电液伺服系统详解共75页
第五章 电液伺服系统

5.1 电液位置伺服系统 5.2 电液速度伺服系统 5.3 电液伺服系统在轧钢中的应用
5.1 电液位置伺服系统
系统组成原理图 系统工作原理与方框图 系统的传递函数 液压控制系统技术指标 系统精度分析 系统的校正
系统组成原理图
系统的工作原理(一)
电液伺服阀控缸位置控制系统,两个电 位器组成的电桥测量输入(指令电位器) 与输出(工作台位置)之间的位置偏差 信号(用电压表示)。若反馈信号电位 器的滑臂指示电位与指令电位器的滑臂 指示电位不等时,则生产偏差电压。
系统的传递函数(一)
根据双电位器阀控缸的位置控制的方框图,可 以写出系统的开环传递函数为:
Au ( s ) = Kv s s 2 2ξ sv s 2 2ξ h s ω + 1 ω 2 + ω + 1 ω 2 + ω + 1 sv h a sv h
液压控制系统的技术指标
一个具体的液压控制系统,除了要满足 一些常规的技术指标外,还有控制系统 特有的技术要求,主要表现在: 控制系统的稳定性 控制系统的响应特性 系统的控制精度(误差)
控制系统的稳定性
稳定是一个控制系统正常工作的必要条 件,是首要考虑的指标。稳定性是指系 统在偏离平衡状态后外作用消失,系统 恢复到新的或原来的平衡状态的能力。 判定系统的稳定性,可以用劳斯判据。 对三阶方程 a3 s 3 + a2 s 2 + a1s + a0 = 0 其稳定条 件是 a0 a3 < a1a2 。 另一种则是利用开环对数频率特性。
τ c = RC
速度控制系统的校正(二)
校正后系统的开环方框图为:
速度控制系统的校正(结束)
电液伺服系统详解

电液伺服系统
系统组成:由EH供油系统、电液执行器、保护 系统和试验模块
汽轮机数字电液控制系统
Digital Electro-Hydraulic Control System
EH供油系统 向电液执行器提供符合压力要求和清洁度、酸 度等品质要求的安全、可靠、稳定的液压油。由高压油泵、过 滤器、再生装置、冷油器EH油箱、高压蓄能器、低压蓄能器 等组成。 电液执行器 主汽门和调节汽门的执行调节器。有电液伺服阀 和电磁阀2种控制方式,前者为位置连续调节,后者为开、关2 种状态。 保护系统 “2取1”带电动作OPC电磁阀,“4取2”失电动作电 磁阀,及试验回路。超速保护控制和自动停机遮断,前者用于 超速预警和保护,后者用于事故工况下紧急停机。 试验模块 低润滑油压、低EH油压、推力轴承磨损、低真空 等试验系统。 油路系管路、OPC保护油路或AST停机油路、低压回油油路和无压回 油油路。前3种与电液执行器相连,保护系统的回油经无压回 油油路直接排至主油箱。
EH油系统 运 行
EH油系统概述 随着大容量、高参数汽轮发电机组的发展, 机组调节系统工作介质的额定压力随之升高, 对其工作介质的要求亦越来越高。通常所用 的矿物油自燃点为350℃左右,若在高参数大 容量机组使用,便增加了油泄漏到主蒸汽管 道(>530℃)导致火灾的危险性。为保证机组 的安全经济运行,汽轮机电液调节系统的控 制液普遍采用了磷酸酯抗燃油。
柱塞变量油泵
系统采用进口高压变量柱塞泵,并采用双泵并联工作系统, 当一台泵工作,则另一台泵备用,以提高供油系统的可靠性, 二台泵布置在油箱的下方,以保证正的吸入压头。 由交流马达驱动高压柱塞泵,通过油泵吸入滤网将油箱中的 抗燃油吸入,从油泵出口的油经过压力滤油器通过单向阀流 入和高压蓄能器联接的高压油母管将高压抗燃油送到各执行 机构和危急遮断系统。 泵输出压力可在0-21MPa之间任意设置。本系统允许正常工 作压力设置在11.0~15.0MPa,本系统额定工作压力为 14.5MPa。 油泵启动后,油泵以全流量约85 L/min向系统供油,同时也 给蓄能器充油,当油压到达系统的整定压力14.5MPa时,高 压油推动恒压泵上的控制阀,控制阀操作泵的变量机构,使 泵的输出流量减少,当泵的输出流量和系统用油流量相等时, 泵的变量机构维持在某一位置,当系统需要增加或减少用油 量时,泵会自动改变输出流量,维护系统油压在14.5MPa。 当系统瞬间用油量很大时,蓄能器将参与供油。
伺服控制(电液伺服系统 )课件

