和辅助常开触点断开→
2 点动控制电路的安装接线
接线训练步骤: ①画出电路图,分析工作原理,并按规定标注线号。 ②列出元件明细表,并进行检测,将元件的型号、规格、质量检查结果 及有关测量值记入点动控制线路元件明细表中。 ③在配电板上,布置元件,并画出元件安装布置图及接线图。 ④按照接线图规定的位置定位打孔将电气元件固定牢靠。 ⑤按电路图的编号在各元件和连接线两端做好编号标志。
3 中间继电器实现控制
三相异步电动机连续运行控制
目录
1 连续运行控制电路结构与工作原理 2 连续运行控制电路的安装接线
2
1 连续运行控制电路结构与工作原理
在实际生产中往往要求电动机实现长时间 连续转动,即所谓长动控制。如图2-6所示,主 电路由刀开关QS、熔断器FU、接触器KM的主触 点、热继电器FR的发热元件和电动机M组成; 控制电路由停止按钮SB2、起动按钮SB1、接触 器KM的常开辅助触点和线圈、热继电器FR的常 闭触点组成。
描述点动与连续运行控制电路的工作过程

描述点动与连续运行控制电路的工作
过程
点动与连续运行控制电路是一种常见的电动机控制电路,用于实现电动机的点动和连续运行模式。
1. 点动模式:
- 在点动模式下,按下启动按钮,电动机接通电源开始运行。
- 当松开启动按钮时,电动机停止运行。
- 这种模式通常用于调试、短时间运行或需要频繁起停的场合。
2. 连续运行模式:
- 按下启动按钮后,接触器的线圈通电,其主触点闭合,电动机接通电源开始运行。
- 同时,接触器的辅助触点也会闭合,将启动按钮短路,使其在松开后不会影响电动机的运行。
- 要停止电动机,只需按下停止按钮,接触器的线圈失电,主触点断开,电动机停止运行。
这种电路在实际应用中非常常见,例如在工业生产线上的输送带、机床等设备中。
通过点动模式可以方便地进行调试和位置调整,而连续运行模式则适用于长时间的连续工作。
需要注意的是,具体的工作过程可能会因电路的设计和实际应用而有所不同。
在实际使用中,还应考虑电动机的保护、过载保护等因素,以确保电路的安全可靠运行。
如果你需要更详细的信息或者有其他问题,请随时告诉我。
电动机的点动及连续控制实验心得

电动机的点动及连续控制实验心得电动机是一种常用的电力驱动装置,广泛应用于工业、交通、农业等领域。
在电机控制的实验中,点动和连续控制是两种常用的控制方式。
在本次实验中,我们学习了这两种控制方式,并进行了实验验证,本文将就此分享一下我的心得体会。
点动控制是将电机从静止状态逐步加速至设定速度的过程。
在本次实验中,我们使用了PLC控制器来实现点动控制。
通过PLC控制器的编程,我们可以设置电机的加速时间、加速度、启动电压等参数,使电机从静止状态开始逐渐加速,直至达到设定的速度。
在实验中,我发现点动控制具有以下优点:1.稳定性好:由于点动控制是逐步加速的过程,因此电机的启动过程相对平稳,不容易出现过大的启动冲击,从而保证了电机的稳定性。
2.控制灵活:通过PLC编程,可以根据需要设置电机的加速时间、加速度等参数,使得点动控制具有较大的灵活性,可以满足不同的控制需求。
3.节约能源:由于点动控制是逐步加速的过程,因此相较于直接启动电机,点动控制能够更加节约能源,降低运行成本。
但是,点动控制也存在一些缺点:1.启动时间较长:由于点动控制是逐步加速的过程,因此启动时间相对较长,对于某些需要快速启动的应用场合可能不太适用。
2.控制复杂度较高:由于点动控制需要通过编程设置多个参数,因此其控制复杂度较高,需要一定的技术水平和编程能力。
接下来,我们进行了连续控制的实验。