(二)系统的闭环刚度特性
闭环惯性环节转折频率的无因次曲线
17
闭环振荡环节固有频率无因次曲线
当h和Kv/h较小时
nc h
18
当h和Kv/h较小时
2 nc 2 h — Kv / h
闭环振荡环节阻尼系数无因次曲线
19
系统频宽主要受h和h的影响 和限制,应适当提高h和 h , 但过大的 h会降低nc,影响响
应速度。
电液位置控制系统闭环频率特性曲线
4)只有在工作频率接近谐振频率h时才有稳定性问题。当工作频率 接近h时,负载压力且也将接近ps了,也就是说压力趋于饱和,Kc变得很
大,阻尼系数比较高。
14
P116页使系统满足一定稳定要求的参数估算
由于以上几点原因,估算时一般可用
Kv
h
3
电液位置伺服系统难于得到较大的幅值稳定裕量Kg,而相位稳定
裕量 易于保证。
6
位置比较用电压比较代替 缸
电液伺服阀 液压能源
样板 给定
xi 位移 ei 比较eg 电伺服 I
传感器
- 放大器
ef
力矩 马达
液压 放大元件
扰动
液压 xp
执行件
位移 传感器1
A 双传感器阀控位置控制系统
7
由计算机图 形代替样板
程序 ei 比较eg
给定
-
ef
电液伺服阀 液压能源
电伺服 i 放大器
力矩 马达
11
将电液伺服阀看成比例环节
Kv
Ke Kd Ka Ksv iDm
TL
K V ce
iD K m
4
s
t
1
e ce
i +
电液伺服系统概述

课题
电液比例与伺服控制系统概述
能结合传统的多级调速与多级调压掌握电液比例控制系统的原理,并能明确两者之间的区别。
二、自主学习
1、了解电液比例与伺服控制技术的发展概况
2、某重型机床工作台的位置伺服系统
图1-1液压伺服控制系统原理图
图中展示的是液压缸输出位移对阀芯输入位移的跟随运动。
图1-2液压伺服系统工作原理方块图
通过以上学习,应分析出液压伺服系统具备以下工作特点:
电液比例控制系统分类及组成
难点
电液比例控制系统工作原理
教具
液压气动实验台、挂图、模型、多媒体
复习
提问
新知识点考查
液压气压系统的多级调速与多级调压原理
布置
作业
课后
回忆
备注
教员
教研室
主任批阅
系部审
查意见
项目一电液比例与伺服控制系统概述
一、提出任务
液压气压系统的多级调速与多级调压可用什么方法实现。
教学目的
图1-5开关型液压控制阀的多级速度控制系统
液比例调速阀1控制,阀1能够根据输入电流的大小自动控制输出流量,并与输入电流成比例。可方便的实现多级和无级调速。
图1-6开环比例速度控制系统
2、多级调压系统
⑴图1-7为采用传统的开关型电磁阀和溢流阀的多级压力控制系统。该回路可实现三级调压及液压卸荷功能。由于是开关型控制,系统会出现压力超调,而且采用元件也较多。
电液伺服控制系统

1电液伺服控制系统1.1电液控制系统的发展历史概述液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构———水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
在以后的几十年中,电液控制技术的工业应用又进一步扩展到工业机器人控制、塑料加工、地质和矿藏探测、燃气或蒸汽涡轮控制及可移动设备的自动化等领域。
电液比例控制技术及比例阀在20世纪60年代末70年代初出现。
70年代,随着集成电路的问世及其后微处理器的诞生,基于集成电路的控制电子器件和装置广泛应用于电液控制技术领域。
现代飞机上的操纵系统。
如驼机、助力器、人感系统,发动机与电源系统的恒速与恒频调节,火力系统中的雷达与炮塔的跟踪控制等大都采用了电液伺服控制系统。
飞行器的地面模拟设备,包括飞行模拟台、负载模拟器大功率模拟振动台、大功率材料实验加载等大多采用了电液控制,因此电液伺服控制的发展关系到航空与宇航事业的发展,在其他的国防工业中如机器人也大量使用了电液控制系统。
电液伺服控制系统