连续控制是将电机控制在一定的速度范围内进行连续运转的过程。
在实验中,我们使用了PID 控制器来实现连续控制。
PID控制器是一种常用的控制器,其基本原理是通过不断调整控制量的输出值,使其与设定值之间保持一定的误差,从而实现对系统的控制。
在本次实验中,我们将PID控制器与电机连接,并通过编程设置PID控制器的参数,使得电机能够在一定的速度范围内进行连续运转。
在实验中,我发现连续控制具有以下优点:1.精度高:由于PID控制器能够根据设定值和实际值之间的误差不断调整控制量的输出值,因此连续控制具有较高的精度,能够满足对系统控制精度要求较高的应用场合。
电动机的控制环节和保护环节

KM 1
KM2
SB2
KM2
SB4
KM 1
~ 380V
例:试设计一台用变压器供电的三相 电炉控制电路,自耦变压器有低压抽 头①。升温使用全压,保温时用低压, Q 要求如下: (1)先升温,后 保温,直至停炉,(2)电路具 有短路、过载保护环节。
KM1
FU SB3
①
KM2
SB1 KM2
KM 1
FR
KM1
继电接触器控制电路本身具有这种保护作用。因 为当断电或电压过低时,接触器就释放,使电动 机自动脱离电源;当线路重新恢复供电时,由于 接触器的自锁触点已断开,电动机不能自行起动 ,起到保护作用。 例:电路如图,控制要求为:(1)M1 起动后,M2才能起动;(2) M1M2能同 时停车;(3)M2 还能单独停车;(4) 每台电机均有各自的短路、过载保护环 节,互不影响。试改正图中的错误。
为解决这一问题,控制回路增加互锁,如图:
~ 380V
Q
FU SB
KMF KMF 得电 失电
SBF KMR KMF
FR FU
FU KMR
KMF SBR
KMF
FR
KMR KMF KMR 得电
M 3~
此时即使按下 问题:正转时要反转, SBR,线圈 先按停止按钮,再按反 KMR也无电, 电机正转 电机反转 电机停转 转按钮,不方便。 实现互锁。
KMR
ቤተ መጻሕፍቲ ባይዱ
为解决这一问题,采用复式按钮和触头互锁的控 制电路(虚线连接表示连动)
~ 380V
Q FU A
FU SBR SBF SB
KMF得电 KMF失电
KMF KMR
FR
B
FU
KMF
电气控制与PLC应用-第2章习题与思考题参考解答

第2章电气控制线路的基本原则和基本环节习题与思考题1.自锁环节怎样组成?它起什么作用?并具有什么功能?答:在连续控制中,将接触器的常开辅助触头QA与自复位启动按钮SF并联,即可形成自锁环节。
当启动按钮SF松开后,接触器QA的线圈通过其辅助常开触头的闭合仍继续保持通电,从而保证电动机的连续运行。
这种依靠接触器自身辅助常开触头而使线圈保持通电的控制方式,称自锁或自保。
起到自锁作用的辅助常开触头称自锁触头。
所以自锁环节的功能就是在启动按钮松开后,能够保持接触器线圈一直通电,使电动机连续运行。
2•什么是互锁环节?它起到什么作用?答:控制线路要求QA1与QA2不能同时通电时,为此要求线路设置必要的联锁环节。
将其中一个接触器的常闭触头串入另一个接触器线圈电路中,则任何一个接触器先通电后,即使按下相反方向的启动按钮,另一个接触器也无法通电,这种利用两个接触器的辅助常闭触头互相控制的方式,叫电气互锁,或叫电气联锁。
起互锁作用的常闭触头叫互锁触头。
复合按钮的常闭触头同样也可起到互锁的作用,这样的互锁叫机械互锁。
利用成对使用的机械联锁接触器,加上电气互锁,可形成机械、电气双重互锁。
互锁环节的作用就是防止QA1与QA2同时通电造成电源短路等危险。
3. 分析如图2-50所示线路中,哪种线路能实现电动机正常连续运行和停止?哪种不能?为什么?(b )kMrpSBKMKM(d )(e )KMSB1,接触器KM 线圈通电〒SR_____ a ____________KM(a )图2-50习题3图答:(C )和(门能实现电动机正常连续运行和停止,因为按下 并自锁,电动机连续运行;按下SB ,KM 线圈断电,电动机停止。
其他则不能,因为图(a )接触器KM 线圈不能得电,故不能启动;图(b )能启动连续运行,但不能切断接触器线圈供电,即不能停止;图(d )会引起电源短路;图(e )线圈不能保持连续通电。
(图中,SB1为启动按钮开关,SB 为停止按钮开关。
点动、连续运行控制

图2-4 点动控制电路原理图
1 点动控制电路
电路的工作原理如下: 起动过程:先合上刀开关QS→按下起 动按钮SB→接触器KM线圈通电→KM主 触点闭合→电动机M通电直接起动。
停机过程:松开SB→KM线圈断电 →KM主触点断开→电动机M断电停转 。
1 点动控制电路
2 点动控制电路的安装接线
点动控制电路安装接线图,如图2-5所示。
图2-6 连续运行控制电路
1 连续运行控制电路结构与工作原理
工作原理如下: 起动:合上刀开关QS→按下起动按钮 SB2→接触器KM线圈通电→KM主触点 闭合和常开辅助触点闭合→电动机M接 通电源运转;(松开SB2)利用接通的KM 常开辅助触点自锁,电动机M连续运转 。
停机:按下停止按钮SB1→KM线圈断 电→KM主触点和辅助常开触点断开→
图2-5 点动控制电路安装接线图
2 点动控制电路的安装接线
所需元件和工具 : 木质(或其它材质)控制板一块,交流接触器、熔断器、 电源隔离开关、按钮、接线端子排、三相电动机、 万用表及电工常用工具一套、导线、号码管等。
2 点动控制电路的安装接线
接线训练步骤: ①画出电路图,分析工作原理,并按规定标注线号。 ②列出元件明细表,并进行检测,将元件的型号、规格、质量检查结果 及有关测量值记入点动控制线路元件明细表中。 ③在配电板上,布置元件,并画出元件安装布置图及接线图。 ④按照接线图规定的位置定位打孔将电气元件固定牢靠。 ⑤按电路图的编号在各元件和连接线两端做好编号标志。
三相异步电动机基本控制电路
三相异步电动机点动控制
目录
1 点动控制电路 2 点动控制电路的安装接线
2
点动控制
机 械设 备手 动控 制间 断工 作, 即按 下启 动按
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SB2 SB1
KM KM
SB1
KM a) b)
KM
不能
不能
能否实现自锁控制?
SB2 SB1
KM
SB1
SB2
KM
KM c)
KM d)
能
不能
能否实现自锁控制?
SB2 SB1 KM KM e)
SB2 SB1 KM
KM e) f)
不能
能
想一想
2-1.控制电路中只需要接触器和按钮 就可完成控制功能,为什么还要加入 熔断器和热继电器呢?
P100
练一练
1.试分析判断以下各控制电路能否实 现点动控制?
能否实现点动控制?
SB2 SB1
SB KM
SB KM
KM a)
KM b)
KM c)
能
不能
不能
能否实现点动控制?
SB
SB
KM
KM KM d)
KM e)
不能
能
练一练
2.试分析判断以下各控制电路能否实 现自锁控制?
能否实现自锁控制?
启动时,由于启动电流远大于熔断器
的额定电流,使熔断器在很短的时间
内熔断,造成电动机无法启动。
熔断器和热继电器 能否相互代替使用?