组成电液比例控制系统的基本元件: 1)指令元件 2 比较元件 3 电控器 4 比例阀 5 液压执行器 6 检测反馈元件
第6章 电液伺服控制系统
4
6.1 概述
6.1.2 电 液 比 例 控 制 系 统 的 特 点 及 组成
第6章 电液伺服控制系统
5
6.1 概述
电液比例控制的主要优点是: 1)操作方便,容易实现遥控 2 自动化程度高,容易实现编程控制 3 工作平稳,控制精度较高 4 结构简单,使用元件较少,对污染不敏感 5 系统的节能效果好。
6.功率放大级
功率放大级式比例控制放大器的 核心单元。由信号放大和功率驱动电路 组成。
根据功率放大级工作原理不同,分 为:模拟式和开关式。
第6章 电液伺服控制系统
29
6.3 电液比例电控技术
(1)模拟式功率放大级
第6章 ห้องสมุดไป่ตู้液伺服控制系统
30
6.3 电液比例电控技术
(2)开关式功率放大级
第6章 电液伺服控制系统
比例放大器根据受控对象、功率级工作原理不同,分为: 1 单路和双路比例控制放大器 2 单通道、双通道和多通道比例控制放大器 3 电反馈和不带电反馈比例控制放大器 4 模拟式和开关式比例控制放大器 5 单向和双向比例控制放大器 6 恒压式和恒流式比例控制放大器
第6章 电液伺服控制系统
16
6.3 电液比例电控技术
第6章 电液伺服控制系统
18
6.3 电液比例电控技术
第6章 电液伺服控制系统
19
6.3 电液比例电控技术
2.输入接口单元 (1)模拟量输入接口
2 数字量输入接口 3 遥控接口
第6章 电液伺服控制系统
20
电液控制-机液伺服系统

四、液压转矩放大器
Hale Waihona Puke 反馈机构为 螺杆、螺母 液压马达轴完全跟 踪阀芯输入转角而 转动。但输出力矩 比输入力矩要大得 多,故称液压转矩 放大器。
电液步进马达
以惯性负载为主时,可分析得
方框图为:
则系统方框图为:
§系统稳定性分析
液压伺服系统的动态分析和设计一般都是以稳定性要求为 中心进行的。
令G(s)为前向通道的传递函数,H(s)为反馈通道的传递函 数,由以上的方框图可得系统的开环传递函数为:
含有一个积分环节,故系统为Ⅰ型系统。
可绘制开环系统伯德图,如下图所示:
对伯德图的分析
幅值穿越频率ωc≈Kv 相位穿越频率ωc=ωg 为了使系统稳定, 必须有足够的相位裕 量和增益裕量。 由图可见,相位裕 度已为正值,为使幅 值裕度为正值,可计 算求得要求: K 2
与全闭环系统相比,半闭环系统的稳定性好得多,但精度较低。
综上所述,由于结构柔度的影响,产生了结构谐振和液压谐 振的耦合,使系统出现了频率低、阻尼比小的综合谐振,综合谐 振频率ωn和综合阻尼比ξn常常成为影响系统稳定性和限制系统频 宽的主要因素,因此提高具有重要意义。 提高ωn 就需要提高结构谐振频率ωs,就要求负载惯量减小 (但已由负载特性决定),结构刚度增大(提高安装固定刚度和 传动机构刚度,尤其是靠近负载处的传动机构的结构刚度)。 增大执行元件到负载的传动比,可提高液压固有频率;提高 液压弹簧刚度的方法也可提高液压固有频率,从而提高综合谐振 频率。
反馈从活塞输出端Xp取出时,构成为半闭环系统,其方框图 为:
此时系统开环传函中含有二阶微分环节,当ωs2和ωn靠得很 近时,会有零极点相消现象,使综合谐振峰值减小,从而改善 系统稳定性,如曲线b所示。 系统闭环传函为:
电液伺服系统原理

电液伺服系统原理
电液伺服系统是一种通过控制液压油流来实现位置、速度和力的精确控制的系统。
它由液压系统、电气系统和机械执行部分组成。
液压系统是电液伺服系统的核心部分,它包括液压泵、液压缸、液压阀和液压油箱。
液压泵通过压力油将液压油推送给液压缸,从而产生力或运动。
液压阀用于控制液压油的流动方向和流量。
液压油箱用于储存液压油,并保持其温度和清洁度。
电气系统通过控制电信号来控制液压系统。
它包括传感器、控制器和执行器。
传感器用于检测被控对象的位置、速度和力,并将其转化为电信号。
控制器接收传感器反馈的电信号,经过计算和处理后,输出控制信号给执行器。
执行器接收控制信号,并控制液压阀的开关状态,从而控制液压系统的运动和力。
机械执行部分将液压系统的力和运动传递给被控对象。
它包括液压缸、阀门、连接杆等元件。
液压缸接收液压油的力,并将其转化为线性运动。
阀门用于控制液压油流的方向和流量。
连接杆将液压缸的运动传递给被控对象,实现位置、速度和力的控制。
总之,电液伺服系统通过控制液压油流来实现位置、速度和力的精确控制。
液压系统、电气系统和机械执行部分相互配合,完成对被控对象的精确控制。