3)如果用热继电器作短路保护,由 于热继电器的热惯性大,当电动机发
生短路时,热继电器还没来得及动作,
电气设备可能就已经损坏。
热继电器的双金属片受热膨胀弯曲 需要一定的时间
P110
想一想
3-1.熔断器和热继电器都是保护电器, 两者能否相互代替使用?
电动机的启动电流
熔断器和热继电器 能否相互代替使用?
不能。 1)熔断器作短路保护,热继电器作
过载保护。
熔断器和热继电器 能否相互代替使用?
2)如果用熔断器作过载保护,则熔 断器选用的额定电流就应等于或稍大
于电动机的额定电流,这样电动机在
0
SB 3
KM
U13
V13 W13 KH
U V W PE
M
3~
P101
2.点动正转控制——工作原理
先合上电源开关QF
启动:
KM线圈得电 KM主触头闭合
按下SB
电动机M启动运转
P102
2.点动正转控制——工作原理
停止:
松开SB
KM线圈得电
KM主触头断开
电动机M断电停转
P102
什么叫点动?
按下按钮电动机就得电运转,松开按 钮电动机就失电停转的控制方法,称 为点动控制。
电动机的基本控制线路
一、连续正转控制
二、点动正转控制
教学目标
掌握它们的线路构成
掌握它们的工作原理
1.连续正转控制——线路构成
QF L1 L2 L3 U11 V11 W11 FU1 U12 V12 W12
FU2
1
0
KH 2
SB2
KM U13 V13 W13 KH U V W SB1 4 3 KM
KM
PE
M
3~
P111
2.连续正转控制——工作原理
先合上电源开关QF
启动:
KM线圈得电 KM主触头闭合 KM辅助常开触头闭合
按下SB1
电动机M启动连续运转
P107
2.连续正转控制——工作原理
停止:
KM线圈失电 KM主触头断开
按下SB2
KM辅助常开触头断开
电动机M失电停转
P107有一台电动机M,若按下SB1,电 动机M点动;若按下SB2,电动机M连 续运转,按下SB3,电动机M停止运转。 这样的控制电路要如何设计?
电动机的基本控制线路
三、控制线路中的保护
1.短路保护——熔断器(FU)
当发生两相线之间的短路,或者一相 线与地线之间的短路时,熔断器可以 迅速熔断,保护电源和电线。
2.过载保护——热继电器(KH)
电动机在运行的过程中,如果发生过 载,可能使电动机绕组中的电流增大, 超过额定电流值。
但是在这种情况下,熔断器往往并不 会熔断,那么绕组的温度会持续升高, 严重时会烧毁电动机的绕组。
当启动按钮松开后,接触器通过自身 的辅助常开触头使其线圈保持得电的 作用叫做自锁。
P109
什么叫自锁触头?
与启动按钮并联起自锁作用的辅助常 开触头叫做自锁触头。
P109
1.点动正转控制——线路构成
QF L1 L2 L3 U11 V11 W11 FU1 U12 V12 W12
FU2
1 KH 2 KM
P112
想一想
3-2.电路中除了短路保护和过载保护, 还有其他的保护吗?
当电源电压下降到一定值时,电动机 会自动停转,这是不是一种保护呢?
3.欠压保护
当线路电压下降到某一数值时,电动 机能自动脱离电源停转,避免电动机 在欠压下运行的一种保护。
85%UN
P110
想一想
3-3.如果突然断电了,当恢复供电时, 电动机能否自行启动?
4.失压保护(零压保护)
电动机在正常运行时,由于外界某种 原因引起突然断电时,能自动切断电 源;
当重新供电时,保证电动机不能 自行启动的一种保护。
P110
控制线路中的4种保护
保护名称 短路保护 过载保护 欠压保护 失压保护 保护对象 电源和电线 电动机 电动机 人和设备 由什么电器实现 熔断器(FU) 热继电器(KH) 交流接触器(KM) 交流接触器(KM)